Agroforestry-Based Ecosystem Services: Reconciling Values of Humans and Nature in Sustainable Development
Abstract
:1. Introduction
2. Roots of Sustainability Concepts Relevant to Agroforestry
2.1. Three Changes of Theory Foundational to Sustainable Development
2.2. Theories of Induced Change
2.3. Teleconnections and Distractors
2.4. Value Types
3. Nested-Scale Agroforestry Concepts in Relation to Ecosystem Services
3.1. Three Agroforestry Concepts
3.2. Agroforestry as Part of a Landscape Mosaic
3.3. Agroforestry and Metrics for Multifunctionality
3.4. Agroforestry and the Half Earth Debate
4. Roles for and Contributions by Agroforestry Research
4.1. Issue Cycle Stages
4.2. Methods and Interdisciplinarity of Agroforestry Research
4.3. Research Roles in Theories of Induced Change
4.4. Hypotheses for Further Research
- i.
- The way plural value concepts of agroforestry evolve in relation to ES discourse and sustainability concerns at the multifunctional landscape scale.
- ii.
- The interaction between the three agroforestry scales (AF1, AF2, and AF3) and value-of-nature concepts.
- iii.
- The roles research can play in connecting theories of place and change to policies that aim for applicable theories of induced change, in support of SDGs.
5. Conclusions and Outlook
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Clark, W.C.; Tomich, T.P.; Van Noordwijk, M.; Guston, D.; Catacutan, D.; Dickson, N.M.; McNie, E. Boundary work for sustainable development: Natural resource management at the Consultative Group on International Agricultural Research (CGIAR). Proc. Natl. Acad. Sci. USA 2016, 113, 4615–4622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Noordwijk, M.; Coe, R.; Sinclair, F.L. Agroforestry paradigms. In Sustainable Development through Trees on Farms: Agroforestry in Its Fifth Decade; World Agroforestry (ICRAF): Bogor, Indonesia, 2019; pp. 1–12. Available online: https://worldagroforestry.org/trees-on-farms (accessed on 2 July 2021).
- Zafra-Calvo, N.; Balvanera, P.; Pascual, U.; Merçon, J.; Martín-López, B.; van Noordwijk, M.; Mwampamba, T.H.; Lele, S.; Speranza, C.I.; Arias-Arévalo, P.; et al. Plural valuation of nature for equity and sustainability: Insights from the Global South. Glob. Environ. Chang. 2020, 63, 102115. [Google Scholar] [CrossRef]
- Kadykalo, A.N.; López-Rodriguez, M.D.; Ainscough, J.; Droste, N.; Ryu, H.; Ávila-Flores, G.; Le Clec’h, S.; Muñoz, M.C.; Nilsson, L.; Rana, S.; et al. Disentangling ‘ecosystem services’ and ‘nature’s contributions to people’. Ecosyst. People 2019, 15, 269–287. [Google Scholar] [CrossRef] [Green Version]
- Costanza, R.; D’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Costanza, R.; de Groot, R.; Braat, L.; Kubiszewski, I.; Fioramonti, L.; Sutton, P.; Farber, S.; Grasso, M. Twenty years of ecosystem services: How far have we come and how far do we still need to go? Ecosyst. Serv. 2017, 28, 1–16. [Google Scholar] [CrossRef]
- Himes, A.; Muraca, B. Relational values: The key to pluralistic valuation of ecosystem services. Curr. Opin. Environ. Sustain. 2018, 35, 1–7. [Google Scholar] [CrossRef]
- Van Noordwijk, M. Integrated natural resource management as pathway to poverty reduction: Innovating practices, institutions and policies. Agric. Syst. 2019, 172, 60–71. [Google Scholar] [CrossRef]
- Zomer, R.J.; Neufeldt, H.; Xu, J.; Ahrends, A.; Bossio, D.; Trabucco, A.; Van Noordwijk, M.; Wang, M. Global Tree Cover and Biomass Carbon on Agricultural Land: The contribution of agroforestry to global and national carbon budgets. Sci. Rep. 2016, 6, 1–12. [Google Scholar] [CrossRef]
- Raworth, K. A safe and just space for humanity: Can we live within the doughnut. Oxfam Policy Pract. Clim. Chang. Resil. 2012, 8, 1–26. [Google Scholar]
- Van Noordwijk, M.; Leimona, B. Principles for fairness and efficiency in enhancing environmental services in Asia: Payments, compensation, or co-investment? Ecol. Soc. 2010, 15, 17. Available online: http://www.ecologyandsociety.org/vol15/iss4/art17/ (accessed on 2 July 2021). [CrossRef]
- Woittiez, L.S.; van Wijk, M.T.; Slingerland, M.; van Noordwijk, M.; Giller, K.E. Yield gaps in oil palm: A quantitative review of contributing factors. Eur. J. Agron. 2017, 83, 57–77. [Google Scholar] [CrossRef]
- Van Noordwijk, M.; Brussaard, L. Minimizing the ecological footprint of food: Closing yield and efficiency gaps simultaneously? Curr. Opin. Environ. Sustain. 2014, 8, 62–70. [Google Scholar] [CrossRef]
- Minang, P.A.; van Noordwijk, M.; Duguma, L. Policies for ecosystem services enhancement. In Sustainable Development through Trees on Farms: Agroforestry in Its Fifth Decade; World Agroforestry (ICRAF): Bogor, Indonesia, 2019; pp. 361–375. Available online: https://worldagroforestry.org/trees-on-farms (accessed on 2 July 2021).
- Keesstra, S.; Mol, G.; De Leeuw, J.; Okx, J.; Molenaar, C.; De Cleen, M.; Visser, S. Soil-Related Sustainable Development Goals: Four Concepts to Make Land Degradation Neutrality and Restoration Work. Land 2018, 7, 133. [Google Scholar] [CrossRef] [Green Version]
- Van Noordwijk, M. Theories of Place, Change and Induced Change for Tree-Crop-Based Agroforestry; World Agroforestry (ICRAF): Bogor, Indonesia, 2021. [Google Scholar]
- Díaz, S.; Settele, J.; Brondízio, E.S.; Ngo, H.T.; Guèze, M.; Agard, J.; Arneth, A.; Balvanera, P.; Brauman, K.; Butchart, S.H.; et al. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; IPBES: Bonn, Germany, 2019. [Google Scholar]
- Available online: https://commons.wikimedia.org/wiki/File: Charles_Darwin_01.jpg (accessed on 25 June 2021).
- Available online: https://commons.wikimedia.org/wiki/File:Adam_Smith,_1723_-_1790._Political_economist_-_Google_Art_Project.jpg (accessed on 25 June 2021).
- Available online: https://creativecommons.org/2012/06/13/honoring-elinor-ostrom/ (accessed on 25 June 2021).
- Smith, A. An Inquiry into the Nature and Causes of the Wealth of Nations; W. Strahan and T. Cadell: London, UK, 1776. [Google Scholar]
- Smith, A. The Theory of Moral Sentiments, 2nd ed.; A. Millar; A. Kincaid and J. Bell: Strand: Edinburgh, UK, 1761; Available online: https://books.google.co.id/books?id=bZhZAAAAcAAJ&q=editions:u_L0P5LRqXkC&pg=PP3&redir_esc=y#v=onepage&q=editions%3Au_L0P5LRqXkC&f=false (accessed on 2 July 2021).
- Dawkins, R. The Blind Watchmaker: Why the Evidence of Evolution Reveals a Universe without Design; WW Norton & Company: New York, NY, USA, 1996. [Google Scholar]
- Mazoyer, M.; Roudart, L. A History of World Agriculture: From the Neolithic Age to the Current Crisis; Monthly Review Press: New York, NY, USA, 2006. [Google Scholar]
- Diamond, J. Collapse: How Societies Choose to Fail or Survive; Lane: London, UK, 2005. [Google Scholar]
- De Ruiter, P.C.; Wolters, V.; Moore, J.C.; Winemiller, K.O. Food web ecology: Playing Jenga and beyond. Science 2005, 309, 68–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duguma, L.A.; van Noordwijk, M.; Minang, P.A.; Muthee, K. COVID-19 pandemic and agroecosystem resilience: Early insights for building better futures. Sustainability 2021, 13, 1278. [Google Scholar] [CrossRef]
- Nature-Risk-Rising. Available online: https://www.weforum.org/reports/nature-risk-rising-why-the-crisis-engulfing-nature-matters-for-business-and-the-economy (accessed on 30 March 2021).
- Folke, C.; Hahn, T.; Olsson, P.; Norberg, J. Adaptive governance of social-ecological systems. Annu. Rev. Environ. Resour. 2005, 30, 441–473. [Google Scholar] [CrossRef] [Green Version]
- Taylor, B.R. Dark Green Religion: Nature Spirituality and the Planetary Future; University of California Press: Berkeley, CA, USA, 2010. [Google Scholar]
- Rosenau, J.N. Turbulence in World Politics: A Theory of Change and Continuity; Princeton University Press: Princeton, NJ, USA, 2018. [Google Scholar]
- Rose, C. The comedy of the commons: Custom, commerce, and inherently public property. Univ. Chic. Law Rev. 1986, 53, 711–781. Available online: https://digitalcommons.law.yale.edu/fss_papers/1828/ (accessed on 25 March 2021). [CrossRef]
- Ostrom, E. Governing the Commons: The Evolution of Institutions for Collective Action; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Ryan, R.M.; Deci, E.L. On happiness and human potentials: A review of research on hedonic and eudaimonic well-being. Annu. Rev. Psychol. 2001, 52, 141–166. [Google Scholar] [CrossRef]
- Bauer, J.J.; McAdams, D.P.; Pals, J.L. Narrative identity and eudaimonic well-being. J. Happiness Stud. 2008, 9, 81–104. [Google Scholar] [CrossRef]
- Davidson, J.; Henley, D. (Eds.) The Revival of Tradition in Indonesian Politics: The Deployment of Adat from Colonialism to Indigenism; Routledge: London, UK; New York, NY, USA, 2007. [Google Scholar]
- Takeuchi, K. Rebuilding the relationship between people and nature: The Satoyama Initiative. Ecol. Res. 2010, 25, 891–897. [Google Scholar] [CrossRef] [Green Version]
- Fang, T. Yin Yang: A new perspective on culture. Manag. Organ. Rev. 2012, 8, 25–50. [Google Scholar] [CrossRef]
- Ahmad, J.; Kadir, A.; Bahari, M.A. Disequilibrium and divinity salience as invariant structures in the halal executives’ experience of eudaimonia. Adv. Bus. Res. Int. J. 2019, 5, 1–15. [Google Scholar] [CrossRef]
- Steger, M.F.; Kashdan, T.B.; Oishi, S. Being good by doing good: Daily eudaimonic activity and well-being. J. Res. Personal. 2008, 42, 22–42. [Google Scholar] [CrossRef]
- Ryff, C.D.; Singer, B.H. Know thyself and become what you are: A eudaimonic approach to psychological well-being. J. Happiness Stud. 2008, 9, 13–39. [Google Scholar] [CrossRef]
- Van Noordwijk, M.; Speelman, E.; Hofstede, G.J.; Farida, A.; Abdurrahim, A.Y.; Miccolis, A.; Hakim, A.L.; Wamucii, C.N.; Lagneaux, E.; Andreotti, F.; et al. Sustainable Agroforestry Landscape Management: Changing the Game. Land 2020, 9, 243. [Google Scholar] [CrossRef]
- Minang, P.A.; Duguma, L.A.; Alemagi, D.; van Noordwijk, M. Scale considerations in landscape approaches. In Climate-Smart Landscapes: Multifunctionality in Practice; Minang, P.A., van Noordwijk, M., Freeman, O.E., Mbow, C., de Leeuw, J., Catacutan, D., Eds.; World Agroforestry Centre (ICRAF): Nairobi, Kenya, 2015; pp. 121–133. [Google Scholar]
- Van Noordwijk, M.; Leimona, B.; Jindal, R.; Villamor, G.B.; Vardhan, M.; Namirembe, S.; Catacutan, D.; Kerr, J.; Minang, P.A.; Tomich, T.P. Payments for environmental services: Evolution toward efficient and fair incentives for multifunctional landscapes. Annu. Rev. Environ. Resour. 2012, 37, 389–420. [Google Scholar] [CrossRef]
- Thaler, R.H.; Ganser, L.J. Misbehaving: The Making of Behavioral Economics; WW Norton: New York, NY, USA, 2015. [Google Scholar]
- Kahneman, D. Thinking, Fast and Slow; Macmillan: London, UK, 2011. [Google Scholar]
- Fiske, A.P. The four elementary forms of sociality: Framework for a unified theory of social relations. Psychol. Rev. 1992, 99, 689. [Google Scholar] [CrossRef]
- Gupta, J.; Matthews, R.; Minang, P.; van Noordwijk, M.; Kuik, O.; van der Grijp, N. Climate change and forests: From the Noordwijk Declaration to REDD. In Climate Change, Forests and REDD. Lessons for Institutional Design; Routledge: London, UK, 2013; pp. 1–24. [Google Scholar]
- The Noordwijk Ministerial Declaration on Climate Change. Available online: https://unfccc.int/resource/ccsites/senegal/fact/fs218.htm (accessed on 15 February 2021).
- Hoe Het Redden van de Aarde Strandde in Noordwijk aan Zee. Available online: https://www.youtube.com/watch?v=LqjZStt9quE (accessed on 15 February 2021).
- Lorenz, E. The butterfly effect. World Sci. Ser. Nonlinear Sci. Ser. A 2000, 39, 91–94. [Google Scholar]
- Thunberg, G. No One Is Too Small to Make a Difference: Illustrated Edition; Allen Lane, Penguin: London, UK, 2019; ISBN 9780241453445. [Google Scholar]
- Meadows, D. Leverage points: Places to intervene in a system. Solut. A Sustain. Desirable Future 1999, 1, 41–49. [Google Scholar]
- Stålhammar, S.; Thorén, H. Three perspectives on relational values of nature. Sustain. Sci. 2019, 14, 1201–1212. [Google Scholar] [CrossRef] [Green Version]
- Van Noordwijk-Van Veen, J.C. Biologieonderwijs en Milieueducatie op de Basisschool [Biology Education and Environmental Education at Primary Schools]; Van Gorcum: Assen, The Netherlands, 1973. [Google Scholar]
- Ross, A.; Sherman, R.; Snodgrass, J.G.; Delcore, H.D. Indigenous Peoples and the Collaborative Stewardship of Nature: Knowledge Binds and Institutional Conflicts; Left Coast Press: Walnut Creek, CA, USA, 2011. [Google Scholar]
- Villamor, G.B.; Chiong-Javier, E.; Djanibekov, U.; Catacutan, D.C.; van Noordwijk, M. Gender differences in land-use decisions: Shaping multifunctional landscapes? Curr. Opin. Environ. Sustain. 2014, 6, 128–133. [Google Scholar] [CrossRef] [Green Version]
- Nyhus, P.; Tilson, R. Agroforestry, elephants, and tigers: Balancing conservation theory and practice in human-dominated landscapes of Southeast Asia. Agric. Ecosyst. Environ. 2004, 104, 87–97. [Google Scholar] [CrossRef] [Green Version]
- Namirembe, S.; Leimona, B.; van Noordwijk, M.; Minang, P.A. (Eds.) Co-Investment in Ecosystem Services: Global Lessons from Payment and Incentive Schemes; World Agroforestry Centre (ICRAF): Nairobi, Kenya, 2018. [Google Scholar]
- Cohen-Shacham, E.; Walters, G.; Janzen, C.; Maginnis, S. (Eds.) Nature-Based Solutions to Address Global Societal Challenges; IUCN: Gland, Switzerland, 2016. [Google Scholar]
- Rival, L. (Ed.) The Social Life of Trees: Anthropological Perspectives on Tree Symbolism; Routledge: London, UK, 2021. [Google Scholar]
- Van Noordwijk, M.; Hoang, M.H.; Neufeldt, H.; Öborn, I.; Yatich, T. How Trees and People Can Co-Adapt to Climate Change: Reducing Vulnerability in Multifunctional Landscapes; World Agroforestry Centre: Nairobi, Kenya, 2011. [Google Scholar]
- Van Noordwijk, M.; Coe, R.; Sinclair, F.L.; Luedeling, E.; Bayala, J.; Muthuri, C.W.; Cooper, P.; Kindt, R.; Duguma, L.; Lamanna, C.; et al. Climate change adaptation in and through agroforestry: Four decades of research initiated by Peter Huxley. Mitig. Adapt. Strateg. Glob. Chang. 2021, 26, 1–33. [Google Scholar] [CrossRef]
- Van Noordwijk, M. Prophets, profits, prove it: Social forestry under pressure. One Earth 2020, 2, 394–397. [Google Scholar] [CrossRef]
- Mead, R.; Willey, R. The concept of a ‘land equivalent ratio’ and advantages in yields from intercropping. Exp. Agric. 1980, 16, 217–228. [Google Scholar] [CrossRef] [Green Version]
- Van Noordwijk, M.; Duguma, L.A.; Dewi, S.; Leimona, B.; Catacutan, D.C.; Lusiana, B.; Öborn, I.; Hairiah, K.; Minang, P.A. SDG synergy between agriculture and forestry in the food, energy, water and income nexus: Reinventing agroforestry? Curr. Opin. Environ. Sustain. 2018, 34, 33–42. [Google Scholar] [CrossRef]
- Van Noordwijk, M.; Chandler, F.; Tomich, T.P. An Introduction to the Conceptual Basis of RUPES: Rewarding Upland Poor for the Environmental Services They Provide; ICRAF-Southeast Asia: Bogor, Indonesia, 2004; p. 41. [Google Scholar]
- Michon, G.; De Foresta, H. Agroforests: Pre-domestication of forest trees or true domestication of forest ecosystems? NJAS Wagening. J. Life Sci. 1997, 45, 451–462. [Google Scholar] [CrossRef]
- Wiersum, K.F. Forest gardens as an ‘intermediate’ land-use system in the nature-culture continuum: Characteristics and future potential. In New Vistas in Agroforestry; Springer: Dordrecht, The Netherlands, 2004; pp. 123–134. [Google Scholar]
- Van Noordwijk, M.; Rahayu, S.; Gebrekirstos, A.; Kindt, R.; Tata, H.L.; Muchugi, A.; Ordonez, J.C.; Xu, J. Tree diversity as basis of agroforestry. In Sustainable Development through Trees on Farms: Agroforestry in Its Fifth Decade; Van Noordwijk, M., Ed.; World Agroforestry (ICRAF): Bogor, Indonesia, 2019; pp. 17–44. Available online: https://worldagroforestry.org/trees-on-farms (accessed on 2 July 2021).
- Van Noordwijk, M.; Bargues-Tobella, A.; Muthuri, C.W.; Gebrekirstos, A.; Maimbo, M.; Leimona, B.; Bayala, J.; Ma, X.; Lasco, R.; Xu, J.; et al. Agroforestry as part of nature-based water management. In Sustainable Development through Trees on Farms: Agroforestry in Its Fifth Decade; Van Noordwijk, M., Ed.; World Agroforestry (ICRAF): Bogor, Indonesia, 2019; pp. 305–334. Available online: https://worldagroforestry.org/trees-on-farms (accessed on 2 July 2021).
- Rosenstock, T.S.; Wilkes, A.; Jallo, C.; Namoi, N.; Bulusu, M.; Suber, M.; Mboi, D.; Mulia, R.; Simelton, E.; Richards, M.; et al. Making trees count: Measurement and reporting of agroforestry in UNFCCC national communications of non-Annex I countries. Agric. Ecosyst. Environ. 2019, 284, 106569. [Google Scholar] [CrossRef]
- Hairiah, K.; van Noordwijk, M.; Sari, R.R.; Saputra, D.D.; Suprayogo, D.; Kurniawan, S.; Prayogo, C.; Gusli, S. Soil carbon stocks in Indonesian (agro) forest transitions: Compaction conceals lower carbon concentrations in standard accounting. Agric. Ecosyst. Environ. 2020, 294, 106879. [Google Scholar] [CrossRef]
- Van Noordwijk, M.; Poulsen, J.; Ericksen, P. Quantifying off-site effects of land use change: Filters, flows and fallacies. Agric. Ecosyst. Environ. 2004, 104, 19–34. [Google Scholar] [CrossRef] [Green Version]
- Khasanah, N.; Tanika, L.; Pratama, L.D.Y.; Leimona, B.; Prasetiyo, E.; Marulani, F.; Hendriatna, A.; Zulkarnain, M.T.; Toulier, A.; van Noordwijk, M. Groundwater-extracting rice production in the Rejoso watershed (Indonesia) reducing urban water availability: Characterization and intervention priorities. Land 2021, 9. in press. [Google Scholar]
- Pfund, J.L.; Watts, J.D.; Boissiere, M.; Boucard, A.; Bullock, R.M.; Ekadinata, A.; Dewi, S.; Feintrenie, L.; Levang, P.; Rantala, S.; et al. Understanding and integrating local perceptions of trees and forests into incentives for sustainable landscape management. Environ. Manag. 2011, 48, 334–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vira, B.; Agarwal, B.; Jamnadas, R.; Kleinschmit, D.; McMullin, S.; Mansourian, S.; Neufeldt, H.; Parrotta, J.A.; Sunderland, T.; Wildburger, C. Introduction: Forests, Trees and Landscapes for Food Security and Nutrition; IUFRO World Series 33; IUFRO: Vienna, Austria, 2015; pp. 14–23. [Google Scholar]
- Van Noordwijk, M.; Bizard, V.; Wangpakapattanawong, P.; Tata, H.L.; Villamor, G.B.; Leimona, B. Tree cover transitions and food security in Southeast Asia. Glob. Food Secur. 2014, 3, 200–208. [Google Scholar] [CrossRef] [Green Version]
- Van Noordwijk, M.; Suyamto, D.; Lusiana, B.; Ekadinata, A.; Hairiah, K. Facilitating agroforestation of landscapes for sustainable benefits: Tradeoffs between carbon stocks and local development benefits in Indonesia according to the FALLOW model. Agric. Ecosyst. Environ. 2008, 126, 98–112. [Google Scholar] [CrossRef]
- Van Noordwijk, M.; Tanika, L.; Lusiana, B. Flood risk reduction and flow buffering as ecosystem services. Part 1: Theory on flow persistence, flashiness and base flow. Hydrol. Earth Syst. Sci. 2017, 21, 2321–2340. [Google Scholar] [CrossRef] [Green Version]
- Van Noordwijk, M.; van Roode, M.; McCallie, E.L.; Cadisch, G. Erosion and sedimentation as multiscale, fractal processes: Implications for models, experiments and the real world. In Soil Erosion at Multiple Scales, Principles and Methods for Assessing Causes and Impacts; Penning de Vries, F., Agus, F., Kerr, J., Eds.; CAB International: Wallingford, UK, 1998; pp. 223–253. [Google Scholar]
- Verbist, B.; Poesen, J.; van Noordwijk, M.; Widianto, W.; Suprayogo, D.; Agus, F.; Deckers, S. Factors affecting soil loss at plot scale and sediment yield at catchment scale in a tropical volcanic agroforestry landscape. Catena 2010, 80, 34–46. [Google Scholar] [CrossRef]
- Khasanah, N.; van Noordwijk, M.; Slingerland, M.; Sofiyudin, M.; Stomph, D.; Migeon, A.F.; Hairiah, K. Oil Palm Agroforestry Can Achieve Economic and Environmental Gains as Indicated by Multifunctional Land Equivalent Ratios. Front. Sustain. Food Syst. 2020, 3, 122. [Google Scholar] [CrossRef]
- Phalan, B.T. What have we learned from the land sparing-sharing model? Sustainability 2018, 10, 1760. [Google Scholar] [CrossRef] [Green Version]
- Martin, D.A.; Osen, K.; Grass, I.; Hölscher, D.; Tscharntke, T.; Wurz, A.; Kreft, H. Land-use history determines ecosystem services and conservation value in tropical agroforestry. Conserv. Lett. 2020, 13, e12740. [Google Scholar] [CrossRef]
- Van Noordwijk, M.; Gitz, V.; Minang, P.A.; Dewi, S.; Leimona, B.; Duguma, L.; Pingault, N.; Meybeck, A. People-Centric Nature-Based Land Restoration through Agroforestry: A Typology. Land 2020, 9, 251. [Google Scholar] [CrossRef]
- Wilson, E.O. Biophilia and the Conservation Ethic. In Evolutionary Perspectives on Environmental Problems; Routledge: London, UK, 2007; pp. 249–257. [Google Scholar]
- Secretariat of the Convention on Biological Diversity. Global Biodiversity Outlook 5; Secretariat of the Convention on Biological Diversity: Montreal, QC, Canada, 2020; Available online: https://www.cbd.int/gbo/gbo5/publication/gbo-5-en.pdf (accessed on 5 March 2021).
- Domínguez, L.; Luoma, L. Decolonising conservation policy: How colonial land and conservation ideologies persist and perpetuate indigenous injustices at the expense of the environment. Land 2020, 9, 65. [Google Scholar] [CrossRef] [Green Version]
- Büscher, B.; Fletcher, R.; Brockington, D.; Sandbrook, C.; Adams, W.M.; Campbell, L.; Corson, C.; Dressler, W.; Duffy, R.; Gray, N.; et al. Half-Earth or Whole Earth? Radical ideas for conservation, and their implications. Oryx 2017, 51, 407–410. [Google Scholar] [CrossRef] [Green Version]
- Van Noordwijk, M.; Tomich, T.P.; de Foresta, H.; Michon, G. To segregate-or to integrate? The question of balance between production and biodiversity conservation in complex agroforestry systems. Agrofor. Today 1997, 9, 6–9. [Google Scholar]
- Van Noordwijk, M.; Tata, H.L.; Xu, J.; Dewi, S.; Minang, P.A. Segregate or integrate for multifunctionality and sustained change through rubber-based agroforestry in Indonesia and China. In Agroforestry-the Future of Global Land Use; Nair, P.K., Garrity, D.P., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 69–104. [Google Scholar]
- Asubonteng, K.O.; Pfeffer, K.; Ros-Tonen, M.A.; Baud, I.; Benefoh, D.T. Integration versus segregation: Structural dynamics of a smallholder-dominated mosaic landscape under tree-crop expansion in Ghana. Appl. Geogr. 2020, 108, 102201. [Google Scholar] [CrossRef]
- Phalan, B.; Onial, M.; Balmford, A.; Green, R.E. Reconciling food production and biodiversity conservation: Land sharing and land sparing compared. Science 2011, 333, 1289–1291. [Google Scholar] [CrossRef]
- Ellis, E.C.; Pascual, U.; Mertz, O. Ecosystem services and nature’s contribution to people: Negotiating diverse values and trade-offs in land systems. Curr. Opin. Environ. Sustain. 2019, 38, 86–94. [Google Scholar] [CrossRef]
- Dinerstein, E.; Vynne, C.; Sala, E.; Joshi, A.R.; Fernando, S.; Lovejoy, T.E.; Mayorga, J.; Olson, D.; Asner, G.P.; Baillie, J.E.; et al. A global deal for nature: Guiding principles, milestones, and targets. Sci. Adv. 2019, 5, eaaw2869. [Google Scholar] [CrossRef] [Green Version]
- Dolan, R.; Bullock, J.M.; Jones, J.P.G.; Athanasiadis, I.N.; Martinez-Lopez, J.; Willcock, S. The flows of nature to people, and of people to nature: Applying movement concepts to ecosystem services. Land 2021, 10, 576. [Google Scholar] [CrossRef]
- Rolo, V.; Roces-Diaz, J.V.; Torralba, M.; Kay, S.; Fagerholm, N.; Aviron, S.; Burgess, P.; Crous-Duran, J.; Ferreiro-Dominguez, N.; Graves, A.; et al. Mixtures of forest and agroforestry alleviate trade-offs between ecosystem services in European rural landscapes. Ecosyst. Serv. 2021, 50, 101318. [Google Scholar] [CrossRef]
- Zinngrebe, Y.; Borasino, E.; Chiputwa, B.; Dobie, P.; Garcia, E.; Gassner, A.; Kihumuro, P.; Komarudin, H.; Liswanti, N.; Makui, P.; et al. Agroforestry governance for operationalising the landscape approach: Connecting conservation and farming actors. Sustain. Sci. 2020, 15, 1417–1434. [Google Scholar] [CrossRef]
- United Nations Environment Programme. Making Peace with Nature: A Scientific Blueprint to Tackle the Climate, Biodiversity and Pollution Emergencies. Nairobi. 2021. Available online: https://www.unep.org/resources/making-peace-nature (accessed on 1 July 2021).
- IGS-UN [Independent Group of Scientists appointed by the Secretary-General]. Global Sustainable Development Report 2019: The Future Is Now—Science for Achieving Sustainable Development; United Nations: New York, NY, USA, 2019; Available online: https://sustainabledevelopment.un.org/content/documents/24797GSDR_report_2019.pdf (accessed on 5 March 2021).
- Cash, D.; Clark, W.C.; Alcock, F.; Dickson, N.M.; Eckley, N.; Jäger, J. Salience, Credibility, Legitimacy and Boundaries: Linking Research, Assessment and Decision Making; KSG Working Papers Series, RWP02-046; Kennedy School of Governance, Harvard University: Boston, MA, USA, 2003. [Google Scholar] [CrossRef] [Green Version]
- Kooiman, J. Exploring the concept of governability. J. Comp. Policy Anal. Res. Pract. 2008, 10, 171–190. [Google Scholar] [CrossRef]
- Hofstede, G.J. GRASP agents: Social first, intelligent later. Ai Soc. 2019, 34, 535–543. [Google Scholar] [CrossRef] [Green Version]
- Kemper, T.D. Status, Power and Ritual Interaction: A Relational Reading of Durkheim, Goffman and Collins; Ashgate: Farnham, UK, 2011. [Google Scholar]
- Vatn, A. Institutions and the Environment; Edward Elgar Publishing: Cheltenham, UK, 2007. [Google Scholar]
- Vatn, A. Rationality, institutions and environmental policy. Ecol. Econ. 2005, 55, 203–217. [Google Scholar] [CrossRef]
- Thaler, R.H.; Sunstein, C.R. Nudge: Improving Decisions about Health, Wealth, and Happiness; Yale University Press: New Haven, CT, USA, 2008. [Google Scholar]
- Van Noordwijk, M.; Coe, R. Methods in agroforestry research across its three paradigms. In Sustainable Development through Trees on Farms: Agroforestry in Its Fifth Decade; van Noordwijk, M., Ed.; World Agroforestry (ICRAF): Bogor, Indonesia, 2019; pp. 324–346. Available online: https://worldagroforestry.org/trees-on-farms (accessed on 2 July 2021).
- Brandt, J.; Stolle, F. A global method to identify trees outside of closed-canopy forests with medium-resolution satellite imagery. Int. J. Remote Sens. 2020, 42, 1713–1737. [Google Scholar] [CrossRef]
- Oloo, F.; Murithi, G.; Jepkoshei, A. Quantifying tree cover loss in urban forests within Nairobi city metropolitan area from Earth observation data. Environ. Sci. Proc. 2021, 3, 78. [Google Scholar] [CrossRef]
- Duku, C.; Hein, L. The impact of deforestation on rainfall in Africa: A data-driven assessment. Environ. Res. Lett. 2021, 16, 064044. [Google Scholar] [CrossRef]
- Suprayogo, D.; van Noordwijk, M.; Hairiah, K.; Meilasari, N.; Rabbani, A.L.; Ishaq, R.M.; Widianto, W. Infiltration-Friendly Agroforestry Land Uses on Volcanic Slopes in the Rejoso Watershed, East Java, Indonesia. Land 2020, 9, 240. [Google Scholar] [CrossRef]
- Wainaina, P.; Minang, P.A.; Gituku, E.; Duguma, L. Cost-Benefit Analysis of Landscape Restoration: A Stocktake. Land 2020, 9, 465. [Google Scholar] [CrossRef]
- Nguyen, M.P.; Vaast, P.; Pagella, T.; Sinclair, F. Local Knowledge about Ecosystem Services Provided by Trees in Coffee Agroforestry Practices in Northwest Vietnam. Land 2020, 9, 486. [Google Scholar] [CrossRef]
- Cahyono, E.D.; Fairuzzana, S.; Willianto, D.; Pradesti, E.; McNamara, N.P.; Rowe, R.L.; van Noordwijk, M. Agroforestry Innovation through Planned Farmer Behavior: Trimming in Pine–Coffee Systems. Land 2020, 9, 363. [Google Scholar] [CrossRef]
- Burgess, P.J.; Graves, A.R.; García de Jalón, S.; Palma, J.H.N.; Dupraz, C.; van Noordwijk, M. Modelling agroforestry systems. In Agroforestry for Sustainable Agriculture; Mosquera-Losada, M.R., Prabhu, R., Eds.; Burleigh Dodds Science Publishing Limited: Cambridge, UK, 2019; pp. 209–238. [Google Scholar]
- Hairiah, K.; Widianto, W.; Suprayogo, D.; Van Noordwijk, M. Tree Roots Anchoring and Binding Soil: Reducing Landslide Risk in Indonesian Agroforestry. Land 2020, 9, 256. [Google Scholar] [CrossRef]
- Nyberg, Y.; Musee, C.; Wachiye, E.; Jonsson, M.; Wetterlind, J.; Öborn, I. Effects of Agroforestry and Other Sustainable Practices in the Kenya Agricultural Carbon Project (KACP). Land 2020, 9, 389. [Google Scholar] [CrossRef]
- Aynekulu, E.; Suber, M.; van Noordwijk, M.; Arango, J.; Roshetko, J.M.; Rosenstock, T.S. Carbon Storage Potential of Silvopastoral Systems of Colombia. Land 2020, 9, 309. [Google Scholar] [CrossRef]
- Do, V.H.; La, N.; Mulia, R.; Bergkvist, G.; Dahlin, A.S.; Nguyen, V.T.; Pham, H.T.; Öborn, I. Fruit Tree-Based Agroforestry Systems for Smallholder Farmers in Northwest Vietnam—A Quantitative and Qualitative Assessment. Land 2020, 9, 451. [Google Scholar] [CrossRef]
- Purwanto, E.; Santoso, H.; Jelsma, I.; Widayati, A.; Nugroho, H.Y.S.H.; van Noordwijk, M. Agroforestry as policy option for forest-zone oil palm production in Indonesia. Land 2020, 9, 531. [Google Scholar] [CrossRef]
- Cabral, J.P.; Faria, D.; Morante-Filho, J.C. Landscape composition is more important than local vegetation structure for understory birds in cocoa agroforestry systems. For. Ecol. Manag. 2020, 481, 118704. [Google Scholar] [CrossRef]
- Niether, W.; Jacobi, J.; Blaser, W.J.; Andres, C.; Armengot, L. Cocoa agroforestry systems versus monocultures: A multi-dimensional meta-analysis. Environ. Res. Lett. 2020, 15, 104085. [Google Scholar] [CrossRef]
- Kay, S.; Kühn, E.; Albrecht, M.; Sutter, L.; Szerencsits, E.; Herzog, F. Agroforestry can enhance foraging and nesting resources for pollinators with focus on solitary bees at the landscape scale. Agrofor. Syst. 2020, 94, 379–387. [Google Scholar] [CrossRef]
- Elagib, N.A.; Al-Saidi, M. Balancing the benefits from the water–energy–land–food nexus through agroforestry in the Sahel. Sci. Total Environ. 2020, 742, 140509. [Google Scholar] [CrossRef]
- Marconi, L.; Armengot, L. Complex agroforestry systems against biotic homogenization: The case of plants in the herbaceous stratum of cocoa production systems. Agric. Ecosyst. Environ. 2020, 287, 106664. [Google Scholar] [CrossRef]
- Mupepele, A.C.; Keller, M.; Dormann, C.F. European agroforestry is no universal remedy for biodiversity: A time-cumulative meta-analysis. bioRxiv 2020. Available online: https://www.biorxiv.org/content/biorxiv/early/2020/08/28/2020.08.27.269589.full.pdf (accessed on 2 July 2021). [CrossRef]
- Sari, R.R.; Saputra, D.D.; Hairiah, K.; Rozendaal, D.M.A.; Roshetko, J.M.; van Noordwijk, M. Gendered Species Preferences Link Tree Diversity and Carbon Stocks in Cacao Agroforest in Southeast Sulawesi, Indonesia. Land 2020, 9, 108. [Google Scholar] [CrossRef] [Green Version]
- Cerda, R.; Avelino, J.; Harvey, C.A.; Gary, C.; Tixier, P.; Allinne, C. Coffee agroforestry systems capable of reducing disease-induced yield and economic losses while providing multiple ecosystem services. Crop Prot. 2020, 134, 105149. [Google Scholar] [CrossRef] [Green Version]
- Durand-Bessart, C.; Tixier, P.; Quinteros, A.; Andreotti, F.; Rapidel, B.; Tauvel, C.; Allinne, C. Analysis of interactions amongst shade trees, coffee foliar diseases and coffee yield in multistrata agroforestry systems. Crop Prot. 2020, 133, 105137. [Google Scholar] [CrossRef]
- Mulia, R.; Nguyen, D.D.; Nguyen, M.P.; Steward, P.; Pham, V.T.; Le, H.A.; Rosenstock, T.; Simelton, E. Enhancing Vietnam’s Nationally Determined Contribution with Mitigation Targets for Agroforestry: A Technical and Economic Estimate. Land 2020, 9, 528. [Google Scholar] [CrossRef]
- Magaju, C.; Ann Winowiecki, L.; Crossland, M.; Frija, A.; Ouerghemmi, H.; Hagazi, N.; Sola, P.; Ochenje, I.; Kiura, E.; Kuria, A.; et al. Assessing Context-Specific Factors to Increase Tree Survival for Scaling Ecosystem Restoration Efforts in East Africa. Land 2020, 9, 494. [Google Scholar] [CrossRef]
- Hughes, K.; Morgan, S.; Baylis, K.; Oduol, J.; Smith-Dumont, E.; Vågen, T.G.; Kegode, H. Assessing the downstream socioeconomic impacts of agroforestry in Kenya. World Dev. 2020, 128, 104835. [Google Scholar] [CrossRef]
- Sollen-Norrlin, M.; Ghaley, B.B.; Rintoul, N.L.J. Agroforestry benefits and challenges for adoption in Europe and beyond. Sustainability 2020, 12, 7001. [Google Scholar] [CrossRef]
- Mulyoutami, E.; Lusiana, B.; van Noordwijk, M. Gendered migration and agroforestry in Indonesia: Livelihoods, labor, know-how, networks. Land 2020, 9, 529. [Google Scholar] [CrossRef]
- Chizmar, S.; Castillo, M.; Pizarro, D.; Vasquez, H.; Bernal, W.; Rivera, R.; Sills, E.; Abt, R.; Parajuli, R.; Cubbage, F. A Discounted Cash Flow and Capital Budgeting Analysis of Silvopastoral Systems in the Amazonas Region of Peru. Land 2020, 9, 353. [Google Scholar] [CrossRef]
- Andreotti, F.; Speelman, E.N.; Van den Meersche, K.; Allinne, C. Combining participatory games and backcasting to support collective scenario evaluation: An action research approach for sustainable agroforestry landscape management. Sustain. Sci. 2020, 15, 1383–1399. [Google Scholar] [CrossRef]
- Hofstede, G.J.; Frantz, C.; Hoey, J.; Scholz, G.; Schröder, T. Artificial Sociality Manifesto. Review of Artificial Societies and Social Simulation, 8th April 2021. Available online: https://rofasss.org/2021/04/08/artsocmanif/ (accessed on 15 May 2021).
AF Concept—Scale | Social Aspects | Ecological Aspects | ES Aspects | Underlying Science |
---|---|---|---|---|
AF1—patch/farm | Farmer resources, knowledge, targets, management choices (~ gender, ~ age, ~ context); input and output markets; value chain relations | Tree cover, tree diversity; tree–soil–crop interactions in spatial and climatic contexts; response to farmer management; land equivalent ratio (LER) for productivity | Generate, Influence, Manage | Knowledge types; tree growth (architecture and functioning); water, nutrient, light, and carbon capture and cycles; options in context evaluation; farm economics |
AF2—landscape | Ecosystem (dis)service perceptions across stakeholders at local to global scales; instrumental and relational value of nature as concepts | Lateral flows (water, organisms, fire, nutrients, soil, etc.), buffers and filters; biodiversity change; land equivalent ratio for multifunctionality (land shparing index) 1 | Express, Interact, Manage | Quantifying scale relations; instrumental and relational values influencing decision making in issue cycles; self-regulation of industry, ~ certification |
AF3—policy | Sustainable Development Goals (SDGs); reconciling rights and incentives in agricultural and forestry institutional traditions | Planetary boundaries linked to land and water use: climate change, biodiversity loss, pollution, land degradation | Recognize, Regulate, Reward | Issue cycles; subsidiarity (devolution of governance); transparency; environmental and intergenerational justice |
Chains A: Agenda Setting and B: Science-Based Understanding of Ongoing Change and Emerging Issues | Chain C: Societal Willingness to Act—From Denial to Responsiveness, Common Goals, and Responsibility | Chain D: Governability Pathways to Change from Blame Games to Taking Responsibility and Means of Implementation | Chain E: Technological, Institutional Innovation: Real-Life Solutions and Learning |
---|---|---|---|
ab1. Initial guesstimates of seriousness of impacts of “emerging issues” based on current understanding of “systems” | c1. Steps from “ignoring” to “denial”, based on conflicting evidence from “best” and “worst” cases in public discourse | d1. Identification of current rules, incentives, and motivational instruments as contributors/aggravators of the issue at stake, and options to reform them | e1. Adequate grounding of potential innovators in existing knowledge and theories to explore new applications, and in lists of “unresolved questions” for society at large |
b2. Operational definitions of the entities and processes associated with the “issue” (potentially reframing, splitting and lumping of issues based on increased understanding of causation and/or effects) | c2. Steps from denial to accepting issues as part of the concurrent “agenda”, requiring debate in a multiple stakeholder context with multiple knowledge claims | d2. Reflection on an “at least do no harm” precautionary principle in the face of remaining uncertainty and existing communication pathways with the wider stakeholder community | e2. Safe spaces for innovators, in terms of resources (finances, facilities) needed and protection from micromanagers |
b3. Cause–effect mechanisms, feedback loops and system dynamics associated with the issue | c3. Steps from “blaming others” and “victim roles” to facing complex reality and taking shared responsibility | d3. Path dependency of the issue and opportunities to deal with the established context and its spatial variation | e3. Support for functional diversity of pathways explored and delayed, stepwise selection of increased support for “likely winners”, within clear societal goals and criteria |
b4. Agreed methods with known biases to allow replicable research and mapping | c4. Initial estimates of differential (by geographic and social strata) vulnerability | d4. Relevance of and steps towards legal change in rights and responsibilities in the existing constitutional framing | e4. Risk awareness and compliance with agreed safeguards by all innovators, but especially publicly supported ones |
b5. Studies of spatial extent and temporal change of key aspects of the issue, its drivers, and its consequences | c5. Initial estimates of differential contribution to “causes” and likely need to change behavior and/or pay for damage done | d5. Economic (efficiency) dimensions of proposed pathways for dealing with the issue (at cause and/or consequence level) | e5. Early awareness of scale relations (in applicability, undesired/unexpected consequences) of emerging innovations |
b6. Articulation of the planetary boundaries associated with the issue | c6. Initial estimates of differential opportunities to adapt to consequences and reduce contributions to “causation” | d6. Motivational and social (fairness) dimensions of proposed pathways for dealing with the issue (at driver and/or consequence level) | e6. Effective two-way feedback where existing theory (“first principles”) appears to contrast with emerging practices (Pasteur quadrant) |
b7. Using understanding of nonlinearity and feedback loops, proposition of thresholds for “safe operating space” | c7. Articulation of culture- and religion-based motivation to act in solidarity or direct self-interest | d7. Intersectoral integration across all relevant aspects of current agendas (i.e., beyond the focal issue) | e7. Early feedback from potential users and stakeholders of potential consequences that are to be avoided |
b8. Agreed monitoring, reporting, and verification tools for collective action at relevant scales (local to global) | c8. Dynamic coalitions for change in the face of tradeoffs and synergy with other issues in various stages of their own “cycle” | d8. Polycentric governance dimensions of rights and responsibilities across institutional scales | e8. Opportunities to evaluate likely wider consequences in scenario tools that are sufficiently robust to extrapolate beyond known empirics |
b9. Scenario-evaluation tools to judge likely effectiveness of proposed and emerging innovations in their multidimensional characteristics (incl. tradeoffs and synergy) | c9. Prioritization among concurrent issues and negotiated trade-offs between agendas of multiple negotiating parties | d9. Opportunities for new public–private partnerships (covenants, phased change, clarity on long-term goals and standards) | e9. Stepwise empirical tests at relevant scales for “promising candidates”, with clarity on standards to be applied for societal risk management |
b10. Regular reassessment and recalibration of simplified proxies used for monitoring compliance and progress in dealing with the issue | c10. Sufficiently ambitious goals and adequate governance instruments (incl. monitoring compliance and effectiveness, sanctions) at all relevant scales in agreements and plans of action, with “common but differentiated responsibility” | d10. Where necessary, adjusting governance instruments based on litigation by specific stakeholder groups | e10. Adequate recognition (remuneration, influence) for past success (recognizing its limited predictive skill for future successes) |
Policy Cycle Stage | Researcher Goals | Impact Looks Like… |
---|---|---|
Problem alert | Spotting new social and environmental problems or phenomena that (someone believes) limit progress to development goals such as SDGs | Raised interest and concern among researchers (and others? Activists?) |
Problem scope and basis | Understanding: (A) extent of the problem (areas, people affected), (B) drivers and mechanisms, (C) connections to current or new theory | Either increasing numbers of people aware of and understanding nature of the problem and why it matters, or (if it turns out to be an unimportant problem) efforts redirected to areas with more potential effect |
Potential solutions and interventions | Showing that there are actions that will alleviate the problem and policies that will promote those actions | Pilot projects that excite people, increase demands, generate more nuanced research |
Political agenda setting | Getting relevant policy makers interested and pushing towards policy change | Convincing demonstrations that the problem impacts things policy makers care about and that policies proposed will help |
Policy formulation | Systematic investigation of a problem and thoughtful assessment of options and alternatives | Convincing policy options formulated |
Selection Process | Prioritization (decision-making) of available options given costs/benefits and compromises across diverse stakeholder interests | New policies adopted and followed |
Implementing | Introduce actions based on policy aimed at changing the problem | Change in state of problem |
Evaluation and monitoring | Confirm that the problem is under control (or tracking in the right direction) and remains so | Problem is solved—extent of “fix” and role of the policy. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van Noordwijk, M. Agroforestry-Based Ecosystem Services: Reconciling Values of Humans and Nature in Sustainable Development. Land 2021, 10, 699. https://doi.org/10.3390/land10070699
van Noordwijk M. Agroforestry-Based Ecosystem Services: Reconciling Values of Humans and Nature in Sustainable Development. Land. 2021; 10(7):699. https://doi.org/10.3390/land10070699
Chicago/Turabian Stylevan Noordwijk, Meine. 2021. "Agroforestry-Based Ecosystem Services: Reconciling Values of Humans and Nature in Sustainable Development" Land 10, no. 7: 699. https://doi.org/10.3390/land10070699
APA Stylevan Noordwijk, M. (2021). Agroforestry-Based Ecosystem Services: Reconciling Values of Humans and Nature in Sustainable Development. Land, 10(7), 699. https://doi.org/10.3390/land10070699