Modelling the Whole Profile Soil Organic Carbon Dynamics Considering Soil Redistribution under Future Climate Change and Landscape Projections over the Lower Hunter Valley, Australia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Soil Samples
2.3. Coupled Model
2.3.1. SOC Dynamics Model
2.3.2. Soil Redistribution Module
- The updated elevation, subtracted from the previous one and EC was entered into the SOC dynamics model. If soil erosion or deposition was predicted, soil layer boundaries were updated to include the addition or removal (Figure 3). SOC concentration of the deposited soil to a given cell was assumed to have the same content as that from the eroded soil. At the end of the simulation, three areas were identified: stable (−1 cm < change in soil depth < 1 cm), net soil erosion (change in soil depth ≤ −1 cm), and deposition (change in soil depth ≥ 1 cm). The combined modelling analysis was programmed in the R language.
2.3.3. Model Settings
- The 1470s–1870s. The model simulated SOC dynamics for 400 years until the 1870s when SOC was a steady-state condition. During this simulation period, land use was assumed to be pasture without consideration of soil redistribution.
- The 1870s–1970s. Pasture was changed to cropland. The model simulated the change in SOC with time under cropland conditions.
- The 1970s–2016. The model was run for the 1970s–2016 period repeatedly using a Markov Chain Monte Carlo (MCMC) sampling method [54] with different plant residue inputs and erosion rates for different land uses to get the required C inputs to reach median values of observed SOC stocks in the 0–30 cm layer in 2016 for five vineyards. Latin hypercube sampling (LHS) [55], a stratified-random procedure to cover full range of each variable by maximally stratifying the marginal distribution, was used to replicate the distribution of C inputs to get the representative inputs for the entire study area. To estimate the effect of soil redistribution on SOC stock changes, the model simulated SOC under two approaches: with and without soil redistribution. The fits of measured and modelled SOC stocks in the 0–30 cm soil layer in 2016 for the entire study area under two conditions are shown in Figure S1.
- 2017–2045. The model simulated SOC stocks from 2017 to 2045 under different climate and landscape scenarios.
2.3.4. Input Data for the Coupled Model
Climate Data
Soil Data
Land Use Data
Soil Redistribution Data
2.4. Digital Soil Maps
2.5. Scenario Design
2.5.1. Climate Changes
2.5.2. Landscape Scenarios
- baseline corresponding to land use in 2016,
- maximum area increases in cropland (MaxC) (91%),
- minimum area increases in cropland (MinC) (13%),
- maximum area increases in grassland (90%) (MaxG), and
- minimum area increases in grassland (MinG) (10%).
3. Results
3.1. Validation of the Model with the Transect Data
3.2. Soil Redistribution and Its Impact on SOC
3.2.1. The Effect of Soil Redistribution
3.2.2. SOC Dynamics
3.2.3. Spatial Distribution of SOC Stocks
3.3. Future Simulation
3.3.1. The Impact of Land Use
3.3.2. The Impact of Climate Change
4. Discussion
5. Conclusions
- (1)
- SOC stocks could be overestimated for future scenarios if soil erosion is not considered in the study.
- (2)
- The primary factors influencing SOC changes considering soil redistribution are climate change which controlled the trend of SOC stocks, followed by land use change resulting in different C inputs.
- (3)
- It is important to incorporate soil redistribution into SOC dynamic modelling, and soil erosion modelling by water should take three distinct stages into account: (1) detachment; (2) transport/redistribution, and (3) deposition. On this basis, we then can discuss whether soil erosion is a net carbon sink or source.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jobbagy, E.G.; Jackson, R.B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 2000, 10, 423–436. [Google Scholar] [CrossRef]
- Lal, R. Soil erosion and the global carbon budget. Environ. Int. 2003, 29, 437–450. [Google Scholar] [CrossRef]
- Petrokofsky, G.; Kanamaru, H.; Achard, F.; Goetz, S.J.; Joosten, H.; Holmgren, P.; Lehtonen, A.; Menton, M.C.S.; Pullin, A.S.; Wattenbach, M. Comparison of methods for measuring and assessing carbon stocks and carbon stock changes in terrestrial carbon pools. How do the accuracy and precision of current methods compare? A systematic review protocol. Environ. Evid. 2012, 1, 6. [Google Scholar] [CrossRef] [Green Version]
- Scharlemann, J.P.; Tanner, E.V.; Hiederer, R.; Kapos, V. Global soil carbon: Understanding and managing the largest terrestrial carbon pool. Carbon Manag. 2014, 5, 81–91. [Google Scholar] [CrossRef]
- Rice, C.W. Carbon cycle in soils: Dynamics and management. In Encyclopedia of Soils in the Environment; Hillel, D., Ed.; Elsevier: Oxford, UK, 2005; pp. 164–170. [Google Scholar]
- Minasny, B.; McBratney, A.B. Limited effect of organic matter on soil available water capacity. Eur. J. Soil Sci. 2018, 69, 39–47. [Google Scholar] [CrossRef] [Green Version]
- Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McBratney, A.B.; Stockmann, U.; Angers, D.A.; Minasny, B.; Field, D.J. Challenges for Soil Organic Carbon Research. In Soil Carbon; Hartemink, A.E., McSweeney, K., Eds.; Springer: Cham, Switzerland, 2014; pp. 3–16. [Google Scholar]
- Minasny, B.; Malone, B.P.; McBratney, A.B.; Angers, D.A.; Arrouays, D.; Chambers, A.; Chaplot, V.; Chen, Z.S.; Cheng, K.; Das, B.S.; et al. Soil carbon 4 per mille. Geoderma 2017, 292, 59–86. [Google Scholar] [CrossRef]
- Soussana, J.F.; Lutfalla, S.; Ehrhardt, F.; Rosenstock, T.; Lamanna, C.; Havlík, P.; Richards, M.; Wollenberg, E.; Chotte, J.L.; Torquebiau, E.; et al. Matching policy and science: Rationale for the ‘4 per 1000 - soils for food security and climate’ initiative. Soil Tillage Res. 2019, 188, 3–15. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon sequestration to mitigate climate change. Geoderma 2004, 123, 1–22. [Google Scholar] [CrossRef]
- Guo, L.B.; Gifford, R.M. Soil carbon stocks and land use change: A meta analysis. Glob. Chang. Biol. 2002, 8, 345–360. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon dynamics in cropland and rangeland. Environ. Pollut. 2002, 116, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Don, A.; Scholten, T.; Schulze, E. Conversion of cropland into grassland: Implications for soil organic-carbon stocks in two soils with different texture. J. Plant Nutr. Soil Sci. 2009, 172, 53–62. [Google Scholar] [CrossRef]
- Berhe, A.A.; Barnes, R.T.; Six, J.; Marín-Spiotta, E. Role of soil erosion in biogeochemical cycling of essential elements: Carbon, nitrogen, and phosphorus. Annu. Rev. Earth Planet. Sci. 2018, 46, 521–548. [Google Scholar] [CrossRef]
- Chappell, A.; Webb, N.P.; Butler, H.J.; Strong, C.L.; McTainsh, G.H.; Leys, J.F.; Viscarra Rossel, R.A. Soil organic carbon dust emission: An omitted global source of atmospheric CO2. Glob. Chang. Biol. 2013, 19, 3238–3244. [Google Scholar] [CrossRef] [PubMed]
- Lacoste, M.; Viaud, V.; Michot, D.; Walter, C. Model-based evaluation of impact of soil redistribution on soil organic carbon stocks in a temperate hedgerow landscape. Earth Surf. Processes Landf. 2016, 41, 1536–1549. [Google Scholar] [CrossRef]
- Van Oost, K.; Quine, T.A.; Govers, G.; De Gryze, S.; Six, J.; Harden, J.W.; Ritchie, J.C.; McCarty, G.W.; Heckrath, G.; Kosmas, C.; et al. The impact of agricultural soil erosion on the global carbon cycle. Science 2007, 318, 626–629. [Google Scholar] [CrossRef]
- Kadlec, V.; Holubik, O.; Prochazkova, E.; Urbanova, J.; Tippl, M. Soil organic carbon dynamics and its influence on the soil erodibility factor. Soil Water Res. 2012, 7, 97–108. [Google Scholar] [CrossRef] [Green Version]
- Chappell, A.; Webb, N.P.; Leys, J.F.; Waters, C.M.; Orgill, S.; Eyres, M.J. Minimising soil organic carbon erosion by wind is critical for land degradation neutrality. Environ. Sci. Policy 2019, 93, 43–52. [Google Scholar] [CrossRef]
- Kirkels, F.M.S.A.; Cammeraat, L.H.; Kuhn, N.J. The fate of soil organic carbon upon erosion, transport and deposition in agricultural landscapes---A review of different concepts. Geomorphology 2014, 226, 94–105. [Google Scholar] [CrossRef]
- Lal, R.; Pimentel, D. Soil erosion: A carbon sink or source? Science 2008, 319, 1040–1042. [Google Scholar] [CrossRef]
- Doetterl, S.; Berhe, A.A.; Nadeu, E.; Wang, Z.; Sommer, M.; Fiener, P. Erosion, deposition and soil carbon: A review of process-level controls, experimental tools and models to address C cycling in dynamic landscapes. Earth-Sci. Rev. 2016, 154, 102–122. [Google Scholar] [CrossRef]
- Gray, J.M.; Bishop, T.F.A. Change in Soil Organic Carbon Stocks under 12 Climate Change Projections over New South Wales, Australia. Soil Sci. Soc. Am. J. 2016, 80, 1296–1307. [Google Scholar] [CrossRef] [Green Version]
- Meersmans, J.; Arrouays, D.; Van Rompaey, A.J.J.; Pagé, C.; De Baets, S.; Quine, T.A. Future C loss in mid-latitude mineral soils: Climate change exceeds land use mitigation potential in France. Sci. Rep. 2016, 6, 35798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yigini, Y.; Panagos, P. Assessment of soil organic carbon stocks under future climate and land cover changes in Europe. Sci. Total Environ. 2016, 557–558, 838–850. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, K.; Hartemink, A.E.; Minasny, B.; Kheir, R.B.; Greve, M.B.; Greve, M.H. Digital mapping of soil organic carbon contents and stocks in Denmark. PLoS ONE 2014, 9, e105519. [Google Scholar] [CrossRef]
- McBratney, A.B.; Mendonca Santos, M.L.; Minasny, B. On digital soil mapping. Geoderma 2003, 117, 3–52. [Google Scholar] [CrossRef]
- Chen, S.; Arrouays, D.; Leatitia Mulder, V.; Poggio, L.; Minasny, B.; Roudier, P.; Libohova, Z.; Lagacherie, P.; Shi, Z.; Hannam, J.; et al. Digital mapping of GlobalSoilMap soil properties at a broad scale: A review. Geoderma 2022, 409, 115567. [Google Scholar] [CrossRef]
- Minasny, B.; McBratney, A.B.; Malone, B.P.; Wheeler, I. Digital Mapping of Soil Carbon. Adv. Agron. 2013, 118, 1–47. [Google Scholar] [CrossRef]
- Cerri, C.E.P.; Easter, M.; Paustian, K.; Killian, K.; Coleman, K.; Bernoux, M.; Falloon, P.; Powlson, D.S.; Batjes, N.; Milne, E.; et al. Simulating SOC changes in 11 land use change chronosequences from the Brazilian Amazon with RothC and Century models. Agric. Ecosyst. Environ. 2007, 122, 46–57. [Google Scholar] [CrossRef]
- Falloon, P.; Smith, P. Simulating SOC changes in long-term experiments with RothC and CENTURY: Model evaluation for aregional scale application. Soil Use Manag. 2002, 18, 101–111. [Google Scholar] [CrossRef]
- Johnson, H.; Jancis, R. The World Atlas of Wine; Mitchell Beazley: London, UK, 2005. [Google Scholar]
- Thackway, R.; Cresswell, I.D. An Interim Biogeographic Regionalisation for Australia: A Framework for Establishing the National System of Reserves, Version 4.0; Australian Nature Conservation Agency: Canberra, Australia, 1995. [Google Scholar]
- Ma, Y.X.; Minasny, B.; Welivitiya, W.D.D.P.; Malone, B.P.; Willgoose, G.R.; McBratney, A.B. The feasibility of predicting the spatial pattern of soil particle-size distribution using a pedogenesis model. Geoderma 2019, 341, 195–205. [Google Scholar] [CrossRef]
- Isbell, R.F. The Australian Soil Classification; CSIRO Publishing: Melbourne, Australia, 2002. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2014. [Google Scholar]
- Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; USDA-NRCS: Washington, DC, USA, 2014.
- Malone, B.P.; Minasny, B.; Odgers, N.P.; McBratney, A.B. Using model averaging to combine soil property rasters from legacy soil maps and from point data. Geoderma 2014, 232, 34–44. [Google Scholar] [CrossRef]
- Fajardo, M.; McBratney, A.B.; Whelan, B. Fuzzy clustering of Vis–NIR spectra for the objective recognition of soil morphological horizons in soil profiles. Geoderma 2016, 263, 244–253. [Google Scholar] [CrossRef]
- Odgers, N.P.; McBratney, A.B.; Minasny, B. Bottom-up digital soil mapping. I. Soil layer classes. Geoderma 2011, 163, 38–44. [Google Scholar] [CrossRef]
- Bishop, T.F.A.; McBratney, A.B.; Laslett, G.M. Modelling soil attribute depth functions with equal-area quadratic smoothing splines. Geoderma 1999, 91, 27–45. [Google Scholar] [CrossRef]
- Cozzolino, D.; Moron, A. The potential of near-infrared reflectance spectroscopy to analyse soil chemical and physical characteristics. J. Agric. Sci. 2003, 140, 65–71. [Google Scholar] [CrossRef]
- Shepherd, K.D.; Walsh, M.G. Development of reflectance spectral libraries for characterization of soil properties. Soil Sci. Soc. Am. J. 2002, 66, 988–998. [Google Scholar] [CrossRef]
- Ng, W.; Minasny, B.; Jones, E.; McBratney, A. To spike or to localize? Strategies to improve the prediction of local soil properties using regional spectral library. Geoderma 2022, 406, 115501. [Google Scholar] [CrossRef]
- Jenkinson, D.S.; Coleman, K. The turnover of organic carbon in subsoils. Part 2. Modelling carbon turnover. Eur. J. Soil Sci. 2008, 59, 400–413. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.R-project.org/ (accessed on 12 December 2022).
- Coleman, K.; Jenkinson, D.S. ROTHC-26.3. A Model for the Turnover of Carbon in Soil. Model Description and Windows User’s Guide. November 1999 Issue.; Lawes Agricultural Trust: Harpenden, UK, 1999. [Google Scholar]
- Adams, W.A. The effect of organic matter on the bulk and true densities of some uncultivated podzolic soils. J. Soil Sci. 1973, 24, 10–17. [Google Scholar] [CrossRef]
- Chenu, C.; Le Bissonnais, Y.; Arrouays, D. Organic matter influence on clay wettability and soil aggregate stability. Soil Sci. Soc. Am. J. 2000, 64, 1479–1486. [Google Scholar] [CrossRef]
- Freeman, T.G. Calculating catchment area with divergent flow based on a regular grid. Comput. Geosci. 1991, 17, 413–422. [Google Scholar] [CrossRef]
- Quinn, P.; Beven, K. The prediction of hillslope flow paths for distributed hydrological modelling using digital terrain models. Hydrol. Process. 1991, 5, 59–79. [Google Scholar] [CrossRef]
- Follain, S.; Minasny, B.; McBratney, A.B.; Walter, C. Simulation of soil thickness evolution in a complex agricultural landscape at fine spatial and temporal scales. Geoderma 2006, 133, 71–86. [Google Scholar] [CrossRef]
- Brooks, S.P.; Roberts, G.O. Convergence assessment techniques for Markov chain Monte Carlo. Stat. Comput. 1998, 8, 319–335. [Google Scholar] [CrossRef]
- Minasny, B.; McBratney, A.B. Latin Hypercube Sampling as a Tool for Digital Soil Mapping. In Digital Soil Mapping an Introductory Perspective; Lagacherie, P., McBratney, A.B., Voltz, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Malone, B.P.; Hughes, P.; McBratney, A.B.; Minasny, B. A model for the identification of terrons in the Lower Hunter Valley, Australia. Geoderma Reg. 2014, 1, 31–47. [Google Scholar] [CrossRef]
- Borrelli, P.; Robinson, D.A.; Fleischer, L.R.; Lugato, E.; Ballabio, C.; Alewell, C.; Meusburger, K.; Modugno, S.; Schütt, B.; Ferro, V.; et al. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. 2017, 8, 2013. [Google Scholar] [CrossRef] [Green Version]
- Montgomery, D.R. Soil erosion and agricultural sustainability. PNAS 2007, 104, 13268–13272. [Google Scholar] [CrossRef] [Green Version]
- Quinlan, J.R. C4.5: Programs for Machine Learning; Morgan Kaufmann Publishers Inc.: San Mateo, CA, USA, 1993. [Google Scholar]
- Ma, Y.X.; Minasny, B.; Wu, C.F. Mapping key soil properties to support agricultural production in Eastern China. Geoderma Reg. 2017, 10, 144–153. [Google Scholar] [CrossRef]
- Padarian, J.; Minasny, B.; McBratney, A.B. Machine learning and soil sciences: A review aided by machine learning tools. SOIL 2020, 6, 35–52. [Google Scholar] [CrossRef]
- Kuhn, M.; Weston, S.; Keefer, C.; Coulter, N. Cubist Models for Regression. 2012, Volume 18, p. 480. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjv38751Mb8AhWU-DgGHajYCQwQFnoECA4QAQ&url=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fdocument%3Frepid%3Drep1%26type%3Dpdf%26doi%3Dba770116106168666d2f2646bbcb282e83dd015e&usg=AOvVaw3JZgT_-MDyFBuVvSgGNTCJ (accessed on 12 December 2022).
- Van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.-F.; et al. The representative concentration pathways: An overview. Clim. Chang. 2011, 109, 5. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Bui, E.N.; Hancock, G.J.; Chappell, A.; Gregory, L.J. Evaluation of tolerable erosion rates and time to critical topsoil loss in Australia. CSIRO Res. Publ. Repos. 2010. [Google Scholar] [CrossRef]
- Zingg, A.W. Degree and length of land slope as it affects soil loss in runoff. Agric. Eng. 1940, 21, 59–64. [Google Scholar]
- Lacoste, M.; Viaud, V.; Michot, D.; Walter, C. Landscape-scale modelling of erosion processes and soil carbon dynamics under land-use and climate change in agroecosystems. Eur. J. Soil Sci. 2015, 66, 780–791. [Google Scholar] [CrossRef]
- Doetterl, S.; Six, J.; Van Wesemael, B.; Van Oost, K. Carbon cycling in eroding landscapes: Geomorphic controls on soil organic C pool composition and C stabilization. Glob. Chang. Biol. 2012, 18, 2218–2232. [Google Scholar] [CrossRef]
- Jones, A.; Stolbovoy, V.; Rusco, E.; Gentile, A.-R.; Gardi, C.; Marechal, B. Climate change in Europe. 2. Impact on soil. A review. Agron. Sustain. Dev. 2009, 29, 423–432. [Google Scholar] [CrossRef] [Green Version]
- Eglin, T.; Ciais, P.; Piao, S.L.; Barre, P.; Bellassen, V.; Cadule, P. Historical and future perspectives of global soil carbon response to climate and land-use changes. Tellus Ser. B-Chem. Phys. Meteorol. 2010, 62, 700–718. [Google Scholar] [CrossRef] [Green Version]
- Davidson, E.A.; Janssens, I.A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 2006, 440, 165–173. [Google Scholar] [CrossRef] [Green Version]
- Van Oost, K.; Govers, G.; Van Muysen, W. A process-based conversion model for caesium-137 derived erosion rates on agricultural land: An integrated spatial approach. Earth Surf. Process. Landf. 2003, 28, 187–207. [Google Scholar] [CrossRef]
- Van Oost, K.; Van Muysen, W.; Govers, G.; Heckrath, G.; Quine, T.A.; Poesen, J. Simulation of the redistribution of soil by tillage on complex topographies. Eur. J. Soil Sci. 2003, 54, 63–76. [Google Scholar] [CrossRef]
- Andrén, O.; Kätterer, T. ICBM: The introductory carbon balance model for exploration of soil carbon balances. Ecol. Appl. 1997, 7, 1226–1236. [Google Scholar] [CrossRef]
- Renard, K.G.; Foster, G.R.; Weesies, G.; McCool, D.; Yoder, D. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE); USDA-ARS: Washington, DC, USA, 1997.
- Wilkinson, M.T.; Richards, P.J.; Humphreys, G.S. Breaking ground: Pedological, geological, and ecological implications of soil bioturbation. Earth-Sci. Rev. 2009, 97, 257–272. [Google Scholar] [CrossRef]
Category | Input |
---|---|
Climate (Monthly) | Rainfall (mm) |
Open-pan evaporation (mm) | |
Mean air temperature (°C) | |
Soil | Initial SOC stocks (t C ha−1) |
Bulk density (g cm−3) | |
Clay content (%) | |
Drainage conditions | |
Root distribution in the soil profile | |
Management | Changing land use |
Plant residue inputs (t C ha−1) for different land uses | |
Residue management | |
Soil redistribution | Initial elevation (m) |
Erosion rate constants for different land uses |
Forest | Natural Grassland | Grassland | Cropland | |
---|---|---|---|---|
Benwarin | 16.8 | 8.2 | 8.2 | 3.8 |
Breamore | 3.5 | 1.7 | 1.7 | 0.8 |
Draytons | 6.5 | 3.1 | 3.1 | 1.5 |
Scarborough | 15.6 | 7.6 | 7.6 | 3.6 |
Talavera | 18.6 | 9.0 | 9.0 | 4.2 |
Entire study area | 12.5 | 6.1 | 6.4 | 3.0 |
Location | Mean |
---|---|
Benwarin | 0 |
Breamore | 0 |
Draytons | −0.11 |
Scarborough | 0.28 |
Talavera | −0.35 |
Entire study area | −0.18 |
NSR | SR | |||
---|---|---|---|---|
0–30 cm | 0–100 cm | 0–30 cm | 0–100 cm | |
Benwarin | 70.0 | 76.2 | 70.0 | 76.2 |
Breamore | 25.8 | 28.8 | 25.8 | 28.8 |
Draytons | 37.8 | 42.9 | 34.0 | 38.3 |
Scarborough | 56.8 | 63.6 | 68.4 | 75.8 |
Talavera | 74.9 | 82.8 | 61.8 | 67.6 |
Entire study area | 57.9 | 64.4 | 52.0 | 56.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; Minasny, B.; Viaud, V.; Walter, C.; Malone, B.; McBratney, A. Modelling the Whole Profile Soil Organic Carbon Dynamics Considering Soil Redistribution under Future Climate Change and Landscape Projections over the Lower Hunter Valley, Australia. Land 2023, 12, 255. https://doi.org/10.3390/land12010255
Ma Y, Minasny B, Viaud V, Walter C, Malone B, McBratney A. Modelling the Whole Profile Soil Organic Carbon Dynamics Considering Soil Redistribution under Future Climate Change and Landscape Projections over the Lower Hunter Valley, Australia. Land. 2023; 12(1):255. https://doi.org/10.3390/land12010255
Chicago/Turabian StyleMa, Yuxin, Budiman Minasny, Valérie Viaud, Christian Walter, Brendan Malone, and Alex McBratney. 2023. "Modelling the Whole Profile Soil Organic Carbon Dynamics Considering Soil Redistribution under Future Climate Change and Landscape Projections over the Lower Hunter Valley, Australia" Land 12, no. 1: 255. https://doi.org/10.3390/land12010255
APA StyleMa, Y., Minasny, B., Viaud, V., Walter, C., Malone, B., & McBratney, A. (2023). Modelling the Whole Profile Soil Organic Carbon Dynamics Considering Soil Redistribution under Future Climate Change and Landscape Projections over the Lower Hunter Valley, Australia. Land, 12(1), 255. https://doi.org/10.3390/land12010255