Spatial Targeting of Agricultural Support Measures: Indicator-Based Assessment of Coverages and Leakages
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Background: Agri-Environmental Policy in Mexico
2.2. Data Sources and Variables
2.3. Statistical Approach
2.4. Assessing Targeting: ROC Curves and Odds Ratios
3. Results
3.1. Descriptive Statistics of Variables
3.2. Model Results
3.2.1. Targeting Coverage and Leakage
3.2.2. Positive Odds of Receiving AEM per Priority Criterion
4. Discussion
4.1. AEM Targeting Favors Arid Regions at Risk of Soil Erosion
4.2. AEM Targeting Neglects Marginalized Smallholder Farms
4.3. Targeting Gaps in Agri-Environmental Policy Implementation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Song, B.; Robinson, G.M. Multifunctional Agriculture: Policies and Implementation in China. Geogr. Compass 2020, 14, e12538. [Google Scholar] [CrossRef]
- Longo, M.; Dal Ferro, N.; Lazzaro, B.; Morari, F. Trade-Offs among Ecosystem Services Advance the Case for Improved Spatial Targeting of Agri-Environmental Measures. J. Environ. Manag. 2021, 285, 112131. [Google Scholar] [CrossRef] [PubMed]
- Pannell, D.J.; Roberts, A.M.; Park, G.; Alexander, J.; Curatolo, A.; Marsh, S.P. Integrated Assessment of Public Investment in Land-Use Change to Protect Environmental Assets in Australia. Land Use Policy 2012, 29, 377–387. [Google Scholar] [CrossRef]
- Uthes, S.; Matzdorf, B.; Müller, K.; Kaechele, H. Spatial Targeting of Agri-Environmental Measures: Cost-Effectiveness and Distributional Consequences. Environ. Manag. 2010, 46, 494–509. [Google Scholar] [CrossRef]
- Mettepenningen, E.; Beckmann, V.; Eggers, J. Public Transaction Costs of Agri-Environmental Schemes and Their Determinants—Analysing Stakeholders’ Involvement and Perceptions. Ecol. Econ. 2011, 70, 641–650. [Google Scholar] [CrossRef]
- Huber, R.; Rebecca, S.; François, M.; Hanna, B.S.; Dirk, S.; Robert, F. Interaction Effects of Targeted Agri-Environmental Payments on Non-Marketed Goods and Services under Climate Change in a Mountain Region. Land Use Policy 2017, 66, 49–60. [Google Scholar] [CrossRef]
- Del Rossi, G.; Hecht, J.S.; Zia, A. A Mixed-Methods Analysis for Improving Farmer Participation in Agri-Environmental Payments for Ecosystem Services in Vermont, USA. Ecosyst. Serv. 2021, 47, 101223. [Google Scholar] [CrossRef]
- Niskanen, O.; Tienhaara, A.; Haltia, E.; Pouta, E. Farmers’ Heterogeneous Preferences towards Results-Based Environmental Policies. Land Use Policy 2021, 102, 105227. [Google Scholar] [CrossRef]
- Bertoni, D.; Curzi, D.; Aletti, G.; Olper, A. Estimating the Effects of Agri-Environmental Measures Using Difference-in-Difference Coarsened Exact Matching. Food Policy 2020, 90, 101790. [Google Scholar] [CrossRef]
- Šumrada, T.; Erjavec, E. Designs and characteristics of agri-environmental measures. Acta Agric. Slov. 2020, 116, 157–178. [Google Scholar] [CrossRef]
- Galler, C.; von Haaren, C.; Albert, C. Optimizing Environmental Measures for Landscape Multifunctionality: Effectiveness, Efficiency and Recommendations for Agri-Environmental Programs. J. Environ. Manag. 2015, 151, 243–257. [Google Scholar] [CrossRef]
- Burton, R.J.F.; Schwarz, G. Result-Oriented Agri-Environmental Schemes in Europe and Their Potential for Promoting Behavioural Change. Land Use Policy 2013, 30, 628–641. [Google Scholar] [CrossRef] [Green Version]
- Pakeman, R.J.; McKeen, M. Within Country Targeting of Agri-Environment Funding: A Test of Different Methods. Glob. Ecol. Conserv. 2019, 17, e00574. [Google Scholar] [CrossRef]
- Mauchline, A.L.; Mortimer, S.R.; Park, J.R.; Finn, J.A.; Haysom, K.; Westbury, D.B.; Purvis, G.; Louwagie, G.; Northey, G.; Primdahl, J.; et al. Environmental Evaluation of Agri-Environment Schemes Using Participatory Approaches: Experiences of Testing the Agri-Environmental Footprint Index. Land Use Policy 2012, 29, 317–328. [Google Scholar] [CrossRef]
- Whittaker, G.; Färe, R.; Grosskopf, S.; Barnhart, B.; Bostian, M.; Mueller-Warrant, G.; Griffith, S. Spatial Targeting of Agri-Environmental Policy Using Bilevel Evolutionary Optimization. Omega 2017, 66, 15–27. [Google Scholar] [CrossRef]
- Kubacka, M.; Bródka, S.; Macias, A. Selecting Agri-Environmental Indicators for Monitoring and Assessment of Environmental Management in the Example of Landscape Parks in Poland. Ecol. Indic. 2016, 71, 377–387. [Google Scholar] [CrossRef]
- Matzdorf, B.; Kaiser, T.; Rohner, M.-S. Developing Biodiversity Indicator to Design Efficient Agri-Environmental Schemes for Extensively Used Grassland. Ecol. Indic. 2008, 8, 256–269. [Google Scholar] [CrossRef]
- Slabe-Erker, R.; Bartolj, T.; Ogorevc, M.; Kavaš, D.; Koman, K. The Impacts of Agricultural Payments on Groundwater Quality: Spatial Analysis on the Case of Slovenia. Ecol. Indic. 2017, 73, 338–344. [Google Scholar] [CrossRef]
- Raggi, M.; Viaggi, D.; Bartolini, F.; Furlan, A. The Role of Policy Priorities and Targeting in the Spatial Location of Participation in Agri-Environmental Schemes in Emilia-Romagna (Italy). Land Use Policy 2015, 47, 78–89. [Google Scholar] [CrossRef]
- Bartolini, F.; Brunori, G.; Fastelli, L.; Rovai, M. Understanding the Participation in Agri-Environmental Schemes: Evidence from Tuscany Region; European Regional Science Association (ERSA): Louvain-la-Neuve, Belgium, 2013. [Google Scholar]
- Batáry, P.; Báldi, A.; Kleijn, D.; Tscharntke, T. Landscape-Moderated Biodiversity Effects of Agri-Environmental Management: A Meta-Analysis. Proc. R. Soc. B 2011, 278, 1894–1902. [Google Scholar] [CrossRef]
- Rodríguez-Ortega, T.; Olaizola, A.M.; Bernués, A. A Novel Management-Based System of Payments for Ecosystem Services for Targeted Agri-Environmental Policy. Ecosyst. Serv. 2018, 34, 74–84. [Google Scholar] [CrossRef]
- Bredemeier, B.; von Haaren, C.; Rüter, S.; Reich, M.; Meise, T. Evaluating the Nature Conservation Value of Field Habitats: A Model Approach for Targeting Agri-Environmental Measures and Projecting Their Effects. Ecol. Model. 2015, 295, 113–122. [Google Scholar] [CrossRef]
- Mueller, N.D.; Gerber, J.S.; Johnston, M.; Ray, D.K.; Ramankutty, N.; Foley, J.A. Closing Yield Gaps through Nutrient and Water Management. Nature 2012, 490, 254–257. [Google Scholar] [CrossRef] [PubMed]
- Kleijn, D.; Sutherland, W.J. How Effective Are European Agri-Environment Schemes in Conserving and Promoting Biodiversity? J. Appl. Ecol. 2003, 40, 947–969. [Google Scholar] [CrossRef]
- Heller, M.C.; Walchale, A.; Heard, B.R.; Hoey, L.; Khoury, C.K.; De Haan, S.; Burra, D.D.; Duong, T.T.; Osiemo, J.; Trinh, T.H.; et al. Environmental Analyses to Inform Transitions to Sustainable Diets in Developing Countries: Case Studies for Vietnam and Kenya. Int. J. Life Cycle Assess. 2020, 25, 1183–1196. [Google Scholar] [CrossRef]
- Nori-Sarma, A.; Gurung, A.; Azhar, G.S.; Rajiva, A.; Mavalankar, D.; Sheffield, P.; Bell, M.L. Opportunities and Challenges in Public Health Data Collection in Southern Asia: Examples from Western India and Kathmandu Valley, Nepal. Sustainability 2017, 9, 1106. [Google Scholar] [CrossRef] [Green Version]
- Ponette-González, A.G.; Brauman, K.A.; Marín-Spiotta, E.; Farley, K.A.; Weathers, K.C.; Young, K.R.; Curran, L.M. Managing Water Services in Tropical Regions: From Land Cover Proxies to Hydrologic Fluxes. Ambio 2015, 44, 367–375. [Google Scholar] [CrossRef] [Green Version]
- Dany, V.; Bowen, K.J.; Miller, F. Assessing the Institutional Capacity to Adapt to Climate Change: A Case Study in the Cambodian Health and Water Sectors. Clim. Policy 2015, 15, 388–409. [Google Scholar] [CrossRef] [Green Version]
- Bibi, S.; Duclos, J.-Y. Equity and Policy Effectiveness with Imperfect Targeting. J. Dev. Econ. 2007, 83, 109–140. [Google Scholar] [CrossRef] [Green Version]
- Seleka, T.B.; Lekobane, K.R. Targeting Effectiveness of Social Transfer Programs in Botswana: Means-Tested versus Categorical and Self-Selected Instruments. Soc. Dev. Issues 2020, 42, 20. [Google Scholar] [CrossRef]
- Bah, A.; Bazzi, S.; Sumarto, S.; Tobias, J. Finding the Poor vs. Measuring Their Poverty: Exploring the Drivers of Targeting Effectiveness in Indonesia. World Bank Econ. Rev. 2019, 33, 573–597. [Google Scholar] [CrossRef] [Green Version]
- Wodon, Q.T. Targeting the Poor Using ROC Curves. World Dev. 1997, 25, 2083–2092. [Google Scholar] [CrossRef]
- Chaaban, J.; Ghattas, H.; Irani, A.; Thomas, A. Targeting Mechanisms for Cash Transfers Using Regional Aggregates. Food Sec. 2018, 10, 457–472. [Google Scholar] [CrossRef] [Green Version]
- Masud-All-Kamal, M.; Saha, C.K. Targeting Social Policy and Poverty Reduction: The Case of Social Safety Nets in Bangladesh. Poverty Public Policy 2014, 6, 195–211. [Google Scholar] [CrossRef]
- Houssou, N.; Zeller, M. To Target or Not to Target? The Costs, Benefits, and Impacts of Indicator-Based Targeting. Food Policy 2011, 36, 627–637. [Google Scholar] [CrossRef]
- Agurto, M.; Calvo, C.H.; Carpio, M. Targeting When Poverty Is Multidimensional; Partnersh. Econ. Policy Work.: Rochester, NY, USA, 2020; p. 21. [Google Scholar]
- van de Walle, D. Targeting Revisited. World Bank Res. Obs. 1998, 13, 231–248. [Google Scholar] [CrossRef]
- Guo, Y.; Zheng, H.; Wu, T.; Wu, J.; Robinson, B.E. A Review of Spatial Targeting Methods of Payment for Ecosystem Services. Geogr. Sustain. 2020, 1, 132–140. [Google Scholar] [CrossRef]
- Ponette-González, A.G.; Fry, M. Enduring Footprint of Historical Land Tenure on Modern Land Cover in Eastern Mexico: Implications for Environmental Services Programmes. Area 2014, 46, 398–409. [Google Scholar] [CrossRef]
- Verme, P.; Gigliarano, C. Optimal Targeting under Budget Constraints in a Humanitarian Context. World Dev. 2019, 119, 224–233. [Google Scholar] [CrossRef]
- Bigman, D.; Fofack, H. Geographical Targeting for Poverty Alleviation: An Introduction to the Special Issue. World Bank Econ. Rev. 2000, 14, 129–145. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, C.; Cai, Y. Varieties of Agri-Environmental Schemes in China: A Quantitative Assessment. Land Use Policy 2018, 71, 505–517. [Google Scholar] [CrossRef]
- Orozco-Ramírez, Q.; Astier, M.; Barrasa, S. Agricultural Land Use Change after NAFTA in Central West Mexico. Land 2017, 6, 66. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.; Qushim, B.; Calle, M.; Guan, Z. Government Support in Mexican Agriculture. Choices 2018, 33, 1–11. [Google Scholar]
- Ríos-Carmenado, I.D.L.; Díaz-Puente, J.M.; Cadena-Iñiguez, J. La iniciativa LEADER como modelo de desarrollo rural: Aplicación a algunos territorios de México. Agrociencia 2011, 45, 609–624. [Google Scholar]
- DOF. Ley de Desarrollo Rural Sostenible. Secretaría de Agricultura, Ganadería, Pesca y Alimenta (SAGARPA); Diario Oficial de la Federación (DOF): Mexico City, Mexico, 2001.
- Zamora, A.M.; Velázquez, M.A.J.; Cué, J.L.G. Rural Agricultural Development and Extension in Mexico: Analysis of Public and Private Extension Agents. J. Agric. Ext. Rural Dev. 2017, 9, 283–291. [Google Scholar] [CrossRef] [Green Version]
- UNCTAD. Mexico’s Agriculture Development: Perspective and Outlook; United Nations Conference on Trade and Development: Geneva, NY, USA, 2014; p. 175. [Google Scholar]
- World Bank. Mexico: Agriculture and Rural Development Public Expenditure Review. Agriculture and Rural Development Unit; The World Bank: Washington, DC, USA, 2009; p. 127. [Google Scholar]
- Gómez Oliver, L.G.; Tacuba Santos, A. La política de desarrollo rural en México. ¿Existe correspondencia entre lo formal y lo real? The rural development policy in Mexico. Is there correspondence between the formal and the real? Econ. unam 2017, 14. [Google Scholar] [CrossRef]
- FAO-SAGARPA. Informe de Evaluación de Consistencia y Resultados 2007: Programa Integral de Agricultural Sostenible y Reconversión Productiva En Zonas de Siniestralidad Recurrente (PIASRE); SAGARPA-CONZA: Mexico City, Mexico, 2008; p. 155.
- SAGARPA. Reglas de Operación del Programa Integral de Agricultura Sostenible y Reconversión Productiva en Zonas de Siniestralidad Recurrente (PIASRE); Secretaría de Agricultural y Ganadería, Diario Oficial de la Federación: Mexico City, Mexico, 2003.
- PIASRE-SAGARPA. Padrónes de beneficiarios (31 estados y el Distrito Federal); PIASRE-SAGARPA: Mexico City, Mexico, 2008.
- CAP. Censo Agrícola, Ganadero y Forestal 2007 (Censo Agropecuario); Instituto Nacional de Estadística y Geografía (INEGI): Mexico City, Mexico, 2008.
- SIAP. Estadística de la Producción Agrícola (2002–2006); Servicio de Información Agroalimentaría y Pesquera; Secretaría de Agricultura y Desarrollo Rural: Mexico City, Mexico, 2020.
- SAGARPA. Informe de Ejecución Del Programa Nacional de Población: 2001–2006; SAGARPA: Mexico City, Mexico, 2006.
- Pinzón Florez, C.E.; Reveiz, L.; Idrovo, A.J.; Reyes Morales, H. Gasto en salud, la desigualdad en el ingreso y el índice de marginación en el sistema de salud de México. Rev. Panam. Salud Publica 2014, 35, 1–7. [Google Scholar] [PubMed]
- Cortés, F.; Vargas, D. Marginación En México a Través Del Tiempo: A Propósito Del Índice de Conapo. Estud. Sociol. 2011, 29, 361–387. [Google Scholar]
- García Chong, N.R.; Salvatierra Izaba, B.; Trujillo Olivera, L.E.; Zúñiga Cabrera, M. Mortalidad infantil, pobreza y marginación en indígenas de los altos de Chiapas, México. Ra Ximhai 2010, 115–130. [Google Scholar] [CrossRef]
- CONAPO. Indice De Marginación Por Município 2005; Comisión Nacional de Población: Mexico City, Mexico, 2020.
- INAFED Sistema Nacional De Información Municipal (SNIM) Base De Datos 2005; Instituto Nacional para el Federalismo y el Desarrollo Municipal: Mexico City, Mexico, 2020.
- LaFevor, M.C.; Magliocca, N.R. Farmland Size, Chemical Fertilizers, and Irrigation Management Effects on Maize and Wheat Yield in Mexico. J. Land Use Sci. 2020, 15, 532–546. [Google Scholar] [CrossRef]
- Samberg, L.H.; Gerber, J.S.; Ramankutty, N.; Herrero, M.; West, P.C. Subnational Distribution of Average Farm Size and Smallholder Contributions to Global Food Production. Environ. Res. Lett. 2016, 11, 124010. [Google Scholar] [CrossRef]
- CONAZA; UACH. Escenarios Climatológicos De La República Mexicana Ante El Cambio Climático; Universidad Autónoma Chapingo (CONAZA), Dirección de Vinculación y: Mexico City, Mexico, 2003; ISBN 968-884-941-3. [Google Scholar]
- SEMARNAT. CP Evaluación De La Degradación Del Suelo Causada Por El Hombre En La República Mexicana, Escala 1:250,000. Memoria Nacional; SEMARNAT: Mexico City, Mexico, 2003.
- Cullen, P.; Ryan, M.; O’Donoghue, C.; Hynes, S.; hUallacháin, D.Ó.; Sheridan, H. Impact of Farmer Self-Identity and Attitudes on Participation in Agri-Environment Schemes. Land Use Policy 2020, 95, 104660. [Google Scholar] [CrossRef]
- van der Sluis, T.; Pedroli, B.; Kristensen, S.B.P.; Lavinia Cosor, G.; Pavlis, E. Changing Land Use Intensity in Europe—Recent Processes in Selected Case Studies. Land Use Policy 2016, 57, 777–785. [Google Scholar] [CrossRef]
- Unay Gailhard, İ.; Bojnec, Š. Farm Size and Participation in Agri-Environmental Measures: Farm-Level Evidence from Slovenia. Land Use Policy 2015, 46, 273–282. [Google Scholar] [CrossRef]
- Bo, Y.-C.; Song, C.; Wang, J.-F.; Li, X.-W. Using an Autologistic Regression Model to Identify Spatial Risk Factors and Spatial Risk Patterns of Hand, Foot and Mouth Disease (HFMD) in Mainland China. BMC Public Health 2014, 14, 358. [Google Scholar] [CrossRef] [Green Version]
- Crase, B.; Liedloff, A.C.; Wintle, B.A. A New Method for Dealing with Residual Spatial Autocorrelation in Species Distribution Models. Ecography 2012, 35, 879–888. [Google Scholar] [CrossRef]
- Huang, Q.-H.; Cai, Y.-L.; Peng, J. Modeling the Spatial Pattern of Farmland Using GIS and Multiple Logistic Regression: A Case Study of Maotiao River Basin, Guizhou Province, China. Environ. Model. Assess. 2007, 12, 55–61. [Google Scholar] [CrossRef]
- Hu, Z.; Lo, C.P. Modeling Urban Growth in Atlanta Using Logistic Regression. Comput. Environ. Urban Syst. 2007, 31, 667–688. [Google Scholar] [CrossRef]
- Wang, W.-C.; Chang, Y.-J.; Wang, H.-C. An Application of the Spatial Autocorrelation Method on the Change of Real Estate Prices in Taitung City. ISPRS Int. J. Geo-Inf. 2019, 8, 249. [Google Scholar] [CrossRef] [Green Version]
- INEGI, (Instituto Nacional de Estadística y Geografía. Conjunto De Datos Vectoriales Escala 1:1000000, Provincias Fisiográficas; Instituto Nacional de Geografía y Estadística: Mexico City, Mexico, 2020.
- Baulch, B. Poverty Monitoring and Targeting Using ROC Curves: Examples from Vietnam; Institute of Development Studies: Brighton, UK, 2002; p. 27. [Google Scholar]
- Mandrekar, J.N. Receiver Operating Characteristic Curve in Diagnostic Test Assessment. J. Thorac. Oncol. 2010, 5, 1315–1316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goksuluk, D.; Korkmaz, S.; Zararsiz, G.; Karaagaoglu, A.E. EasyROC: An Interactive Web-Tool for ROC Curve Analysis Using R Language Environment. R J. 2016, 8, 19. [Google Scholar] [CrossRef] [Green Version]
- Skoufias, E.; Davis, B.; de la Vega, S. Targeting the Poor in Mexico: An Evaluation of the Selection of Households into PROGRESA. World Dev. 2001, 29, 1769–1784. [Google Scholar] [CrossRef]
- Sámano-Romero, G.; Mautner, M.; Chávez-Mejía, A.; Jiménez-Cisneros, B. Assessing Marginalized Communities in Mexico for Implementation of Rainwater Catchment Systems. Water 2016, 8, 140. [Google Scholar] [CrossRef] [Green Version]
- Verbist, K.; Santibañez, F.; Gabrieles, D.; Soto, G. Atlas De Zonas Áridas De América Latina y el Caribe; Proyecto realizado en el marco de UNESCO-PHI y del Gobierno de Flandes, Departamento de Ciencias e Innovaciones; UNESCO: Montevideo, Uruguay, 2010; p. 55. [Google Scholar]
- Conde, C.; Ferrer, R.; Orozco, S. Climate Change and Climate Variability Impacts on Rainfed Agricultural Activities and Possible Adaptation Measures. A Mexican Case Study. Atmósfera 2006, 19, 181–194. [Google Scholar]
- Liverman, D.M. Vulnerability and Adaptation to Drought in Mexico. Nat. Resour. J. 1999, 39, 99. [Google Scholar]
- Liverman, D.M. Drought Impacts in Mexico: Climate, Agriculture, Technology, and Land Tenure in Sonora and Puebla. Ann. Assoc. Am. Geogr. 1990, 80, 49–72. [Google Scholar] [CrossRef]
- Oliver, L.; Santillanes, S. Cuantificación y Clasificación Del Gasto Público Rural En México: Informe Presentado al Banco Mundial; World Bank: Washington, DC, USA, 2008. [Google Scholar]
- Fox, J.; Haight, L. Subsidizing Inequality: Mexican Corn Policy Since NAFTA|Wilson Center; Woodrow Wilson International Center for Scholars, Centro de Investigación y: Mexico City, Mexico, 2010. [Google Scholar]
- Mardero, S.; Schmook, B.; López-Martínez, J.O.; Cicero, L.; Radel, C.; Christman, Z. The Uneven Influence of Climate Trends and Agricultural Policies on Maize Production in the Yucatan Peninsula, Mexico. Land 2018, 7, 80. [Google Scholar] [CrossRef] [Green Version]
- Keleman, A. Institutional Support and in Situ Conservation in Mexico: Biases against Small-Scale Maize Farmers in Post-NAFTA Agricultural Policy. Agric. Hum. Values 2010, 27, 13–28. [Google Scholar] [CrossRef] [Green Version]
- Valencia, V.; García-Barrios, L.; Sterling, E.J.; West, P.; Meza-Jiménez, A.; Naeem, S. Smallholder Response to Environmental Change: Impacts of Coffee Leaf Rust in a Forest Frontier in Mexico. Land Use Policy 2018, 79, 463–474. [Google Scholar] [CrossRef]
- Chowdhury, R. Differentiation and Concordance in Smallholder Land Use Strategies in Southern Mexico’s Conservation Frontier. Proc. Natl. Acad. Sci. USA 2010, 107, 5780–5785. [Google Scholar] [CrossRef] [Green Version]
- Eakin, H. Institutional Change, Climate Risk, and Rural Vulnerability: Cases from Central Mexico. World Dev. 2005, 33, 1923–1938. [Google Scholar] [CrossRef]
- Uthes, S.; Matzdorf, B. Studies on Agri-Environmental Measures: A Survey of the Literature. Environ. Manag. 2013, 51, 251–266. [Google Scholar] [CrossRef]
- Cong, R.-G.; Brady, M. How to Design a Targeted Agricultural Subsidy System: Efficiency or Equity? PLoS ONE 2012, 7, e41225. [Google Scholar] [CrossRef]
- Lütz, M.; Felici, F. Indicators to Identify the Agricultural Pressures on Environmental Functions and Their Use in the Development of Agri-Environmental Measures. Reg. Environ. Chang. 2009, 9, 181–196. [Google Scholar] [CrossRef]
- LaFevor, M.C. Restoration of Degraded Agricultural Terraces: Rebuilding Landscape Structure and Process. J. Environ. Manag. 2014, 138, 32–42. [Google Scholar] [CrossRef] [PubMed]
- Primdahl, J.; Peco, B.; Schramek, J.; Andersen, E.; Oñate, J.J. Environmental Effects of Agri-Environmental Schemes in Western Europe. J. Environ. Manag. 2003, 67, 129–138. [Google Scholar] [CrossRef]
- Cumming, G.; Cumming, D.H.M.; Redman, C. Scale Mismatches in Social-Ecological Systems: Causes, Consequences, and Solutions. Ecol. Soc. 2006, 11. [Google Scholar] [CrossRef] [Green Version]
- Palmer, M.A.; Kramer, J.G.; Boyd, J.; Hawthorne, D. Practices for Facilitating Interdisciplinary Synthetic Research: The National Socio-Environmental Synthesis Center (SESYNC). Curr. Opin. Environ. Sustain. 2016, 19, 111–122. [Google Scholar] [CrossRef] [Green Version]
- LaFevor, M.C. Conservation Engineering and Agricultural Terracing in Tlaxcala, Mexico. Doctoral Dissertation, University of Texas at Austin, Austin, TX, USA, 2014. [Google Scholar]
- Birge, T.; Toivonen, M.; Kaljonen, M.; Herzon, I. Probing the Grounds: Developing a Payment-by-Results Agri-Environment Scheme in Finland. Land Use Policy 2017, 61, 302–315. [Google Scholar] [CrossRef] [Green Version]
- Herzon, I.; Birge, T.; Allen, B.; Povellato, A.; Vanni, F.; Hart, K.; Radley, G.; Tucker, G.; Keenleyside, C.; Oppermann, R.; et al. Time to Look for Evidence: Results-Based Approach to Biodiversity Conservation on Farmland in Europe. Land Use Policy 2018, 71, 347–354. [Google Scholar] [CrossRef]
- Corbera, E.; Costedoat, S.; Ezzine-de-Blas, D.; Hecken, G.V. Troubled Encounters: Payments for Ecosystem Services in Chiapas, Mexico. Dev. Chang. 2020, 51, 167–195. [Google Scholar] [CrossRef]
- Sims, K.R.E.; Alix-Garcia, J.M.; Shapiro-Garza, E.; Fine, L.R.; Radeloff, V.C.; Aronson, G.; Castillo, S.; Ramirez-Reyes, C.; Yañez-Pagans, P. Improving Environmental and Social Targeting through Adaptive Management in Mexico’s Payments for Hydrological Services Program. Conserv. Biol. 2014, 28, 1151–1159. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Reyes, C.; Sims, K.R.E.; Potapov, P.; Radeloff, V.C. Payments for Ecosystem Services in Mexico Reduce Forest Fragmentation. Ecol. Appl. 2018, 28, 1982–1997. [Google Scholar] [CrossRef] [PubMed]
- Shapiro-Garza, E. Contesting the Market-Based Nature of Mexico’s National Payments for Ecosystem Services Programs: Four Sites of Articulation and Hybridization. Geoforum 2013, 46, 5–15. [Google Scholar] [CrossRef]
Receipt of Agri-Environmental Measures among Mexican Municipalities | ||||||
---|---|---|---|---|---|---|
Variable (Independent) | Yes (n = 552) | No (n = 1903) | Total (n = 2455) | |||
Mean | SD | Mean | SD | Mean | SD | |
Failed cropland (10 k ha) | 1.646 | 2.148 | 0.150 | 0.400 | 0.252 | 0.733 |
Rainfed cropland (10 k ha) | 0.603 | 1.296 | 0.815 | 1.578 | 1.002 | 1.757 |
n | % | n | % | n | % | |
Marginalization level | 552 | 100 | 1903 | 100 | 2455 | 100 |
very low | 74 | 13 | 205 | 11 | 279 | 11 |
low | 130 | 24 | 294 | 15 | 424 | 17 |
medium | 127 | 23 | 374 | 20 | 501 | 20 |
high | 175 | 32 | 711 | 37 | 886 | 36 |
very high | 46 | 8 | 319 | 17 | 365 | 15 |
Mean farm area | 552 | 100 | 1903 | 100 | 2455 | 100 |
MFA < 40 ha | 461 | 84 | 1799 | 95 | 2260 | 92 |
MFA > 40 ha | 91 | 16 | 104 | 5 | 195 | 8 |
Rural classification | 552 | 100 | 1903 | 100 | 2455 | 100 |
rural | 364 | 66 | 1062 | 56 | 1426 | 58 |
other | 188 | 34 | 841 | 44 | 1029 | 42 |
Climate region | 552 | 100 | 1903 | 100 | 2455 | 100 |
Perhumid (A) | 19 | 3 | 315 | 17 | 334 | 14 |
Humid (B) | 23 | 4 | 310 | 16 | 333 | 14 |
Moist subhumid (C2) | 23 | 4 | 223 | 12 | 246 | 10 |
Dry subhumid (C1) | 140 | 25 | 564 | 30 | 704 | 29 |
Semiarid light (D3) | 114 | 21 | 274 | 14 | 388 | 16 |
Semiarid mod. (D2) | 124 | 22 | 134 | 7 | 258 | 11 |
Semiarid dry (D1) | 93 | 17 | 71 | 4 | 164 | 7 |
Arid (E) | 16 | 3 | 12 | 1 | 28 | 1 |
Erosion risk | 552 | 100 | 1903 | 100 | 2455 | 100 |
negligible | 6 | 1 | 181 | 10 | 187 | 8 |
low | 195 | 35 | 931 | 49 | 1126 | 46 |
moderate | 299 | 54 | 425 | 22 | 724 | 29 |
high | 52 | 9 | 366 | 19 | 418 | 17 |
Physiographic region | 552 | 100 | 1903 | 100 | 2455 | 100 |
Southern mts. | 91 | 16 | 803 | 42 | 894 | 36 |
Yucatán-LGCP | 14 | 3 | 217 | 11 | 231 | 9 |
Volcanic axis | 95 | 17 | 595 | 31 | 690 | 28 |
Central tablelands | 88 | 16 | 17 | 1 | 105 | 4 |
Gulf coastal plains | 46 | 8 | 74 | 4 | 120 | 5 |
Pacific coast plains | 25 | 5 | 22 | 1 | 47 | 2 |
Eastern mts. | 61 | 11 | 132 | 7 | 193 | 8 |
Western mts. | 124 | 22 | 42 | 2 | 166 | 7 |
Baja peninsula | 8 | 1 | 1 | 0 | 9 | 0 |
AUC | R2 (M) | R2 (N) | LRT | p-Value | AICc | BIC | |
---|---|---|---|---|---|---|---|
Model 3 (multiple) | 0.87 | 0.33 | 0.45 | 864 | <0.0001 | 1808 | 1964 |
Model 2 (multiple) | 0.83 | 0.26 | 0.37 | 673 | <0.0001 | 1982 | 2092 |
Model 1 (simple) | |||||||
Climate region (CR) | 0.75 | 0.14 | 0.21 | 359 | <0.0001 | 2274 | 2321 |
Erosion risk (ER) | 0.69 | 0.09 | 0.14 | 230 | <0.0001 | 2395 | 2418 |
Rainfed cropland (RC) | 0.69 | 0.03 | 0.05 | 83 | <0.0001 | 2538 | 2550 |
Failed cropland (FC) | 0.68 | 0.06 | 0.10 | 160 | <0.0001 | 2461 | 2473 |
Marginalization (MI) | 0.59 | 0.02 | 0.03 | 47 | <0.0001 | 2580 | 2609 |
Mean farm area (MFA) | 0.56 | 0.02 | 0.04 | 61 | <0.0001 | 2560 | 2572 |
Rural classification (R) | 0.55 | 0.01 | 0.01 | 18 | <0.0001 | 2603 | 2614 |
Observed AEM | ||||
---|---|---|---|---|
Model | No | Yes | ||
Predicted | 2 | No | 75.72% | 23.01% |
AEM | Yes | 24.28% | 76.99% | |
3 | No | 81.14% | 20.29% | |
Yes | 18.86% | 79.71% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
LaFevor, M.C.; Ponette-González, A.G.; Larson, R.; Mungai, L.M. Spatial Targeting of Agricultural Support Measures: Indicator-Based Assessment of Coverages and Leakages. Land 2021, 10, 740. https://doi.org/10.3390/land10070740
LaFevor MC, Ponette-González AG, Larson R, Mungai LM. Spatial Targeting of Agricultural Support Measures: Indicator-Based Assessment of Coverages and Leakages. Land. 2021; 10(7):740. https://doi.org/10.3390/land10070740
Chicago/Turabian StyleLaFevor, Matthew C., Alexandra G. Ponette-González, Rebecca Larson, and Leah M. Mungai. 2021. "Spatial Targeting of Agricultural Support Measures: Indicator-Based Assessment of Coverages and Leakages" Land 10, no. 7: 740. https://doi.org/10.3390/land10070740