Measuring Rurality and Analyzing the Drivers of Rurality in Megacities—A Case Study of Shanghai, China
Abstract
:1. Introduction
2. Background and Research Areas
2.1. Literature Review
2.2. The Study Area
3. Materials and Methods
3.1. Indicators and Data
3.2. Research Methodology
4. Results
4.1. Evaluation Results and Spatio-Temporal Pattern Characteristics
4.1.1. Spatio-Temporal Differentiation Characteristics
4.1.2. Overall Spatial Correlation
4.2. Analysis of Driving Factors
4.2.1. Diagnosis of Indicator Covariance
4.2.2. Comparison of OLS, GWR and MGWR Models
4.2.3. Based on the Results of MGWR Single-Factor Analysis
4.2.4. Results of Two-Factor Interaction Analysis Based on Geo-Detector
5. Conclusion and Discussion
5.1. Conclusions and Recommendations
5.2. Contributions and Limitations
5.2.1. Contribution
5.2.2. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, T.; Li, Y.; Yan, Y.; Wang, B. Measuring urban sprawl and exploring the role planning plays: A shanghai case study. Land Use Policy 2017, 67, 426–435. [Google Scholar]
- Brown, D.G.; Johnson, K.M.; Loveland, T.R.; Theobald, D.M. Rural land-use trends in the conterminous United States, 1950–2000. Ecol. Appl. 2005, 15, 1851–1863. [Google Scholar] [CrossRef]
- Nelson, K.S.; Nguyen, T.D.; Brownstein, N.A.; Garcia, D.; Walker, H.C.; Watson, J.T.; Xin, A. Definitions, measures, and uses of rurality: A systematic review of the empirical and quantitative literature. J. Rural Stud. 2021, 82, 351–365. [Google Scholar] [CrossRef]
- Cohen, S.A.; Cook, S.K.; Kelley, L.; Foutz, J.D.; Sando, T.A. A Closer Look at Rural-Urban Health Disparities: Associations Between Obesity and Rurality Vary by Geospatial and Sociodemographic Factors. J. Rural Health 2017, 33, 167–179. [Google Scholar] [CrossRef] [PubMed]
- Doogan, N.J.; Roberts, M.E.; Wewers, M.E.; Tanenbaum, E.R.; Mumford, E.A.; Stillman, F.A. Validation of a new continuous geographic isolation scale: A tool for rural health disparities research. Soc. Sci. Med. 2018, 215, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Liang, M.; Stacciarini, J.M.R.; Smith, R.; Wiens, B. An individual-based rurality measure and its health application: A case study of latino immigrants in North Florida, USA. Soc. Sci. Med. 2015, 147, 300–308. [Google Scholar]
- Weinert, C.; Boik, R.J. MSU rurality index: Development and evaluation. Res. Nurs. Health 1995, 18, 453–464. [Google Scholar] [CrossRef]
- Beynon, M.J.; Crawley, A.; Munday, M. Measuring and understanding the differences between urban and rural areas. Environ. Plan. B Plan. Des. 2016, 43, 1136–1154. [Google Scholar] [CrossRef]
- Bogdanov, N.; Meredith, D.; Efstratoglou, S. A typology of rural areas in serbia. Econ. Ann. 2008, 53, 7–29. [Google Scholar] [CrossRef]
- Caschili, S.; De Montis, A.; Trogu, D. Accessibility and rurality indicators for regional development. Comput. Environ. Urban Syst. 2015, 49, 98–114. [Google Scholar] [CrossRef]
- Romano, S.; Cozzi, M.; Viccaro, M.; Persiani, G. A geostatistical multicriteria approach to rural area classification: From the European perspective to the local implementation. Agric. Agric. Sci. Procedia 2016, 8, 499–508. [Google Scholar] [CrossRef]
- Cleland, C.L. Measuring Rurality. Hum. Serv. Rural Environ. 1995, 18, 13–18. [Google Scholar]
- Li, Y.; Long, H.; Liu, Y. Spatio-temporal pattern of China’s rural development: A rurality index perspective. J. Rural Stud. 2015, 38, 12–26. [Google Scholar] [CrossRef]
- Zhao, J.; Ameratunga, S.; Lee, A.; Browne, M.; Exeter, D.J. Developing a New Index of Rurality for Exploring Variations in Health Outcomes in Auckland and Northland. Soc. Indic. Res. 2019, 144, 1–26. [Google Scholar] [CrossRef]
- Jacquet, J.B.; Guthrie, E.; Jackson, H. Swept out: Measuring rurality and migration intentions on the Upper Great Plains. Rural Sociol. 2017, 82, 601–627. [Google Scholar] [CrossRef]
- Mitchell, M.; Doyle, C. Spatial distribution of the impact of agricultural policy reforms in rural areas. Scott. Geogr. Mag. 1996, 112, 76–82. [Google Scholar] [CrossRef]
- Wu, Q.; Ye, J.; Chen, Y. The spatial differentiation of rurality in developed coastal regions of eastern China based on rural revitalization: The case of Zhejiang Province. Sci. Geogr. Sin. 2022, 42, 466–475. [Google Scholar]
- Lyu, M.; Cao, X. The spatial characteristics of rurality and its relationship with the transportation accessibility in the Loess Plateau. Sci. Geogr. Sin. 2020, 40, 248–260. [Google Scholar]
- Zhang, R.; Zhang, X.; Li, C. Evolvement and mechanism of spatial pattern of rurality in Jiangsu province on county scale. Hum. Geogr. 2013, 28, 91–97. [Google Scholar]
- Yuan, Y.; Zhao, W.; Li, H.; Mu, H. Analyzing the Driving Mechanism of Rural Transition from the Perspective of Rural–Urban Continuum: A Case Study of Suzhou, China. Land 2022, 11, 1146. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, B. Analysis of the coupling rurality index and rural transformation development of Jiangsu Province in China in the early 21st century. China Popul. Resour. Environ. 2013, 23, 48–55. [Google Scholar]
- Chen, Y.; Li, W.; Ma, R.; Li, J.; Ren, L. Spatial differentiation of rurality and analysis of its driving factors in Zhejiang province. Econ. Geogr. 2014, 34, 133–139. [Google Scholar]
- Han, D.; Qiao, J.; Ma, Y. Rurality spatial differentiation mechanism in the New Era based on the perspective of spatial interface: A case study of Gongyi city, Henan province. Prog. Geogr. 2018, 37, 655–666. [Google Scholar]
- Zhang, R.; Jiao, H.; Zhang, X. Rural development types and rurality in the Yangtze River Delta. J. Nanjing Norm. Univ. (Nat. Sci. Ed.) 2014, 37, 132–136. [Google Scholar]
- Zhou, Y.; Hao, X.; Liu, Y.; Gao, Y.; Ren, Y. Assessment of rural development types and rurality at county level in Henan Province. Res. Agric. Mod. 2014, 35, 447–452. [Google Scholar]
- Feng, S.; Sha, R. Evaluation model of countryside tourism’s rural feature: A case study of Wuyuan in Jiangxi Province. Geogr. Res. 2007, 26, 616–624. [Google Scholar]
- Dong, Y.; Guo, Y.; Li, Z.; Lin, S. Spatio-temporal differentiation and driving mechanism of rurality in the Yangtze River Economic Belt. J. Nat. Resour. 2022, 37, 378–395. [Google Scholar] [CrossRef]
- Ma, L.; Li, T.; Li, T.; Long, D.; Chen, Y. Spatial distribution of rurality and types of rural development in farming-pastoral ecotone in Northern China. Econ. Geogr. 2015, 35, 126–133. [Google Scholar]
- Cloke, P.J. An index of rurality for England and Wales. Reg. Stud. 1977, 11, 31–46. [Google Scholar] [CrossRef]
- Zhang, X. Discrimination of rural definitions. Acta Geogr. Sin. 1998, 53, 79–85. [Google Scholar]
- Nelson, K.S.; Nguyen, T.D. Community assets and relative rurality index: A multi-dimensional measure of rurality. J. Rural Stud. 2023, 97, 322–333. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, Y.; Hao, J. Research on the rural development types and rurality evaluation in Hebei province under the background of rural revitalization. Chin. J. Agric. Resour. Reg. Plan. 2021, 42, 18–28. [Google Scholar]
- Niu, Z.; Zhou, Z.; Zhu, C.; Chen, Q. Rurality spatial distribution and types of rural development in karst mountains: A case of Panzhou city in Guizhou province. Res. Soil Water Conserv. 2021, 28, 316–324. [Google Scholar]
- Jiang, L.; Luo, J.; Zhang, C.; Tian, L.; Chen, G.; Wu, Y. Spatial distribution of rurality at county level in Hubei province based on major function-oriented zoning location. Chin. J. Agric. Resour. Reg. Plan. 2020, 41, 58–66. [Google Scholar]
- Long, H.L.; Liu, Y.S.; Zou, J. Assessment of rural development types and their rurality in Eastern Coastal China. Acta Geogr. Sin. 2009, 64, 426–434. [Google Scholar]
- Madu, I.A. The structure and pattern of rurality in Nigeria. Geojournal 2010, 75, 175–184. [Google Scholar] [CrossRef]
- Smith, B.J.; Parvin, D.W. Defining and measuring rurality. J. Agric. Appl. Econ. 1973, 5, 109–113. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, X.; Li, G. The rurality appraisal and characteristics of different types of traditional villages in Southern Jiangsu province: Based on surveys of 12 traditional villages in Suzhou. Geogr. Res. 2019, 38, 1311–1321. [Google Scholar]
- Cai, X.; Zhang, L. Research on the Type of Rural Development and Rural Spatial and Temporal Evolution in Fujian Province. Southeast Acad. J. 2019, 6, 118–126. [Google Scholar]
- Li, X.; Yang, H.; He, Y.; Liu, C.; Luo, J.; Li, M. Assessment of rural development types and their rurality in Shaanxi province. J. Shandong Agric. Univ. (Nat. Sci. Ed.) 2016, 47, 225–230. [Google Scholar]
- Blunden, J.R.; Pryce, W.T.R.; Dreyer, P. The classification of rural areas in the European context: An exploration of a typology using neural network applications. Reg. Stud. 1998, 32, 149–160. [Google Scholar] [CrossRef]
- Feng, Y.; Liang, Z.; Wang, F. Spatial and Temporal Change of Rurality in Towns Based on Land Use:A Case of Panyu District and Conghua District in Guangzhou. Sci. Geogr. Sin. 2018, 38, 1499–1507. [Google Scholar]
- Li, X.; Li, Y.; Cheng, G.; Weng, C. Assessing the County’s Rurality in the Three Gorges Reservoir area of Chongqing. Econ. Geogr. 2013, 33, 125–131. [Google Scholar]
- Meng, H.; Li, T.; Yu, Z.; Li, F. Rurality and acorrelation analysis of the cuunty economy in Anhui Province. Econ. Geogr. 2013, 33, 144–148, 185. [Google Scholar]
- Isserman, A.M. In the national interest: Defining rural and urban correctly in research and public policy. Int. Reg. Sci. Rev. 2005, 28, 465–499. [Google Scholar] [CrossRef]
- Inagami, S.; Gao, S.S.; Karimi, H.; Shendge, M.M.; Probst, J.C.; Stone, R.A. Adapting the Index of Relative Rurality (IRR) to estimate rurality at the ZIP code level: A rural classification system in health services research. J. Rural Health 2016, 32, 219–227. [Google Scholar] [CrossRef]
- Halfacree, K.H. Locality and social representation: Space, discourse and alternative definitions of the rural. J. Rural Stud. 1993, 9, 23–37. [Google Scholar] [CrossRef]
- Harrington, V.; O’Donoghue, D. Rurality in England and Wales 1991: A replication and extension of the 1981 rurality index. Sociol. Rural. 1998, 38, 178–203. [Google Scholar] [CrossRef]
- Woods, M. Rural geography: Processes, responses and experiences in rural restructuring. Rural Geogr. Process. Responses Exp. Rural Restruct. 2005, 7, 494–496. [Google Scholar]
- Fang, L.; Wang, Y. Multi-Disciplinary Determination of the Rural/Urban Boundary: A Case Study in Xi’an, China. Sustainability 2018, 10, 2632. [Google Scholar] [CrossRef]
- Hedlund, M. Mapping the socioeconomic landscape of rural Sweden: Towards a typology of rural areas. Reg. Stud. 2016, 50, 460–474. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, X.; Li, H.; Fan, L. Research on rurality at village scale and rural development model: A case of Jintan City, Jiangsu Province. Sci. Geogr. Sin. 2017, 37, 1194–1202. [Google Scholar]
- Yang, H.; Chen, S. Town scale rurality spatial differentiation and rural development strategy under background of rural revitalization: Taking Dehua County of Fujian Province as an example. Chin. J. Agric. Resour. Reg. Plan. 2021, 42, 23–32. [Google Scholar]
- Nie, X.; Shi, P.; Zhang, X.; Lyu, R.; Zhu, Y.; Wei, W. Research on rurality evaluation and the driving mechanism in aridregions of Northwest China: A case study of Wuwei city in Gansu province. Sci. Geogr. Sin. 2017, 37, 585–594. [Google Scholar]
- Sun, Y.; Cheng, Y.Q.; Zhang, P.Y. Spatio-temporal dynamics of rurality in Northeast China. Geogr. Res. 2015, 34, 1864–1874. [Google Scholar]
- Liu, J.; He, W. Evolvement and Mechanism of Spatial Distribution of Rurality in Sichuan Province on County Scale. J. Sichuan Norm. Univ. (Nat. Sci.) 2018, 41, 122–130. [Google Scholar]
- Li, K.; Li, K.; Liu, Y.; Yue, L.; Jiang, X. Transition Characteristics and Driving Mechanisms of Rural Settlements in Suburban Villages of Megacities under Policy Intervention: A Case Study of Dayu Village in Shanghai, China. Land 2023, 12, 1999. [Google Scholar] [CrossRef]
- Wang, L.; Ge, M.; Chen, N.; Ding, J.; Shen, X. An Evaluation Model of Riparian Landscape: A Case in Rural Qingxi Area, Shanghai. Land 2022, 11, 1512. [Google Scholar] [CrossRef]
- Ministry of Environmental Protection of the People’s Republic of China. Technical Criterion for Ecosystem Status Evaluation (HJ192-2015); Ministry of Environmental Protection of the People’s Republic of China: Beijing, China, 2015. [Google Scholar]
- Xie, G.; Xiao, Y.; Zhen, L.; Lu, C. Study on ecosystem service value of food production in China. Chin. J. Eco-Agric. 2005, 13, 10–13. [Google Scholar]
- Hess, D.B.; Almeida, T.M. Impact of proximity to light rail rapid transit on station area property values in Buffalo, New York. Urban Stud. 2007, 5, 1041–1068. [Google Scholar] [CrossRef]
- Gutiérrez, J.; Cristóbal, C.; Gómez, G. Accesibilidad peatonal a lared de metro de Madrid: Efectos del plan de ampliación 1995–1999. An. Geogr. Univ. Complut. 2000, 20, 363–376. [Google Scholar]
- Huang, X.; Li, H.; Zhang, X.; Zhang, X. Land use policy as an instrument of rural resilience—The case of land withdrawal mechanism for rural homesteads in China. Ecol. Indicat. 2018, 87, 47–55. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Yang, W.; Kang, W. Multiscale Geographically Weighted Regression (MGWR). Ann. Am. Assoc. Geogr. 2017, 107, 1247–1265. [Google Scholar] [CrossRef]
- Wang, J.; Li, X.; Christakos, G.; Liao, Y. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Wang, J.; Hu, Y. Environmental health risk detection with GeogDetector. Environ. Model. Softw. 2012, 33, 114–115. [Google Scholar] [CrossRef]
- Huang, Z.; Li, S.; Peng, Y.; Gao, F. Spatial Non-Stationarity of Influencing Factors of China’s County Economic Development Base on a Multiscale Geographically Weighted Regression Model. ISPRS Int. J. Geo-Inf. 2023, 12, 109. [Google Scholar] [CrossRef]
- Tran, D.X.; Pearson, D.; Palmer, A.; Lowry, J.; Gray, D.; Dominati, E.J. Quantifying spatial non-stationarity in the relationship between landscape structure and the provision of ecosystem services: An example in the New Zealand hill country. Sci. Total Environ. 2022, 808, 152126. [Google Scholar] [CrossRef]
Total Index | Index Weight | Indicator | Indicator Weight | Indicator Explanation | |
---|---|---|---|---|---|
Total index of rurality | Land use index | 0.372 | Cropland ratio | 0.035 | Cropland area/regional land area |
Cultivation and agglomeration ratio | 0.227 | Cultivated land area/rural settlement area | |||
Degree of land development | 0.032 | Urban and rural construction land area/regional land area | |||
Degree of agglomeration of settlements | 0.078 | Rural settlement area/urban and rural construction land area | |||
Rural production index | 0.294 | Gross agricultural output value | 0.081 | —— | |
Total grain production | 0.108 | —— | |||
Total vegetable production | 0.105 | —— | |||
Rural living index | 0.164 | Share of employees in primary industry | 0.158 | Number of employees in primary industry/population of permanent residents | |
Consumption level | 0.002 | Rural disposable income per capita | |||
Population density | 0.004 | Resident population/regional land area | |||
Rural ecological index | 0.170 | Habitat quality index | 0.035 | [59] | |
Ecosystem service value | 0.135 | [60] |
Driving Factors | Factors Explanation | Reference |
---|---|---|
Mig-population | Migrant population/resident population | [56] |
Ind-value | Industrial output value/area of administrative district | [22,42,54,55] |
Pub-revenue | Public revenue | [22,27] |
Fix-investment | Social fixed asset investment | |
Rail-coverage | Metro station buffer 1km coverage area/area of administrative district | [61,62] |
Year | Moran’s I Index | Global G Statistic | |||
---|---|---|---|---|---|
Moran’s I | Z(I) | P | Z(G) | P | |
2005 | 0.696 | 13.845 | 0% | −3.023 | 0% |
2010 | 0.745 | 14.773 | 0% | −2.127 | 3% |
2015 | 0.776 | 15.373 | 0% | −1.757 | 8% |
2020 | 0.801 | 15.886 | 0% | −1.445 | 15% |
Driving Factor | VIF | 1/VIF |
---|---|---|
Mig-population | 1.52 | 0.66 |
Ind-value | 1.90 | 0.53 |
Pub-revenue | 1.92 | 0.52 |
Fix-investment | 1.51 | 0.66 |
Rail-coverage | 1.71 | 1.58 |
Mean value of VIF | 1.71 | —— |
Year | AICc | R2 | Adj. R2 | RSS | Number of Observation Samples | |
---|---|---|---|---|---|---|
2020 | OLS | 182.71 | 0.67 | 0.65 | 32.16 | 96 |
GWR | 160.67 | 0.82 | 0.77 | 17.58 | ||
MGWR | 150.76 | 0.83 | 0.79 | 16.20 | ||
2015 | OLS | 169.40 | 0.72 | 0.70 | 27.66 | 98 |
GWR | 161.15 | 0.81 | 0.77 | 18.57 | ||
MGWR | 151.50 | 0.83 | 0.79 | 16.60 | ||
2010 | OLS | 193.47 | 0.63 | 0.62 | 36.21 | 98 |
GWR | 174.50 | 0.77 | 0.73 | 22.07 | ||
MGWR | 168.42 | 0.79 | 0.75 | 20.65 | ||
2005 | OLS | 151.97 | 0.48 | 0.43 | 32.49 | 62 |
GWR | 150.99 | 0.57 | 0.49 | 26.70 | ||
MGWR | 144.71 | 0.63 | 0.55 | 22.94 |
Driving Factor | Mig-Population | Ind-Value | Pub-Revenue | Fix-Investment | Rail-Coverage | |
---|---|---|---|---|---|---|
2020 | average values | −0.349 | −0.099 | −0.05 | −0.062 | −0.33 |
+ (%) | 1.04 | 0 | 41.67 | 0 | 0 | |
− (%) | 98.96 | 100 | 58.33 | 100 | 100 | |
2015 | average values | −0.277 | −0.195 | 0.031 | −0.04 | −0.373 |
+ (%) | 3.06 | 0 | 63.27 | 0 | 0 | |
− (%) | 96.94 | 100 | 36.73 | 100 | 100 | |
2010 | average values | −0.182 | −0.18 | −0.199 | 0.038 | −0.295 |
+ (%) | 3.06 | 0 | 0 | 89.8 | 0 | |
− (%) | 96.94 | 100 | 100 | 10.2 | 100 | |
2005 | average values | −0.065 | −0.499 | −0.082 | −0.055 | 0.114 |
+ (%) | 0 | 0 | 48.39 | 35.48 | 100 | |
− (%) | 100 | 100 | 51.61 | 64.52 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Dong, Y.; Huang, X. Measuring Rurality and Analyzing the Drivers of Rurality in Megacities—A Case Study of Shanghai, China. Land 2024, 13, 1789. https://doi.org/10.3390/land13111789
Xu X, Dong Y, Huang X. Measuring Rurality and Analyzing the Drivers of Rurality in Megacities—A Case Study of Shanghai, China. Land. 2024; 13(11):1789. https://doi.org/10.3390/land13111789
Chicago/Turabian StyleXu, Xiaofeng, Youming Dong, and Xianjin Huang. 2024. "Measuring Rurality and Analyzing the Drivers of Rurality in Megacities—A Case Study of Shanghai, China" Land 13, no. 11: 1789. https://doi.org/10.3390/land13111789