Fractal Characteristics of the Particle Size Distribution of Soil along an Urban–Suburban–Rural–Desert Gradient
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Analysis
2.3. Calculation of Particle Size Parameters
2.4. Estimation of the Fractal Dimension
2.5. Statistical Analysis
3. Results
3.1. Characteristics of Soil Particle Size Distribution
3.2. Characteristics of Soil Particle Size Parameters
3.3. Fractal Dimension of Soil Particle Size Distribution
3.4. Relationship between Fractal Dimension and Soil Particle Size Distribution
4. Discussion
5. Conclusions
- (1)
- Sand particles were prevalent in the urban, suburban, and rural soils, followed by silt particles, while the content of clay particles is lowest in the study area. The desert soil is mainly composed of silt particle sizes, followed by sand particle sizes, and the content of clay particle sizes was low. The soil texture was not very good in the study area.
- (2)
- The soil particle size distribution of the soil in the rural and desert gradients showed a similar frequency curve, while soils in the urban and suburban gradients showed a similar frequency curve.
- (3)
- The urbanization process and human activities in the study area can obviously affect the percentages of clay, sand, and silt in soil in the urban gradients, as well as the percentages of clay and silt in the rural gradient.
- (4)
- In each urbanization gradient, the soil particle size distribution features can be indicated by the fractal dimension, which increased with an increase in clay and silt contents and decreased with an increase in sand content.
- (5)
- The content of fine particle matter in soil structure can be reflected by the fractal dimension.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dong, Z.-W.; Li, S.-Y.; Mao, D.-L.; Lei, J.-Q. Distribution pattern of soil grain size in Tamarix sand dune in the southwest of Gurbantunggut desert. J. Soil Water Conserv. 2021, 35, 64–72. [Google Scholar]
- He, Q.-Q.; Mao, D.-L.; Xu, J.-R.; Zhang, K.-L.; Liu, L.; Yang, G.-C. Sediment granularity characteristics and deposition environment of different dunes in the Cele oasis-desert ecotone. Res. Soil Water Conserv. 2023, 30, 135–145. [Google Scholar]
- Chi, Z.; Xu, X.-Y.; Liu, K.-L.; Liu, H.-J.; Meng, R.-L.; Li, Y.-Q.; Fu, L.; Li, X.-N. Study on soil particle size characteristics and spatial pattern of sand deposition in two types of sand barriers. J. Soil Water Conserv. 2021, 35, 113–121. [Google Scholar]
- Bai, Y.-F.; Sun, J.; Li, X.-J.; Chen, G.-S.; Li, X.-Y.; Lu, X.-R.; Wen, B.-L.; Zhang, J.-T. Fractal dimension and salinization characteristics of typical halophytic landscape soil in western Songnen plain. J. Soil Water Conserv. 2021, 35, 163–169. [Google Scholar]
- Zhao, W.-J.; Cui, Z.; Ma, H. Fractal features of soil particle size distributions and their relationships with soil properties in gravel-mulched fields. Arab. J. Geosci. 2017, 10, 211–218. [Google Scholar] [CrossRef]
- He, Y.; Wei, X.; Wei, N.; Yu, W.-Z.; Cui, X.; Zhao, H.-C. Characteristics of soil particle size distribution of mainland surfaces in Qilian mountains. Res. Soil Water Conserv. 2020, 27, 42–47. [Google Scholar]
- Zha, C.; Shao, M.; Jia, X.; Zhang, C. Particle size distribution of soils (0~500 cm) in the Loess Plateau, China. Geoderma 2016, 7, 251–258. [Google Scholar] [CrossRef]
- Lou, B.-Y.; Wang, Y.-D.; Zhou, N.; Yan, J.-S.; Akida, A. Soil particle size composition characteristics of Pinus sylvestris plantations in Nur-Sultan City. Arid Land Geogr. 2022, 45, 219–225. [Google Scholar]
- Wang, M.; Lu, J.-F.; Fu, P.; Dong, Z.-B. Characteristics of soil nutrients and grain size around Badain Jaran Desert. J. Desert Res. 2022, 42, 232–244. [Google Scholar]
- Song, X.-Y.; Li, H.-Y. Fractal characteristics of soil particle-size distributions under different landform and land-use types. Adv. Mater. Res. 2011, 201–203, 2679–2684. [Google Scholar] [CrossRef]
- Xia, J.; Ren, R.; Chen, Y. Multifractal Characteristics of soil particle distribution under different vegetation types in the Yellow River Delta Chenier of China. Geoderma 2020, 368, 114311. [Google Scholar] [CrossRef]
- Wang, Y.-Q.; Shao, M.-G.; Gao, L. Spatial variability of soil particle size distribution and fractal features in water-wind erosion crisscross region on the Loess Plateau of China. Soil Sci. 2010, 175, 579–585. [Google Scholar] [CrossRef]
- Hossein, K.; María, G.; Ali, A.; Silvia, M.; Angel, F.; Jose, A.-A. Environmental impact assessment of industrial activities on heavy metals distribution in street dust and soil. Chemosphere 2018, 217, 695–705. [Google Scholar]
- Zhu, Q.; Su, L.-J.; Liu, Z.-Y.; Wang, B. An evaluation method for internal erosion potential of gravelly soil based on particle size distribution. J. Mountain Sci. 2022, 19, 1203–1214. [Google Scholar] [CrossRef]
- Li, X.-P.; Gao, Y.; Zhang, M.; Zhang, Y.; Yu, H.-T. In vitro lung and gastrointestinal bioaccessibility of potentially toxic metals in Pb-contaminated alkaline urban soil: The role of particle size fractions. Ecotoxicol. Environ. Saf. 2020, 190, 110151. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-S.; Deng, Y.-B. Modeling for critical state line of granular soil with evolution of grain size distribution due to particle breakage. Geosci. Front. 2020, 11, 473–486. [Google Scholar] [CrossRef]
- Liu, W.-G.; Liu, Z.-H.; Sun, J.-M.; Song, C.-H.; Chang, H.; Wang, H.-Y.; Wang, Z.; An, Z.-S. Onset of permanent Taklimakan Desert linked to the mid-Pleistocene transition. Geology 2020, 48, 782–786. [Google Scholar] [CrossRef]
- Su, Y.-Z.; Yang, R.; Liu, T.-N. Effects of long-term different fertilization on soil fertility and soil organic carbon accumulation in psamments of oasis farmland. J. Desert Res. 2019, 39, 1–6. [Google Scholar]
- Hu, H.-C.; Tian, F.-Q.; Hu, H.-P. Soil particle size distribution and its relationship with soil water and salt under mulched drip irrigation in Xinjiang of China. Technol. Sci. 2011, 54, 1568–1574. [Google Scholar] [CrossRef]
- Cheng, H.; He, W.-W.; Liu, C.-C.; Zou, X.-Y.; Kang, L.-Q.; Chen, T.-L.; Zhang, K.-D. Transition model for airflow fields from single plants to multiple plants. Agric. For. Meteorol. 2019, 266–267, 29–42. [Google Scholar] [CrossRef]
- Wang, J.-M.; Zhang, J.-R.; Feng, Y. Characterizing the spatial variability of soil particle size distribution in an underground coal mining area: An approach combining multi-fractal theory and geostatistics. Catena 2019, 176, 94–103. [Google Scholar] [CrossRef]
- Chen, L.; Wang, H.; Liu, C.; Cao, B.-Z.; Wang, J. Use of multifractal parameters to determine soil particle size distribution and erodibility of a physical soil crust in the Loess Plateau, China. Catena 2022, 219, 106641. [Google Scholar] [CrossRef]
- Jing, Z.-R.; Wang, J.-M.; Wang, R.-G.; Wang, P. Using multi-fractal analysis to characterize the variability of soil physical properties in subsided land in coal-mined area. Geoderma 2019, 176, 94–103. [Google Scholar] [CrossRef]
- Sowinski, P.; Smólczynski, S.; Orzechowski, M.; Kalisz, B.; Bieniek, A. Effect of soil agricultural use on particle-size distribution in Young Glacial landscape slopes. Agriculture 2023, 13, 584. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, C.; Chen, Z.; Kang, Q.; Xu, X.; Gao, T. Performance comparison of different particle size distribution models in the prediction of soil particle size characteristics. Land 2022, 11, 2068. [Google Scholar] [CrossRef]
- Jena, R.-K.; Moharana, P.-C.; Dharumarajan, S.; Sharma, G.-K.; Ray, P.; Deb Roy, P.; Ghosh, D.; Das, B.; Alsuhaibani, A.-M.; Gaber, A. Spatial prediction of soil particle-size fractions using digital soil mapping in the North Eastern Region of India. Land 2023, 12, 1295. [Google Scholar] [CrossRef]
- Bi, X.-Q.; Chu, H.; Fu, M.-M.; Xu, D.-D.; Zhao, W.-Y.; Zhong, Y.-J.; Wang, M.; Li, K.; Zhang, Y.-N. Distribution characteristics of organic carbon (nitrogen) content, cation exchange capacity, and specific surface area in different soil particle sizes. Sci. Rep. 2023, 13, 12242. [Google Scholar] [CrossRef]
- Li, Q.; Hu, Z.; Zhang, F.; Song, D.; Liang, Y.; Yu, Y. Multispectral remote sensing monitoring of soil particle-size distribution in arid and semi-arid mining areas in the middle and upper reaches of the Yellow River Basin: A case study of Wuhai City, Inner Mongolia Autonomous Region. Remote Sens. 2023, 15, 2137. [Google Scholar] [CrossRef]
- Li, X.-S.; Chang, C.-P.; Wang, R.-D. Influence of land use ways on the farmland soil wind erosion in Bashang area, Hebei, China. J. Desert Res. 2014, 34, 23–28. [Google Scholar]
- Qiu, J.; Wang, H.-D.; Zheng, Y.-P.; Xu, C.-L.; Shi, D.-L. Fractal features of soil particles under different land uses in a coastal reclamation area. Res. Agric. Mod. 2020, 41, 882–888. [Google Scholar]
- Qi, F.; Zhang, H.-R.; Liu, X.; Niu, Y.; Zhang, D.-H.; Li, H.; Li, Z.-J.; Wang, Y.-B.; Zhang, C.-G. Soil particle size distribution characteristics of different land-use types in the Funiu mountainous region. Soil Tillage Res. 2018, 184, 45–51. [Google Scholar] [CrossRef]
- Wang, Y.-Y.; He, J.-Y.; Zhan, J.; Li, P.-Z. Identification of soil particle size distribution in different sedimentary environments at river basin scale by fractal dimension. Sci. Rep. 2022, 12, 10960. [Google Scholar] [CrossRef] [PubMed]
- Sha, G.-L.; Wei, T.-X.; Chen, Y.-X.; Fu, Y.-C.; Ren, K. Characteristics of soil particle size distribution of typical plant communities on the hilly areas of Loess Plateau. Arid Land Geogr. 2022, 45, 1224–1234. [Google Scholar]
- Fu, D.-S.; Ren, X.-M.; Wang, Y.-L.; Zhang, C.-Y.; Meng, Z.-J. Distribution characteristics of soil particle size in farming-pastoral ecotone: A case study of Wuchuan county in Inner Mongolia. Arid Zone Res. 2022, 39, 1322–1332. [Google Scholar]
- Liu, Y.-L.; Zhang, L.-J.; Han, X.-F.; Zhang, T.-F.; Shi, Z.-X.; Lu, X.-Z. Spatial variability and evaluation of soil heavy metal contamination in the urban transect of Shanghai. Chin. J. Environ. Sci. 2012, 33, 599–605. [Google Scholar]
- Gao, Z.-Y.; Niu, F.-J.; Liu, Z.-J.; Luo, J. Fractal and multifractal analysis of soil particle-size distribution and correlation with soil hydrological properties in active layer of Qinghai-Tibet Plateau, China. Catena 2021, 203, 105373. [Google Scholar] [CrossRef]
- Niu, X.; Gao, P.; Wang, B.; Liu, Y. Fractal characteristics of soil retention curve and particle size distribution with different vegetation types in mountain areas of Northern China. Environ. Res. Public Health 2015, 12, 15379–15389. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.-L.; Shi, Z.-L.; Wen, A.-B.; Yan, D.-C.; Gou, J.; Chen, J.-C.; Liu, Y.; Chen, R.-Y. Multifractal characteristics and spatial variability of soil particle-size distribution in different land use patterns in a small catchment of the Three Gorges Reservoir Region, China. J. Mt. Sci. 2021, 18, 111–125. [Google Scholar] [CrossRef]
- Li, J.-M.; Zhang, Y.-T. Characteristics of heavy metal pollution in forest belt soil of different functional zones in Urumqi, Xinjiang. Ecol. Environ. Sci. 2019, 28, 1859–1866. [Google Scholar]
- Wang, Y. Urban Spatial Morphological Evolution Based on GIS Analysis of Remote Sensing Data—A Case Study of Urumqi. Master’s Thesis, Xinjiang University, Urumqi, China, 2019. [Google Scholar]
- Nazupar, S.; Mamattursun, E.; Li, X.-G.; Wang, Y.-H. Spatial distribution, contamination levels, and health risks of trace elements in topsoil along an urbanization gradient in the city of Urumqi, China. Sustainability 2022, 14, 12646. [Google Scholar]
- Maas, S.; Scheifler, R.; Benslama, M.; Crini, N.; Lucot, E.; Brahmia, Z.; Benyacoub, S.; Giraudoux, P. Spatial distribution of heavy metal concentrations in urban, suburban, and agricultural soils in a Mediterranean city of Algeria. Environ. Pollut. 2010, 158, 2294–2301. [Google Scholar] [CrossRef] [PubMed]
- Wei, B.-G.; Jiang, Q.-F.; Li, M.-X.; Mu, Y.-S. Heavy metal induced ecological risk in the city of Urumqi, NW China. Environ. Monit. Assess. 2010, 160, 33–45. [Google Scholar] [CrossRef] [PubMed]
- Gulbanu, H.; Mamattursun, E.; Wang, W.-W.; Ili, A.; Li, X.-G. Spatial distribution, contamination levels, sources, and potential health risk assessment of trace elements in street dust of Urumqi city, NW China. Hum. Ecol. Risk Assess. 2020, 26, 2112–2128. [Google Scholar]
- Folk, R.-L.; Ward, W.-C. Brazos River bar: A study in the significance of grain size parameters. J. Sediment. Petrol. 1957, 27, 3–26. [Google Scholar] [CrossRef]
- Tyler, S.-W.; Wheatcraft, S.-W. Fractal scaling of soil particle-size distributions: Analysis and limitations. Soil Sci. Soc. Am. J. 1992, 56, 362–369. [Google Scholar] [CrossRef]
- Markovic, S.; Stojanovic, Z. Determination of particle size distributions by laser diffraction. Tech.-New Mater. 2012, 21, 11–20. [Google Scholar]
- Wei, C.-H.; Shen, G.; Pei, Z.-X.; Ren, M.-L.; Lu, J.-L.; Wang, Q.; Wang, W.-J. Effects of different plant cultivation on soil physical-chemical properties and fine root growth in saline-alkaline soil in Songnen Plain, northeastern China. Bull. Bot. Res. 2015, 35, 759–764. [Google Scholar]
- Mohammadi, M.-H.; Meskini-Vishkaee, F. Predicting soil moisture characteristic curves from continuous particle-size distribution data. Pedosphere 2013, 23, 70–80. [Google Scholar] [CrossRef]
- Dong, Z.-W.; Li, S.-Y.; Mao, D.-L.; Lei, J.-Q. Fractal features of soil grain-size distribution in a typical Tamarix cone in the Taklimakan Desert, China. Sci. Rep. 2022, 12, 16461. [Google Scholar] [CrossRef]
- Tang, G.-Y.; Xiao, H.; Su, Y.-R.; Huang, D.-Y.; Liu, S.-L.; Huang, M.; Tong, C.-L.; Wu, J.-H. Spatial variation in organic carbon, nutrients and microbial biomass contents of paddy soils in a hilly red soil region. Front. Agric. China 2007, 1, 424–429. [Google Scholar] [CrossRef]
- Zuo, X.-A.; Zhao, H.-L.; Zhao, X.-Y.; Guo, Y.-R.; Yun, J.-Y.; Wang, S.-K.; Miyasaka, T. Vegetation pattern variation, soil degradation and their relationship along a grassland desertification gradient in Horqin Sandy Land, northern China. Environ. Geol. 2009, 58, 1227–1237. [Google Scholar] [CrossRef]
- Deng, J.-F.; Li, J.-H.; Deng, G.; Zhu, H.-Y.; Zhang, R.-H. Fractal scaling of particle-size distribution and associations with soil properties of Mongolian pine plantations in the Mu Us Desert, China. Sci. Rep. 2017, 7, 6742. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.-C.; Li, Z.-B.; Li, P. Fractal features of soil particle-size distribution and total soil nitrogen distribution in a typical watershed in the source area of the middle Dan River, China. Catena 2013, 101, 17–23. [Google Scholar] [CrossRef]
- Li, Q.; Ji, H.-B.; Qin, F.; Tang, L.; Guo, X.-Y.; Feng, J.-G. Sources and the distribution of heavy metals in the particle size of soil polluted by gold mining upstream of Miyun Reservoir, Beijing: Implications for assessing the potential risks. Environ. Monit. Assess. 2014, 186, 6605. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, W.-W.; Wang, L.-X.; Liu, Y.-X.; Liu, Y.; Feng, Q. Relationship between soil water content and soil particle size on typical slopes of the Loess Plateau during a drought year. Sci. Total Environ. 2019, 648, 943–954. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.-L.; Li, J.-F.; Chang, C.-P.; Zou, X.-Y.; Wang, R.; Zhou, N.; Li, Q. Logistic growth models for describing the fetch effect of aeolian sand transport. Soil Tillage Res. 2019, 194, 104306. [Google Scholar] [CrossRef]
- Margaret, R.-D.; Pamela, A.-H.; Anne, M.-C. Potential for using soil particle-size data to infer geological parent material in the Sydney Region. Soil Res. 2013, 51, 301–310. [Google Scholar]
- Liu, X.; Zhang, G.-C.; Heathman, G.-C.; Wang, Y.-Q.; Huang, C.-H. Fractal features of soil particle-size distribution as affected by plant communities in the forested region of Moutain Yimeng, China. Geoderma 2009, 154, 123–130. [Google Scholar] [CrossRef]
- Anwar, E.; Mamattursun, E.; Jin, W.-G.; Li, X.-G. The environmental capacity of heavy metals in farmland soils in Yanqi Basin, Xinjiang. Environ. Eng. 2020, 38, 168–173. [Google Scholar]
- Mamattursun, E.; Anwar, M.; Ajigul, M.; Gulbanu, H. A human health risk assessment of heavy metals in agricultural soils of Yanqi Basin, Silk Road Economic Belt, China. Hum. Ecol. Risk Assess. 2018, 24, 1352–1366. [Google Scholar]
- Marhaba, T.; Mamattursun, E.; Aynur, M.; Wang, W.-W. Evaluation and prediction of environmental capacities of heavy metals in vineyard soils in the Turpan Basin. Earth Environ. 2020, 48, 584–592. [Google Scholar]
- Huang, J.; Li, Y.; Fu, C.; Chen, F.; Fu, Q.; Dai, A.; Shinoda, M.; Ma, Z.; Guo, W.; Li, Z. Dryland climate change: Recent progress and challenges. Rev. Geophys. 2017, 55, 719–778. [Google Scholar] [CrossRef]
σG | Sorting Grade | SKG | Skewness Grade | KG | Kurtosis Grade |
---|---|---|---|---|---|
ơG ≤ 0.35 | Excellent | –1.00 ≤ SKG < –0.30 | Extremely negative | KG ≤ 0.67 | Very broad and flat |
0.35 < ơG ≤ 0.50 | Good | –0.30 ≤ SKG < –0.10 | Negative | 0.67 < KG ≤ 0.90 | Broad and flat |
0.50 < ơG ≤ 0.71 | Better | –0.10 ≤ SKG < 0.10 | Nearly symmetric | 0.90 < KG ≤ 1.11 | Medium |
0.71 < ơG ≤ 1.00 | Medium | 0.10 ≤ SKG < 0.30 | Positive | 1.11 < KG ≤ 1.50 | Narrow |
1.00 < ơG ≤ 2.00 | Rather poor | 0.30 ≤ SKG ≤ 1.00 | Extremely positive | 1.50 < KG ≤ 3.00 | Very narrow |
2.00 < ơG ≤ 4.00 | Poor | KG > 3.00 | Extremely narrow | ||
ơG > 4.00 | Extremely poor |
Regions | Loamy Sand (%) | Clay Soil (%) | Clay Loam (%) | Sandy Soil (%) |
---|---|---|---|---|
Urban | 80.85 | 11.90 | 7.14 | 0 |
Suburban | 94.74 | 0 | 5.26 | 0 |
Rural | 81.25 | 0 | 0 | 18.75 |
Desert | 72.73 | 0 | 27.27 | 0 |
Whole study area | 82.95 | 5.68 | 7.95 | 3.41 |
Gradient | Statistics | Clay (%) | Silt (%) | Sand (%) | Dv |
---|---|---|---|---|---|
Urban (n = 42) | Min | 1.68 | 20.84 | 9.10 | 2.32 |
Max | 15.01 | 75.89 | 77.49 | 2.68 | |
Mean | 4.08 | 43.76 | 52.16 | 2.44 | |
SD | 2.39 | 13.19 | 15.03 | 0.06 | |
CV | 0.59 | 0.30 | 0.29 | 0.03 | |
Suburban (n = 19) | Min | 3.20 | 30.97 | 32.16 | 2.42 |
Max | 4.88 | 63.73 | 65.71 | 2.49 | |
Mean | 4.02 | 39.93 | 56.05 | 2.45 | |
SD | 0.56 | 7.57 | 7.90 | 0.02 | |
CV | 0.14 | 0.19 | 0.14 | 0.01 | |
Rural (n = 16) | Min | 0.25 | 11.43 | 59.65 | 2.22 |
Max | 4.14 | 36.47 | 87.68 | 2.46 | |
Mean | 2.41 | 24.53 | 73.06 | 2.36 | |
SD | 0.94 | 6.86 | 7.70 | 0.06 | |
CV | 0.39 | 0.28 | 0.11 | 0.03 | |
Desert (n = 11) | Min | 2.56 | 37.36 | 5.63 | 2.38 |
Max | 16.56 | 77.81 | 59.64 | 2.69 | |
Mean | 6.60 | 55.50 | 37.90 | 2.51 | |
SD | 4.44 | 13.08 | 16.78 | 0.10 | |
CV | 0.67 | 0.24 | 0.44 | 0.04 | |
Whole study area (n = 88) | Min | 0.25 | 11.43 | 5.63 | 2.22 |
Max | 16.56 | 77.81 | 87.68 | 2.69 | |
Mean | 4.08 | 40.90 | 55.02 | 2.44 | |
SD | 2.59 | 14.31 | 16.35 | 0.08 | |
CV | 0.64 | 0.35 | 0.30 | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, N.; Eziz, M.; Mao, D.; Sidekjan, N. Fractal Characteristics of the Particle Size Distribution of Soil along an Urban–Suburban–Rural–Desert Gradient. Land 2023, 12, 2120. https://doi.org/10.3390/land12122120
Wang N, Eziz M, Mao D, Sidekjan N. Fractal Characteristics of the Particle Size Distribution of Soil along an Urban–Suburban–Rural–Desert Gradient. Land. 2023; 12(12):2120. https://doi.org/10.3390/land12122120
Chicago/Turabian StyleWang, Ning, Mamattursun Eziz, Donglei Mao, and Nazupar Sidekjan. 2023. "Fractal Characteristics of the Particle Size Distribution of Soil along an Urban–Suburban–Rural–Desert Gradient" Land 12, no. 12: 2120. https://doi.org/10.3390/land12122120
APA StyleWang, N., Eziz, M., Mao, D., & Sidekjan, N. (2023). Fractal Characteristics of the Particle Size Distribution of Soil along an Urban–Suburban–Rural–Desert Gradient. Land, 12(12), 2120. https://doi.org/10.3390/land12122120