Industrial and Agricultural Water Use Efficiency and Influencing Factors in the Process of Urbanization in the Middle and Lower Reaches of the Yellow River Basin, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Undesired SBM-DEA
2.3. Malmquist–Luenberger Index
2.4. Selection of the Evaluation Indicator System
2.5. Estimation for Center of Gravity and Standard Deviational Ellipse
2.6. Tobit Model and Selection of Variables
3. Results
3.1. Spatial and Temporal Characteristics of Water Use Efficiency
3.2. Spatial Transfer Path of Water Use Efficiency
3.2.1. The Center of Gravity
3.2.2. The Standard Deviation Ellipse
3.3. Influencing Factors of Water Use Efficiency
4. Discussion
4.1. Comparison with Related Studies
4.2. The Effect of Urbanization on Water Use Efficiency
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Q.; Xu, C.; Yang, T. Variability of water resource in the Yellow River Basin of past 50 years, China. Water Resour. Manag. 2009, 23, 1157–1170. [Google Scholar] [CrossRef]
- Liu, F.; Chen, S.; Dong, P.; Peng, J. Spatial and temporal variability of water discharge in the Yellow River Basin over the past 60 years. J. Geogr. Sci. 2012, 22, 1013–1033. [Google Scholar] [CrossRef]
- Ministry of Water Resources of the People’s Republic of China. China Water Resources Bulletin. 2020. Available online: http://www.mwr.gov.cn/sj/tjgb/szygb/202107/t20210709_1528208.html (accessed on 25 March 2022).
- Wei, J.; Lei, Y.; Yao, H.; Ge, J.; Wu, S.; Liu, L. Estimation and influencing factors of agricultural water efficiency in the Yellow River basin, China. J. Clean. Prod. 2021, 308, 127249. [Google Scholar] [CrossRef]
- Cao, X.; Ren, J.; Wu, M.; Guo, X.; Wang, Z.; Wang, W. Effective use rate of generalized water resources assessment and to improve agricultural water use efficiency evaluation index system. Ecol. Indic. 2018, 86, 58–66. [Google Scholar] [CrossRef]
- Yan, Z.; Zhou, Z.; Liu, J.; Wang, H.; Li, D. Water use characteristics and impact factors in the Yellow River basin, China. Water Int. 2020, 45, 148–168. [Google Scholar] [CrossRef]
- Zhu, Y.; Lin, Z.; Wang, J.; Zhao, Y.; He, F. Impacts of climate changes on water resources in Yellow River Basin, China. Procedia Eng. 2016, 154, 687–695. [Google Scholar] [CrossRef]
- Chen, Y.; Fu, B.; Zhao, Y.; Wang, K.; Zhao, M.M.; Ma, J. Sustainable development in the Yellow River Basin: Issues and strategies. J. Clean. Prod. 2020, 263, 121223. [Google Scholar] [CrossRef]
- Wang, F.; Yu, C.; Xiong, L.; Chang, Y. How can agricultural water use efficiency be promoted in China? A spatial-temporal analysis. Resour. Conserv. Recycl. 2019, 145, 411–418. [Google Scholar] [CrossRef]
- Benedetti, I.; Branca, G.; Zucaro, R. Evaluating input use efficiency in agriculture through a stochastic frontier production: An application on a case study in Apulia (Italy). J. Clean. Prod. 2019, 236, 117609. [Google Scholar] [CrossRef]
- Laureti, T.; Benedetti, I.; Branca, G. Water use efficiency and public goods conservation: A spatial stochastic frontier model applied to irrigation in Southern Italy. Socio-Econ. Plan. Sci. 2021, 73, 100856. [Google Scholar] [CrossRef]
- Sun, C.; Zhao, L.; Zou, W.; Zheng, D. Water resource utilization efficiency and spatial spillover effects in China. J. Geogr. Sci. 2014, 24, 771–788. [Google Scholar] [CrossRef]
- Guan, X.; Qin, H.; Meng, Y.; Wu, Z. Comprehensive evaluation of water-use efficiency in China’s Huai river basin using a cloud-compound fuzzy matter element-entropy combined model. J. Earth Syst. Sci. 2019, 128, 179–183. [Google Scholar] [CrossRef]
- Meng, Y.; Zhang, X.; She, D.; Wang, J. The spatial and temporal variation of water use efficiency in the Huai River Basin using a comprehensive indicator. Water Supply 2017, 17, 229–237. [Google Scholar] [CrossRef]
- Liu, X.; Hewings, J.D.; Chen, X.; Wang, S. A factor decomposing model of water use efficiency at sector level and its application in Beijing. J. Syst. Sci. Complex. 2016, 29, 405–427. [Google Scholar] [CrossRef]
- Shang, Y.; Lu, S.; Shang, L.; Li, X.; Wei, Y.; Lei, X.; Wang, C.; Wang, H. Decomposition methods for analyzing changes of industrial water use. J. Hydrol. 2016, 543, 808–817. [Google Scholar] [CrossRef]
- Shang, Y.; Lu, S.; Shang, L.; Li, X.; Shi, H.; Li, W. Decomposition of industrial water use from 2003 to 2012 in Tianjin, China. Technol. Forecast. Soc. 2017, 116, 53–61. [Google Scholar] [CrossRef]
- Lo Storto, C. Benchmarking operational efficiency in the integrated water service provision. Benchmarking 2014, 21, 917–943. [Google Scholar] [CrossRef]
- Shi, T.; Zhang, X.; Du, H.; Shi, H. Urban water resource utilization efficiency in China. Chinese Geogr. Sci. 2015, 25, 684–697. [Google Scholar] [CrossRef]
- Manjunatha, A.V.; Speelman, S.; Chandrakanth, M.G.; Van Huylenbroeck, G. Impact of groundwater markets in India on water use efficiency: A data envelopment analysis approach. J. Environ. Manag. 2011, 92, 2924–2929. [Google Scholar] [CrossRef]
- Geng, Q.; Ren, Q.; Nolan, R.H.; Wu, P.; Yu, Q. Assessing China’s agricultural water use efficiency in a green-blue water perspective: A study based on data envelopment analysis. Ecol. Indic. 2019, 96, 329–335. [Google Scholar] [CrossRef]
- Gautam, T.K.; Paudel, K.P.; Guidry, K.M. An Evaluation of Irrigation Water Use Efficiency in Crop Production Using a Data Envelopment Analysis Approach: A Case of Louisiana, USA. Water 2020, 12, 3193. [Google Scholar] [CrossRef]
- Saurer, M.; Spahni, R.; Frank, D.; Joos, F.; Leuenberger, M.; Loader, N.; McCarroll, D.; Gagen, M.; Poulter, B.; Siegwolf, R.; et al. Spatial variability and temporal trends in water-use efficiency of European forests. Glob. Chang. Biol. 2014, 20, 3700–3712. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Peng, J.; Liang, W.; Yang, Y.; Liu, Y. Spatial–temporal patterns of water use efficiency and climate controls in China’s Loess Plateau during 2000–2010. Sci. Total Environ. 2016, 565, 105–122. [Google Scholar] [CrossRef] [PubMed]
- Dekker, S.; Groenendijk, M.; Booth, B.; Huntingford, C.; Cox, P. Spatial and temporal variations in plant water-use efficiency inferred from tree-ring, eddy covariance and atmospheric observations. Earth Syst. Dynam. 2016, 7, 525–533. [Google Scholar] [CrossRef]
- Long, K.; Pijanowski, B.C. Is there a relationship between water scarcity and water use efficiency in China? A national decadal assessment across spatial scales. Land Use Policy 2017, 69, 502–511. [Google Scholar] [CrossRef]
- Hu, Y.; Ma, P.; Wu, S.; Sun, B.; Feng, H.; Pan, X.; Zhang, B.; Chen, G.; Duan, C.; Lei, L.; et al. Spatial-temporal distribution of winter wheat (Triticum aestivum L.) roots and water use efficiency under ridge–furrow dual mulching. Agr. Water Manag. 2020, 240, 106301. [Google Scholar] [CrossRef]
- Lu, X.; Xu, C. The difference and convergence of total factor productivity of inter-provincial water resources in China based on three- stage DEA-Malmquist index model. Sustain. Comput.-Infor. 2019, 22, 75–83. [Google Scholar] [CrossRef]
- Lu, W.; Liu, W.; Hou, M.; Deng, Y.; Deng, Y.; Zhou, B.; Zhao, K. Spatial–temporal evolution characteristics and influencing factors of agricultural water use efficiency in Northwest China—Based on a Super-DEA model and a spatial panel econometric model. Water 2021, 13, 632. [Google Scholar] [CrossRef]
- Sun, C.Z.; Ma, Q.F.; Zhao, L.S. Analysis of driving mechanism based on a GWR model of green efficiency of water resources in China. Acta Geogr. Sin. 2020, 75, 1022–1035. [Google Scholar]
- Song, M.; Wang, R.; Zeng, X. Water resources utilization efficiency and influence factors under environmental restrictions. J. Clean. Prod. 2018, 184, 611–621. [Google Scholar] [CrossRef]
- Zhang, F.; Xiao, Y.; Gao, L.; Ma, D.; Su, R.; Yang, Q. How agricultural water use efficiency varies in China—A spatial-temporal analysis considering unexpected outputs. Agr. Water Manag. 2022, 260, 107297. [Google Scholar] [CrossRef]
- Wang, X.B.; Wang, Z.L. Research on the impact of environmental regulation on water resources utilization efficiency in China based on the SYS-GMM model. Water Supply 2021, 21, 3643–3656. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, X.; Yang, H.; Liu, Q.; Xiao, H.; Cheng, G. Assessing China’s “developing a water-saving society” policy at a river basin level: A structural decomposition analysis approach. J. Clean. Prod. 2018, 190, 799–808. [Google Scholar] [CrossRef]
- Shi, R.; Wang, G.; Zhang, X.; Xu, Y.; Wu, Y.; Wu, W. Determination of the effective utilization coefficient of irrigation water based on geographically weighted regression. Front. Earth Sci.-PRC 2022. [Google Scholar] [CrossRef]
- Bao, C.; Chen, X. Spatial econometric analysis on influencing factors of water consumption efficiency in urbanizing China. J. Geogr. Sci. 2017, 27, 1450–1462. [Google Scholar] [CrossRef]
- Gong, C.J.; Xu, C.L.; Zhang, X.Q. Spatio-temporal evolution and influencing factors of water resources utilization efficiency of cities along the middle and lower reaches of the Yellow River. Sci. Geogr. Sin. 2020, 40, 1930–1939. [Google Scholar]
- Wu, W.; Zhu, Y.; Zeng, W.; Wang, M.; Yang, D.; Chen, W. Green efficiency of water resources in Northwest China: Spatial-temporal heterogeneity and convergence trends. J. Clean. Prod. 2021, 320, 128651. [Google Scholar] [CrossRef]
- Zuo, Q.T.; Zhang, Z.Z.; Ma, J.X. Relationship between water resource utilization level and socio⁃economic development in the Yellow River Basin. China Popul. Resour. Environ. 2021, 31, 29–38. [Google Scholar]
- Liu, G.; Najmuddin, O.; Zhang, F. Evolution and the drivers of water use efficiency in the water-deficient regions: A case study on Ω-shaped region along the Yellow River, China. Environ. Sci. Pollut. Res. 2022, 29, 19324–19336. [Google Scholar] [CrossRef]
- Lu, C.; Ji, W.; Hou, M.; Ma, T.; Mao, J. Evaluation of efficiency and resilience of agricultural water resources system in the Yellow River Basin, China. Agr. Water Manag. 2022, 266, 107605. [Google Scholar] [CrossRef]
- Deng, G.; Li, L.; Song, Y. Provincial water use efficiency measurement and factor analysis in China: Based on SBM-DEA model. Ecol. Indic. 2016, 69, 12–18. [Google Scholar] [CrossRef]
- Razzaq, A.; Qing, P.; Naseer, M.; Abid, M.; Anwar, M.; Javed, I. Can the informal groundwater markets improve water use efficiency and equity? Evidence from a semi-arid region of Pakistan. Sci. Total Environ. 2019, 666, 849–857. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Yang, G.; Yang, D. Investigating industrial water-use efficiency in mainland China: An improved SBM-DEA model. J. Environ. Manag. 2020, 270, 110859. [Google Scholar] [CrossRef] [PubMed]
- Tone, K. A slacks-based measure of super-efficiency in data envelopment analysis. Eur. J. Oper. Res. 2002, 143, 32–41. [Google Scholar] [CrossRef]
- Tone, K. Dealing with undesirable outputs in DEA: A Slacks-based measure (SBM) approach. Oper. Res. Soc. Jpn. 2004, 44–45. [Google Scholar]
- Färe, R.; Grosskopf, S.; Pasurka, C., Jr. Accounting for Air Pollution Emissions in Measures of State Manufacturing Productivity Growth. J. Reg. Sci. 2001, 41, 381–409. [Google Scholar] [CrossRef]
- Wu, Q.; Xu, L.; Geng, X. Ecological efficiency of hog scale production under environmental regulation in China: Based on an optimal super efficiency SBM-Malmquist–Tobit model. Environ. Sci. Pollut. Res. 2022, 29, 53088–53106. [Google Scholar] [CrossRef]
- Tobin, J. Estimation of relationships for limited dependent variables. Econometrica 1958, 26, 24–36. [Google Scholar] [CrossRef]
- Shuai, S.; Fan, Z. Modeling the role of environmental regulations in regional green economy efficiency of China: Empirical evidence from super efficiency DEA-Tobit model. J. Environ. Manag. 2020, 261, 110227. [Google Scholar] [CrossRef]
- Dalei, N.N.; Joshi, J.M. Estimating technical efficiency of petroleum refineries using DEA and tobit model: An India perspective. Comput. Chem. Eng. 2020, 142, 107047. [Google Scholar] [CrossRef]
- Addae, E.A.; Sun, D.; Abban, O.J. Evaluating the effect of urbanization and foreign direct investment on water use efficiency in West Africa: Application of the dynamic slacks-based model and the common correlated effects mean group estimator. Environ. Dev. Sustain. 2022, 1–31. [Google Scholar] [CrossRef]
- Bao, C.; Chen, X. The driving effects of urbanization on economic growth and water use change in China: A provincial-level analysis in 1997–2011. J. Geogr. Sci. 2015, 25, 530–544. [Google Scholar] [CrossRef]
- Mu, L.; Fang, L.; Dou, W.; Wang, C.; Qu, Y. Urbanization-induced spatio-temporal variation of water resources utilization in northwestern China: A spatial panel model based approach. Ecol. Indic. 2021, 125, 107457. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, X.; Liu, Y.; Li, R. Urbanization and water consumption at national- and subnational-scale: The roles of structural changes in economy, population, and resources. Sustain. Cities Soc. 2021, 75, 103272. [Google Scholar] [CrossRef]
- Ding, X.; Fu, Z.; Jia, H. Study on urbanization level, urban primacy and industrial water utilization efficiency in the Yangtze River economic belt. Sustainability 2019, 11, 6571. [Google Scholar] [CrossRef]
- Zhou, Q.; Tong, C. Does rapid urbanization improve green water-use efficiency? Based on the investigation of Guangdong province, China. Sustainability 2022, 14, 7481. [Google Scholar] [CrossRef]
- Liang, X.; Li, J.; Guo, G.; Li, S.; Gong, Q. Evaluation for water resource system efficiency and influencing factors in western China: A two-stage network DEA-Tobit model. J. Clean. Prod. 2021, 328, 129674. [Google Scholar] [CrossRef]
- Zhang, X.; Kong, Y.; Ding, X. How high-quality urbanization affects utilization efficiency of agricultural water resources in the Yellow River basin under double control action? Sustainability 2020, 12, 2869. [Google Scholar] [CrossRef]
- Ding, X.; Cai, Z.; Fu, Z. Does the new-type urbanization construction improve the efficiency of agricultural green water utilization in the Yangtze River Economic Belt? Environ. Sci. Pollut. Res. 2021, 28, 64103–64112. [Google Scholar] [CrossRef]
- Lu, W.; Sarkar, A.; Hou, M.; Liu, W.; Guo, X.; Zhao, K.; Zhao, M. The impacts of urbanization to improve agriculture water use efficiency—an empirical analysis based on spatial perspective of panel data of 30 provinces of China. Land 2022, 11, 80. [Google Scholar] [CrossRef]
- Yan, T.; Wang, J.; Huang, J. Urbanization, agricultural water use, and regional and national crop production in China. Ecol. Model. 2015, 318, 226–235. [Google Scholar] [CrossRef]
- Avazdahandeh, S.; Khalilian, S. The effect of urbanization on agricultural water consumption and production: The extended positive mathematical programming approach. Environ. Geochem. Health 2021, 43, 247–258. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Chen, J.; Wu, F.; Li, Z. An integrated analysis of agricultural water-use efficiency: A case study in the Heihe River Basin in Northwest China. Phys. Chem. Earth 2015, 89–90, 3–9. [Google Scholar] [CrossRef]
- Liu, B.; Li, Y.; Hou, R.; Wang, H. Does urbanization improve industrial water consumption efficiency? Sustainability 2019, 11, 1787. [Google Scholar] [CrossRef]
- Yang, Y. Evaluation of China’s water-resource utilization efficiency based on a DEA-Tobit two-stage model. Water Supply 2021, 21, 1764–1777. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, H.; Xue, H.F. China’s industrial green total factor water efficiency under the constraints of environment and resource. China Environ. Sci. 2020, 40, 5079–5091. [Google Scholar]
- Ma, H.L.; Huang, D.C.; Ma, J.G. Water resource utility efficiency and its influencing factors considering undesirable goods. China Popul. Resour. Environ. 2012, 22, 35–42. [Google Scholar]
Type of Water Use | Input Indicators | Desired Output Indicators | Undesired Output Indicators |
---|---|---|---|
Industry | Industrial water consumption/billion cubic meters; | Secondary sector GDP/CNY 108 | Industrial wastewater/104 tons |
Employment in the secondary industry/104 people; | |||
Fixed asset investment/billion CNY. | |||
Agriculture | Agricultural water consumption/billion cubic meters | Grain production/104 tons | Agricultural fertilizer pollution (replaced by the mount of fertilizer used/10,000 tons) |
Employment in the primary industry/104 people | |||
Sown area of grain/thousand hectares |
Variables | Description | Abbreviation | Unit |
---|---|---|---|
Urbanization level | Urbanization rate | UB | % |
Urban spatial development | Area of urban construction land | BA | 104 p ha |
Urban population density | Population per unit area in urban area | PD | 104 person·ha−2 |
Population size | Total population at the year’s end | PS | million person |
Economic development level | Regional GDP | GDP | hundred billion CNY |
Ratio of added value of primary industry | The added value of primary industry divided by GDP | PR | % |
Ratio of added value of secondary industry | The added value of secondary industry divided by GDP | SR | % |
Industrial water consumption | Industrial water consumption | IW | 108 m3 |
Ratio of industrial water consumption | Industrial water consumption divided by total consumption | IWR | % |
Agricultural water consumption | Agricultural water consumption | AW | 108 m3 |
Ratio of agricultural water consumption | Agricultural water consumption divided by total consumption | AWR | % |
Resource natural endowment | Total amount of water resources | TW | billion m3 |
Index of water saving | per unit GDP water consumption | WS | m3·104 CNY−1 |
Type of Water Use | Year | Longitude of Centroid/° E | Latitude of Centroid/° N | Standard Deviation along the X-Axis/km | Standard Deviation along the Y-Axis/km | Area of Ellipse/104 km2 | Perimeter of Ellipse/km | Shape Index |
---|---|---|---|---|---|---|---|---|
Industry | 2003 | 112.99 | 36.74 | 416.79 | 310.32 | 40.63 | 2296.50 | 1.0163 |
2007 | 113.26 | 36.69 | 436.77 | 295.82 | 40.59 | 2322.81 | 1.0285 | |
2011 | 113.15 | 36.64 | 429.44 | 294.30 | 39.70 | 2293.53 | 1.0268 | |
2015 | 112.93 | 36.55 | 414.98 | 287.98 | 37.54 | 2226.44 | 1.0251 | |
2019 | 113.22 | 36.58 | 435.78 | 290.40 | 39.75 | 2304.23 | 1.0309 | |
Agriculture | 2003 | 112.88 | 37.13 | 427.46 | 330.22 | 44.34 | 2390.10 | 1.0125 |
2007 | 112.63 | 37.27 | 453.35 | 324.12 | 46.16 | 2459.35 | 1.0211 | |
2011 | 112.80 | 37.27 | 438.57 | 328.91 | 45.32 | 2423.40 | 1.0155 | |
2015 | 112.69 | 37.25 | 439.34 | 328.14 | 45.29 | 2423.76 | 1.0160 | |
2019 | 112.66 | 37.12 | 416.89 | 308.82 | 40.44 | 2292.50 | 1.0169 |
Explanatory Variables | Industrial Water Efficiency | Agricultural Water Efficiency | ||
---|---|---|---|---|
Estimated Coefficient | Standard Error | Estimated Coefficient | Standard Error | |
UB | 0.2427 | 0.1497 | −0.4256 ** | 0.1873 |
BA | 0.0069 | 0.0227 | −0.0517 * | 0.0284 |
PD | −0.4024 | 0.2628 | −0.5962 * | 0.3289 |
PS | −0.0254 ** | 0.0099 | −0.0443 *** | 0.0123 |
GDP | 0.0583 ** | 0.0234 | 0.0499 * | 0.0293 |
PR | 0.6518 | 0.3959 | −1.4475 ** | 0.4956 |
SR | 1.1746 *** | 0.1805 | −0.9517 *** | 0.2259 |
IW | 0.0520 *** | 0.0166 | −0.0532 ** | 0.0208 |
IWR | 0.0182 | 0.0914 | 0.5255 *** | 0.1144 |
AW | −0.0039 | 0.0028 | 0.0362 *** | 0.0036 |
AWR | 0.0728 | 0.0530 | −0.6752 *** | 0.0663 |
TW | 0.0131 | 0.0156 | 0.0172 | 0.0196 |
WS | −0.00003 | 0.00003 | 0.0000 | 0.00004 |
Cons | −0.37571 * | 0.18232 | 1.7999 *** | 0.2282 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Wang, Y.; Zhang, X.; Liu, Q. Industrial and Agricultural Water Use Efficiency and Influencing Factors in the Process of Urbanization in the Middle and Lower Reaches of the Yellow River Basin, China. Land 2022, 11, 1248. https://doi.org/10.3390/land11081248
Zhao J, Wang Y, Zhang X, Liu Q. Industrial and Agricultural Water Use Efficiency and Influencing Factors in the Process of Urbanization in the Middle and Lower Reaches of the Yellow River Basin, China. Land. 2022; 11(8):1248. https://doi.org/10.3390/land11081248
Chicago/Turabian StyleZhao, Jincai, Yiyao Wang, Xiufeng Zhang, and Qianxi Liu. 2022. "Industrial and Agricultural Water Use Efficiency and Influencing Factors in the Process of Urbanization in the Middle and Lower Reaches of the Yellow River Basin, China" Land 11, no. 8: 1248. https://doi.org/10.3390/land11081248
APA StyleZhao, J., Wang, Y., Zhang, X., & Liu, Q. (2022). Industrial and Agricultural Water Use Efficiency and Influencing Factors in the Process of Urbanization in the Middle and Lower Reaches of the Yellow River Basin, China. Land, 11(8), 1248. https://doi.org/10.3390/land11081248