The Impact of Urbanization on Land: A Biophysical-Based Assessment of Ecosystem Services Loss Supported by Remote Sensed Indicators
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Reference Data
2.3. Biophysical Assessment of Loss of Ecosystem Services Flows
2.3.1. Crop Production
2.3.2. Wood Production
2.3.3. Carbon Storage
2.3.4. Habitat Quality
2.3.5. Hydrological Regime Regulation
2.3.6. Pollination
3. Results
3.1. Crop Production Loss
3.2. Wood Production Loss
3.3. Carbon Storage Loss
3.4. Habitat Quality Loss
3.5. Hydrological Regime Regulation Loss
3.6. Pollination Loss
4. Discussions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bruegmann, R. Sprawl: A Compact History; University of Chicago Press: Chicago, IL, USA, 2005. [Google Scholar]
- Schneider, A.; Woodcock, C.E. Compact, dispersed, fragmented, extensive? A comparison of urban growth in 25 global cities using remotely sensed data, pattern metrics and census information. Urban Stud. 2008, 45, 659–692. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Tuttle, B.T.; Sutton, P.C.; Baugh, K.E.; Howard, A.T.; Milesi, C.; Bhaduri, B.; Nemani, R. Global Distribution and Density of Constructed Impervious Surfaces. Sensors 2007, 7, 1962–1979. [Google Scholar] [CrossRef] [PubMed]
- Stathakis, D.; Perakis, K.; Savin, I. Efficient segmentation of urban areas by the VIBI. Int. J. Remote Sens. 2012, 33, 6361–6377. [Google Scholar] [CrossRef]
- Smiraglia, D.; Salvati, L.; Egidi, G.; Salvia, R.; Giménez-Morera, A.; Halbac-Cotoara-Zamfir, R. Toward a New Urban Cycle? A Closer Look to Sprawl, Demographic Transitions and the Environment in Europe. Land 2021, 10, 127. [Google Scholar] [CrossRef]
- Strollo, A.; Smiraglia, D.; Bruno, R.; Assennato, F.; Congedo, L.; De Fioravante, P.; Giuliani, C.; Marinosci, I.; Riitano, N.; Munafò, M. Land consumption in Italy. J. Maps 2020, 16, 113–123. [Google Scholar] [CrossRef]
- Riitano, N.; Dichicco, P.; De Fioravante, P.; Cavalli, A.; Falanga, V.; Giuliani, C.; Mariani, L.; Strollo, A.; Munafò, M. Land consumption in italian coastal area. Environ. Eng. Manag. J. 2020, 19, 1857–1868. [Google Scholar] [CrossRef]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global Change and the Ecology of Cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EC (European Commission). Guidelines on Best Practice to Limit, Mitigate or Compensate Soil Sealing. Available online: https://ec.europa.eu/environment/soil/pdf/guidelines/pub/soil_en.pdf (accessed on 17 October 2021).
- Ceccarelli, T.; Bajocco, S.; Perini, L.; Salvati, L. Urbanisation and Land Take of High Quality Agricultural Soils–Exploring Long-term Land Use Changes and Land Capability in Northern Italy. Int. J. Environ. Res. 2014, 8, 181–192. [Google Scholar] [CrossRef]
- Haase, D. Effects of urbanisation on the water balance–A long-term trajectory. Environ. Impact Assess. Rev. 2009, 29, 211–219. [Google Scholar] [CrossRef]
- Yang, B.; Li, M.-H. Ecological engineering in a new town development: Drainage design in The Woodlands, Texas. Ecol. Eng. 2010, 36, 1639–1650. [Google Scholar] [CrossRef] [Green Version]
- Shiguang, M.; Fei, C.; Qingchun, L.; Shuiyong, F. Impacts of Urban Processes and Urbanization on Summer Precipitation: A Case Study of Heavy Rainfall in Beijing on 1 Aug 2006. J. Appl. Meteorol. Climatol. 2011, 50, 806–825. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, Y.-C. Dynamics of Land Surface Temperature in Response to Land-Use/Cover Change. Geogr. Res. 2011, 49, 23–36. [Google Scholar] [CrossRef]
- Collinge, S.K. Ecological consequences of habitat fragmentation: Implications for landscape architecture and planning. Landsc. Urban Plan. 1996, 36, 59–77. [Google Scholar] [CrossRef]
- Bennett, A.F.D.; Saunders, A. Habitat fragmentation and landscape change. In Conservation Biology for All; Sodhi, N.S., Ehrlich, P.R., Eds.; Oxford University Press: Oxford, UK, 2010. [Google Scholar] [CrossRef] [Green Version]
- MEA (Millennium Ecosystem Assessment). Ecosystems and Human Wellbeing: Synthesis; World Resource Institute: Washington, DC, USA, 2005. [Google Scholar]
- Haines-Young, R.H.; Potschin-Young, M.B. Common International Classification of Ecosystem Services (CICES) V5.1 and Guidance on the Application of the Revised Structure. Available online: www.cices.eu (accessed on 30 November 2021).
- Schröter, M.; Barton, D.N.; Remme, R.P.; Hein, L. Accounting for capacity and flow of ecosystem services: A conceptual model and a case study for Telemark, Norway. Ecol. Indic. 2014, 36, 539–551. [Google Scholar] [CrossRef]
- Hein, L.; Bagstad, K.; Edens, B.; Obst, C.; de Jong, R.; Lesschen, J.P. Defining Ecosystem Assets for Natural Capital Accounting. PLoS ONE 2016, 11, e0164460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, P. Ecosystem services in a changing environment. Sci. Total Environ. 2020, 702, 135008. [Google Scholar] [CrossRef] [PubMed]
- Ghaley, B.B.; Porter, J.R.; Sandhu, H.S. Soil-based ecosystem services: A synthesis of nutrient cycling and carbon sequestration assessment methods. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2014, 10, 177–186. [Google Scholar] [CrossRef]
- Baveye, P.C.; Baveye, J.; Gowdy, J. Soil “Ecosystem” Services and Natural Capital: Critical Appraisal of Research on Uncertain Ground. Front. Environ. Sci. 2016, 4, 41. [Google Scholar] [CrossRef]
- Haines-Young, R.H.; Potschin-Young, M.B. The links between biodiversity, ecosystem services and human well-being. In Ecosystem Ecology: A New Synthesis; Raffaelli, D.G., Frid, C.L.J., Eds.; Cambridge University Press: Cambridge, UK, 2010; pp. 110–139. [Google Scholar] [CrossRef]
- Lauf, S.; Haase, D.; Kleinschmit, B. Linkages between ecosystem services provisioning, urban growth and shrinkage—A modeling approach assessing ecosystem service trade-offs. Ecol. Indic. 2014, 42, 73–94. [Google Scholar] [CrossRef]
- Dominati, E.; Patterson, M.; Mackay, A. A framework for classifying and quantifying the natural capital and ecosystem services of soils. Ecol. Econ. 2010, 69, 1858–1868. [Google Scholar] [CrossRef]
- Adhikari, K.; Hartemink, A.E. Linking soils to ecosystem services—A global review. Geoderma 2016, 262, 101–111. [Google Scholar] [CrossRef]
- European Commission. EU Soil Strategy for 2030 Reaping the Benefits of Healthy Soils for People, Food, Nature and Climate. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021DC0699 (accessed on 18 January 2022).
- European Commission. Biodiversity Strategy for 2030. Available online: https://ec.europa.eu/environment/strategy/biodiversity-strategy-2030_en (accessed on 18 January 2022).
- European Commission. Key Policy Objectives of the New CAP. Available online: https://ec.europa.eu/info/food-farming-fisheries/key-policies/common-agricultural-policy/new-cap-2023-27/key-policy-objectives-new-cap_en (accessed on 21 January 2022).
- The Economics of Ecosystems and Biodiversity. Mainstreaming the Economics of Nature: A Synthesis of the Approach, Conclusions and Recommendations of TEEB. Available online: http://www.teebweb.org/publication/mainstreaming-the-economics-of-nature-a-synthesis-of-the-approach-conclusions-and-recommendations-of-teeb/ (accessed on 30 November 2021).
- Natural Capital Coalition. Natural Capital Protocol. Available online: http://naturalcapitalcoalition.org/protocol/ (accessed on 30 November 2021).
- Convention on Biological Diversity. Aichi Biodiversity Targets. Available online: https://www.cbd.int/sp/targets/ (accessed on 30 November 2021).
- United Nations. The Sustainable Development Agenda. Available online: https://www.un.org/sustainabledevelopment/development-agenda/ (accessed on 30 November 2021).
- La Notte, A.; Vallecillo Rodriguez, S.; Polce, C.; Zulian, G.; Maes, J. Implementing an EU System of Accounting for Ecosystems and Their Services. Initial Proposals for the Implementation of Ecosystem Services Accounts; Publications Office of the European Union: Luxembourg, 2017. [CrossRef]
- De Groot, R.S.; Wilson, M.; Boumans, R. A typology for the description, classification and valuation of ecosystem functions, goods and services. Ecol. Econ. 2002, 41, 393–408. [Google Scholar] [CrossRef] [Green Version]
- Maes, J.; Egoh, B.; Willemen, L.; Liquete, C.; Vihervaara, P.; Schagner, J.P.; Grizzetti, B.; Drakou, E.G.; La Notte, A.; Bouraoui, F.; et al. Mapping and Assessment of Ecosystems and their Services. An Analytical Framework for Ecosystem Assessments under Action 5 of the EU Biodiversity Strategy to 2020; Publications Office of the European Union: Luxembourg, 2013. Available online: http://ec.europa.eu/environment/nature/knowledge/ecosystem_assessment/pdf/MAESWorkingPaper2013.pdf (accessed on 28 November 2021).
- García, P.; Pérez, E. Mapping of soil sealing by vegetation indexes and built-up index: A case study in Madrid (Spain). Geoderma 2016, 268, 100–107. [Google Scholar] [CrossRef]
- Smiraglia, D.; Rinaldo, S.; Ceccarelli, T.; Bajocco, S.; Salvati, L.; Ricotta, C.; Perini, L. A cost-effective approach for improving the quality of soil sealing change detection from landsat imagery. Eur. J. Remote Sens. 2014, 47, 805–819. [Google Scholar] [CrossRef] [Green Version]
- Criado, M.; Santos-Francés, F.; Martínez-Graña, A.; Sánchez, Y.; Merchán, L. Multitemporal Analysis of Soil Sealing and Land Use Changes Linked to Urban Expansion of Salamanca (Spain) Using Landsat Images and Soil Carbon Management as a Mitigating Tool for Climate Change. Remote Sens. 2020, 12, 1131. [Google Scholar] [CrossRef] [Green Version]
- Luti, T.; Segoni, S.; Catani, F.; Munafò, M.; Casagli, N. Integration of Remotely Sensed Soil Sealing Data in Landslide Susceptibility Mapping. Remote Sens. 2020, 12, 1486. [Google Scholar] [CrossRef]
- ESA Sentinel Online. Available online: https://sentinel.esa.int/web/sentinel/home (accessed on 30 November 2021).
- Assennato, F.; Di Leginio, M.; d’Antona, M.; Marinosci, I.; Congedo, L.; Riitano, N.; Luise, A.; Munafò, M. Land degradation assessment for sustainable soil management. Ital. J. Agron. 2020, 15, 299–305. [Google Scholar] [CrossRef]
- ISPRA. Consumo di Suolo, Dinamiche Territoriali e Servizi Ecosistemici; ISPRA: Rome, Italy, 2021.
- De Fioravante, P.; Strollo, S.; Assennato, F.; Marinosci, I.; Congedo, L.; Munafò, M. High resolution land cover integrating Copernicus products: A 2012–2020 map of Italy. Land 2022, 11, 35. [Google Scholar] [CrossRef]
- QGIS.org. Available online: http://www.qgis.org (accessed on 30 November 2021).
- Sharp, R.; Douglass, J.; Wolny, S.; Arkema, K.; Bernhardt, J.; Bierbower, W.; Chaumont, N.; Denu, D.; Fisher, D.; Glowinski, K.; et al. InVEST 3.9.1. User’s Guide. Available online: https://invest-userguide.readthedocs.io/en/latest/# (accessed on 30 November 2021).
- ISTAT–Censimenti dell’Agricoltura. Available online: https://www.istat.it/it/censimenti-permanenti/censimenti-precedenti/agricoltura (accessed on 30 November 2021).
- Federici, S.; Vitullo, M.; Tulipano, S.; De Lauretis, R.; Seufert, G. An approach to estimate carbon stocks change in forest carbon pools under the UNFCCC: The Italian case. iForest 2008, 1, 86–95. [Google Scholar] [CrossRef] [Green Version]
- ISPRA. Italian Greenhouse Gas Inventory 1990–2016. National Inventory Report 2018; ISPRA: Rome, Italy, 2018.
- National Inventory of Forests and Forest Carbon Tanks. Available online: https://www.inventarioforestale.org/ (accessed on 30 November 2021).
- Hutyra, L.; Yoon, B.; Alberti, M. Terrestrial carbon stocks across a gradient of urbanization: A study of the Seattle, WA region. Glob. Change Biol. 2011, 17, 783–797. [Google Scholar] [CrossRef]
- National Soil Organic Carbon Map. Available online: https://scienzadelsuolo.org/carta_italiana_carbonio_organico.php (accessed on 30 November 2021).
- Marchetti, M.; Sallustio, L.; Ottaviano, M.; Barbati, A.; Corona, P.; Tognetti, R.; Zavattero, L.; Capotorti, G. Carbon sequestration by forests in the National Parks of Italy. Plant Biosyst. 2012, 146, 1001–1011. [Google Scholar] [CrossRef]
- Penman, J.; Gytarsky, M.; Hiraishi, T.; Krug, T.; Kruger, D.; Pipatti, R.; Buendia, L.; Miwa, K.; Ngara, T.; Tanabe, K. Good Practice Guidance for Land Use, Land-Use Change and Forestry. Available online: https://www.ipcc.ch/publication/good-practice-guidance-for-land-use-land-use-change-and-forestry/ (accessed on 14 January 2022).
- Vitullo, M.; De Lauretis, R.; Federici, S. La contabilità del carbonio contenuto nelle foreste italiane. Silvae 2007, 9, 91–104. [Google Scholar]
- ISPRA. Italian Greenhouse Gas Inventory 1990–2012. National Inventory Report 2014; ISPRA: Rome, Italy, 2014.
- Di Cosmo, L.; Gasparini, P.; Tabacchi, G. A national-scale, stand-level model to predict total above-ground tree biomass from growing stock volume. For. Ecol. Manag. 2016, 361, 269–276. [Google Scholar] [CrossRef]
- Canaveira, P.; Manso, S.; Pellis, G.; Perugini, L.; De Angelis, P.; Neves, R.; Papale, D.; Paulino, J.; Pereira, T.; Pina, A.; et al. Biomass Data on Cropland and Grassland in the Mediterranean Region, Final Report for Action A4 of Project MediNet. Available online: https://www.lifemedinet.com/documents (accessed on 30 November 2021).
- Sallustio, L.; Quatrini, V.; Geneletti, D.; Corona, P.; Marchetti, M. Assessing land take by urban development and its impact on carbon storage: Findings from two case studies in Italy. Environ. Impact Assess. Rev. 2015, 54, 80–90. [Google Scholar] [CrossRef] [Green Version]
- ISPRA. Italian Greenhouse Gas Inventory 1990–2015. National Inventory Report 2017; ISPRA: Rome, Italy, 2017.
- Romano, B.; Zullo, F. Land urbanization in Central Italy: 50 years of evolution. J. Land Use Sci. 2014, 9, 143–164. [Google Scholar] [CrossRef]
- Terrado, M.; Sabater, S.; Chaplin-Kramer, B.; Mandle, L.; Ziv, G.; Acuña, V. Model development for the assessment of terrestrial and aquatic habitat quality in conservation planning. Sci. Total Environ. 2016, 540, 63–70. [Google Scholar] [CrossRef] [Green Version]
- European Environment Agency. EUNIS Babitat Type Hierarchical View. Available online: http://eunis.eea.europa.eu/habitats-code-browser.jsp (accessed on 14 January 2022).
- Leh, M.D.K.; Matlock, M.D.; Cummings, E.C.; Nalley, L.L. Quantifying and mapping multiple ecosystem services change in West Africa. Agric. Ecosyst. Environ. 2013, 165, 6–18. [Google Scholar] [CrossRef]
- Kuhnert, P.M.; Martin, T.G.; Griffiths, S.P. A guide to eliciting and using expert knowledge in Bayesian ecological models. Ecol. Lett. 2010, 13, 900–914. [Google Scholar] [CrossRef]
- Sallustio, L.; De Toni, A.; Strollo, A.; Di Febbraro, M.; Gissi, E.; Casella, L.; Geneletti, D.; Munafò, M.; Vizzarri, M.; Marchetti, M. Assessing habitat quality in relation to the spatial distribution of protected areas in Italy. J. Environ. Manag. 2017, 201, 129–137. [Google Scholar] [CrossRef]
- Braca, G.; Bussettini, M.; Ducci, D.; Lastoria, B.; Mariani, S. Evaluation of national and regional groundwater resources under climate change scenarios using a GIS-based water budget procedure. Rend. Lincei Sci. Fis. Nat. 2019, 30, 109–123. [Google Scholar] [CrossRef]
- ISPRA. Il Bilancio Idrologico Gis BAsed a Scala Nazionale su Griglia regolare–BIGBANG: Metodologia e Stime. Rapporto Sulla Disponibilità Naturale Della Risorsa Idrica; ISPRA: Rome, Italy, 2021.
- Zhang, W.; Ricketts, T.H.; Kremen, C.; Carney, K.; Swinton, S.M. Ecosystem services and disservices to agriculture. Ecol. Econ. 2007, 64, 253–260. [Google Scholar] [CrossRef] [Green Version]
- Klein, A.-M.; Vaissière, B.E.; Cane, J.H.; Steffan-Dewenter, I.; Cunningham, S.A.; Kremen, C.; Tscharntke, T. Importance of pollinators in changing landscapes for world crops. Proc. Royal Soc. B 2006, 274, 303–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- International Union for Conservation of Nature. Nearly One in 10 Wild Bee Species Face Extinction in Europe While the Status of More than Half Remains Unknown. Available online: http://www.iucn.org/?19073/Nearly-one-in-ten-wild-bee-species-face-extinction-in-Europe-while-the-status-of-morethan-half-remains-unknown (accessed on 30 November 2021).
- Xiao, Y.; Li, X.; Cao, Y.; Dong, M. The diverse effects of habitat fragmentation on plant-pollinator interaction. Plant Ecol. 2016, 217, 857–868. [Google Scholar] [CrossRef]
- Nogué, S.; Long, P.R.; Eycott, A.E.; de Nascimento, L.; Fernández-Palacios, J.M.; Petrokofsky, G.; Vandvik, V.; Willis, K.J. Pollination service delivery for European crops: Challenges and opportunities. Ecol. Econ. 2016, 128, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Ricciardelli D’Albore, G.; Intoppa, F. Fiori e Api. La Flora Visitata Dalle Api e Dagli Apoidei in Europa; Calderini Edagricole: Bologna, Italy, 2000. [Google Scholar]
- Biasi, R.; Brunori, E.; Smiraglia, D.; Salvati, L. Linking traditional tree-crop landscapes and agro-biodiversity in Central Italy using a database of typi-cal and traditional products: A multiple risk assessment through a data mining analysis. Biodivers Conserv 2015, 24, 3009–3031. [Google Scholar] [CrossRef]
- Lesthaeghe, R. The unfolding story of the second demographic transition. Popul. Dev. Rev. 2010, 36, 211–251. [Google Scholar] [CrossRef] [Green Version]
- Salvati, L.; Serra, P. Estimating Rapidity of Change in Complex Urban Systems: A Multidimensional, Local-Scale Approach. Geogr. Anal. 2016, 48, 132–156. [Google Scholar] [CrossRef]
- Galster, G.; Hanson, R.; Ratcliffe, M.R.; Wolman, H.; Coleman, S.; Freihage, J. Wrestling Sprawl to the Ground: Defining and Measuring an Elusive Concept. Hous. Policy Debate 2001, 12, 681–717. [Google Scholar] [CrossRef]
- Bhat, P.A.; Shafiq, M.U.; Mir, A.A.; Ahmed, P. Urban sprawl and its impact on land use/land cover dynamics of Dehradun City, India. Int. J. Sustain. Built Environ. 2017, 6, 513–521. [Google Scholar] [CrossRef]
- Eigenbrod, F.; Bell, V.A.; Davies, H.N.; Heinemeyer, A.; Armsworth, P.R.; Gaston, K.J. The impact of projected increases in urbanization on ecosystem services. Proc. R. Soc. B 2011, 278, 3201–3208. [Google Scholar] [CrossRef] [Green Version]
- Lyu, R.; Zhang, J.; Xu, M.; Li, J. Impacts of urbanization on ecosystem services and their temporal relations: A case study in Northern Ningxia, China. Land Use Policy 2018, 77, 163–173. [Google Scholar] [CrossRef]
- Environmental Data Yearbook. Available online: https://annuario.isprambiente.it/content/environmental-data-yearbook-2019 (accessed on 15 January 2022).
- Rapporto sullo Stato del Capitale Naturale. Available online: https://www.mite.gov.it/pagina/il-rapporto-sullo-stato-del-capitale-naturale-italia. (accessed on 15 January 2022).
- Burkhard, B.; Kroll, F.; Nedkov, S.; Müller, F. Mapping ecosystem service supply, demand and budgets. Ecol. Indic. 2012, 21, 17–29. [Google Scholar] [CrossRef]
- Swetnam, R.D.; Fisher, B.; Mbilinyi, B.P.; Munishi, P.K.; Willcock, S.; Ricketts, T.; Mwakalila, S.; Balmford, A.; Burgess, N.D.; Marshall, A.R.; et al. Mapping socio-economic scenarios of land cover change: A GIS method to enable ecosystem service modelling. J Environ. Manag. 2011, 92, 563–574. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Tian, L.; Liu, Y.; Zhao, M.; Hu, Y.; Wu, J. Ecosystem services response to urbanization in metropolitan areas: Thresholds identification. Sci. Tot. Environ. 2017, 607–608, 706–714. [Google Scholar] [CrossRef]
Habitat Type | Suitability |
---|---|
Beaches, dune and, sands | 0.74 |
Water bodies | 0.83 |
Wetlands | 0.96 |
Grasslands | 0.86 |
Shrublands | 0.81 |
Broadleaves forests | 0.93 |
Conifer forests | 0.82 |
Inland unvegetated or sparsely vegetated areas | 0.55 |
Intensive agricultural lands | 0.26 |
Extensive agricultural lands | 0.52 |
Buildings and other artificial areas or impervious soils | 0.09 |
Open urban areas | 0.27 |
Threats | Motorways; Trunks; Primary Roads | Secondary and Tertiary Roads | Residential and Service Roads | Tracks and Bridleways | Railways | Intensive Agricultural Lands | Extensive Agricultural Lands | Buildings and Other Artificial Areas or Impervious Soils |
---|---|---|---|---|---|---|---|---|
Habitat Type | ||||||||
Beaches, dunes and sands | 0.81 | 0.46 | 0.69 | 0.50 | 0.67 | 0.68 | 0.51 | 0.86 |
Water bodies | 0.72 | 0.64 | 0.60 | 0.36 | 0.51 | 0.76 | 0.53 | 0.72 |
Wetlands | 0.84 | 0.74 | 0.69 | 0.44 | 0.64 | 0.80 | 0.59 | 0.79 |
Grassland | 0.80 | 0.71 | 0.63 | 0.42 | 0.60 | 0.75 | 0.52 | 0.72 |
Shrublands | 0.78 | 0.71 | 0.63 | 0.39 | 0.60 | 0.72 | 0.51 | 0.69 |
Broadleaves forests | 0.85 | 0.77 | 0.66 | 0.40 | 0.65 | 0.67 | 0.47 | 0.77 |
Conifers forests | 0.84 | 0.76 | 0.68 | 0.39 | 0.61 | 0.63 | 0.44 | 0.76 |
Inland unvegetated or sparsely vegetated areas | 0.61 | 0.57 | 0.52 | 0.30 | 0.46 | 0.51 | 0.35 | 0.61 |
Intensive agricultural lands | 0.61 | 0.54 | 0.47 | 0.24 | 0.44 | \ | 0.12 | 0.51 |
Extensive agricultural lands | 0.71 | 0.61 | 0.55 | 0.26 | 0.51 | 0.54 | \ | 0.62 |
Buildings and other artificial areas or impervious soils | \ | \ | \ | \ | \ | \ | \ | \ |
Open urban areas | 0.56 | 0.52 | 0.46 | 0.19 | 0.46 | 0.31 | 0.21 | 0.56 |
Weight | 0.86 | 0.69 | 0.61 | 0.28 | 0.62 | 0.69 | 0.42 | 0.79 |
Distance [km] | 1.5 | 1.0 | 0.9 | 0.3 | 1.6 | 1.6 | 0.6 | 1.7 |
Pollinators | ||
---|---|---|
Andrena agilissima | Andrena bicolor | Andrena carbonaria |
Andrena dorsata | Andrena flavipes | Andrena morio |
Andrena minutuloides | Andrena nigroaenea | Andrena nitidiuscula |
Andrena taraxaci | Anthidium manicatum | Anthophora dispar |
Anthophora plumipes | Bombus hortorum | Bombus humilis |
Bombus lapidaries | Bombus lucorum | Bombus pascuorum |
Bombus pratorum | Bombus ruderatus | Bombus terrestris |
Ceratina cucurbitina | Colletes succinctus | Dasypoda altercator |
Eucera longicornis | Eucera nigrescens | Halictus scabiosae |
Halictus sexcinctus | Halictus maculatus | Heriades truncorum |
Hoplitis adunca | Hoplitis anthocopoides | Hylaeus angustatus |
Hylaeus communis | Hylaeus clypearis | Lasioglossum calceatum |
Lasioglossum leucozonium | Lasioglossum nitidulum | Lasioglossum pauxillum |
Lasioglossum villosulum | Megachile parietina | Megachile rotundata |
Osmia bicornis | Osmia caerulescens | Osmia cornuta |
Osmia leaiana | Panurgus calcaratus | Stelis nasuta |
Tetraloniella salicariae | Xylocopa violacea |
Crop Typologies | ||||||
---|---|---|---|---|---|---|
Regions | Fruit Trees | Olive Groves | Vineyards | Fodder | Arable Land | Total |
Piedmont | 0.19 | 0.00 | 0.17 | 0.38 | 0.32 | 0.31 |
Aosta Valley | 0.67 | \ | 1.67 | 0.79 | 0.90 | 0.88 |
Lombardy | 0.30 | 0.75 | 0.29 | 0.76 | 0.50 | 0.59 |
Trentino-Alto Adige | 0.76 | 0.00 | 0.90 | 0.64 | 0.66 | 0.68 |
Veneto | 0.95 | 0.68 | 0.69 | 0.94 | 0.72 | 0.76 |
Friuli-Venezia Giulia | 0.35 | 0.00 | 0.45 | 0.71 | 0.50 | 0.53 |
Liguria | 0.38 | 0.21 | 0.52 | 0.21 | 0.41 | 0.34 |
Emilia Romagna | 0.23 | 0.07 | 0.13 | 0.32 | 0.35 | 0.34 |
Tuscany | 0.23 | 0.18 | 0.17 | 0.26 | 0.28 | 0.26 |
Umbria | 0.19 | 0.23 | 0.27 | 0.20 | 0.40 | 0.34 |
Marche | 0.15 | 0.36 | 0.43 | 0.53 | 0.43 | 0.43 |
Latium | 0.31 | 0.25 | 0.57 | 0.65 | 0.57 | 0.58 |
Abruzzo | 0.40 | 0.54 | 0.51 | 0.29 | 0.57 | 0.51 |
Molise | 0.09 | 0.47 | 0.32 | 0.22 | 0.22 | 0.23 |
Campania | 0.65 | 0.32 | 0.60 | 0.93 | 0.64 | 0.71 |
Apulia | 0.49 | 0.60 | 0.38 | 0.47 | 0.35 | 0.39 |
Basilicata | 0.26 | 0.29 | 0.33 | 0.35 | 0.32 | 0.32 |
Calabria | 0.41 | 0.22 | 0.42 | 0.33 | 0.29 | 0.32 |
Sicily | 0.58 | 0.44 | 0.40 | 0.39 | 0.38 | 0.42 |
Sardinia | 0.19 | 0.13 | 0.21 | 0.19 | 0.26 | 0.24 |
Italy | 0.45 | 0.42 | 0.41 | 0.56 | 0.43 | 0.45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Assennato, F.; Smiraglia, D.; Cavalli, A.; Congedo, L.; Giuliani, C.; Riitano, N.; Strollo, A.; Munafò, M. The Impact of Urbanization on Land: A Biophysical-Based Assessment of Ecosystem Services Loss Supported by Remote Sensed Indicators. Land 2022, 11, 236. https://doi.org/10.3390/land11020236
Assennato F, Smiraglia D, Cavalli A, Congedo L, Giuliani C, Riitano N, Strollo A, Munafò M. The Impact of Urbanization on Land: A Biophysical-Based Assessment of Ecosystem Services Loss Supported by Remote Sensed Indicators. Land. 2022; 11(2):236. https://doi.org/10.3390/land11020236
Chicago/Turabian StyleAssennato, Francesca, Daniela Smiraglia, Alice Cavalli, Luca Congedo, Chiara Giuliani, Nicola Riitano, Andrea Strollo, and Michele Munafò. 2022. "The Impact of Urbanization on Land: A Biophysical-Based Assessment of Ecosystem Services Loss Supported by Remote Sensed Indicators" Land 11, no. 2: 236. https://doi.org/10.3390/land11020236
APA StyleAssennato, F., Smiraglia, D., Cavalli, A., Congedo, L., Giuliani, C., Riitano, N., Strollo, A., & Munafò, M. (2022). The Impact of Urbanization on Land: A Biophysical-Based Assessment of Ecosystem Services Loss Supported by Remote Sensed Indicators. Land, 11(2), 236. https://doi.org/10.3390/land11020236