Urbanization and Carbon Storage Dynamics: Spatiotemporal Patterns and Socioeconomic Drivers in Shanghai
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area and Data Resource
2.2. Carbon Storage
2.3. Standard Deviation Ellipse Analysis
2.4. Kernel Density Estimation
2.5. Linear Regression
3. Results
3.1. Carbon Storage of Shanghai
3.2. Standard Deviation Ellipse Analysis Results
3.3. Kernel Density Estimation Results
3.4. Impact of Land Use Change on Carbon Storage
3.5. Impact of Socioeconomic Factors on Carbon Storage in Shanghai
4. Discussion
4.1. Uncertainty of INVEST
4.2. Spatiotemporal Variations in Urban Carbon Storage
4.3. The Impact of Socioeconomic Factors on Carbon Storage in Shanghai
4.4. Limitations
5. Conclusions
- (1)
- The carbon storage in Shanghai is primarily provided by cultivated land and artificial surfaces. From 2000 to 2010, the carbon storage in Shanghai increased from 16.78 Mt to 17.07 Mt, and by 2020, it had risen to 18.40 Mt, with an annual increment of 0.81 Mt.
- (2)
- From 2000 to 2020, the spatial variation in carbon sinks across Shanghai’s terrestrial areas remained relatively stable, exhibiting a southeast-northwest distribution, with the degree of dispersion of carbon sinks in the north-south direction continuously increasing, albeit at a decreasing rate, while the degree of dispersion in the east-west direction continuously decreased.
- (3)
- Between 2000–2010 and 2010–2020, the kernel density curves of carbon storage in Shanghai shifted from a bimodal to a unimodal pattern, indicating an overall increase in carbon storage, with a continuous reduction in both high and low carbon storage areas, leading to a more uniform distribution of carbon storage across the city.
- (4)
- There was a significant positive correlation between both the per capita green space area and the per capita industrial output value and carbon storage, which is primarily associated with relevant policies in Shanghai. In contrast, there was a significant negative correlation between the population density and carbon storage.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023; pp. 35–115. [Google Scholar]
- Murali, G.; Iwamura, T.; Meiri, S.; Roll, U. Future temperature extremes threaten land vertebrates. Nature 2023, 615, 461–467. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, L.B.; Ørsted, M.; Malte, H.; Wang, T.; Overgaard, J. Extreme escalation of heat failure rates in ectotherms with global warming. Nature 2022, 611, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Yang, C.; Xie, C.; Man, Z.; He, S.; Qin, Y.; Che, S. Quantification of contribution of climate change and land use change on urban ecosystem service using multi-scale approach. Ecol. Indic. 2024, 167, 112619. [Google Scholar] [CrossRef]
- Gao, Y.; Gao, X.; Zhang, X. The 2 °C Global Temperature Target and the Evolution of the Long-Term Goal of Addressing Climate Change—From the United Nations Framework Convention on Climate Change to the Paris Agreement. Engineering 2017, 3, 272–278. [Google Scholar] [CrossRef]
- Friedlingstein, P.; O’Sullivan, M.; Jones, M.W.; Andrew, R.M.; Gregor, L.; Hauck, J.; Le Quéré, C.; Luijkx, I.T.; Olsen, A.; Peters, G.P.; et al. Global Carbon Budget 2022. Earth Syst. Sci. Data 2022, 14, 4811–4900. [Google Scholar] [CrossRef]
- He, C.; Zhang, D.; Huang, Q.; Zhao, Y. Assessing the potential impacts of urban expansion on regional carbon storage by linking the LUSD-urban and InVEST models. Environ. Model. Softw. 2016, 75, 44–58. [Google Scholar] [CrossRef]
- Nolan, C.J.; Field, C.B.; Mach, K.J. Constraints and enablers for increasing carbon storage in the terrestrial biosphere. Nat. Rev. Earth Environ. 2021, 2, 436–446. [Google Scholar] [CrossRef]
- Li, L.; Song, Y.; Wei, X.; Dong, J. Exploring the impacts of urban growth on carbon storage under integrated spatial regulation: A case study of Wuhan, China. Ecol. Indic. 2020, 111, 106064. [Google Scholar] [CrossRef]
- Li, C.; Zhao, J.; Thinh, N.X.; Xi, Y. Assessment of the Effects of Urban Expansion on Terrestrial Carbon Storage: A Case Study in Xuzhou City, China. Sustainability 2018, 10, 647. [Google Scholar] [CrossRef]
- Turner, B.L.; Lambin, E.F.; Reenberg, A. The emergence of land change science for global environmental change and sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 20666–20671. [Google Scholar] [CrossRef]
- Piao, S.; Fang, J.; Ciais, P.; Peylin, P.; Huang, Y.; Sitch, S.; Wang, T. The carbon balance of terrestrial ecosystems in China. Nature 2009, 458, 1009–1013. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, S.; Wu, P.; Feng, K.; Hubacek, K.; Li, X.; Sun, L. Impacts of Urban Expansion on Terrestrial Carbon Storage in China. Environ. Sci. Technol. 2019, 53, 6834–6844. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.; Yang, H.; Tao, S.; Su, Y.; Guan, H.; Ren, Y.; Hu, T.; Li, W.; Xu, G.; Chen, M.; et al. Carbon storage through China’s planted forest expansion. Nat. Commun. 2024, 15, 4106. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.; Choi, Y.; Kim, Y.; Ol, L.N.; Yoo, Y.J.; Cho, H.J.; Sun, Z.; Jeon, S. Analysis of the effect of environmental protected areas on land-use and carbon storage in a megalopolis. Ecol. Indic. 2021, 133, 108352. [Google Scholar] [CrossRef]
- Fryer, J.; Williams, I.D. Regional carbon stock assessment and the potential effects of land cover change. Sci. Total Environ. 2021, 775, 145815. [Google Scholar] [CrossRef]
- Chang, X.; Xing, Y.; Wang, J.; Yang, H.; Gong, W. Effects of land use and cover change (LUCC) on terrestrial carbon stocks in China between 2000 and 2018. Resour. Conserv. Recycl. 2022, 182, 106333. [Google Scholar] [CrossRef]
- Wu, W.; Xu, L.; Zheng, H.; Zhang, X. How much carbon storage will the ecological space leave in a rapid urbanization area? Scenario analysis from Beijing-Tianjin-Hebei Urban Agglomeration. Resour. Conserv. Recycl. 2023, 189, 106774. [Google Scholar] [CrossRef]
- Zhu, L.; Song, R.; Sun, S.; Li, Y.; Hu, K. Land use/land cover change and its impact on ecosystem carbon storage in coastal areas of China from 1980 to 2050. Ecol. Indic. 2022, 142, 109178. [Google Scholar] [CrossRef]
- Chuai, X.; Qi, X.; Zhang, X.; Li, J.; Yuan, Y.; Guo, X.; Huang, X.; Park, S.; Zhao, R.; Xie, X.; et al. Land degradation monitoring using terrestrial ecosystem carbon sinks/sources and their response to climate change in China. Land Degrad. Dev. 2018, 29, 3489–3502. [Google Scholar] [CrossRef]
- Tang, X.; Zhao, X.; Bai, Y.; Tang, Z.; Wang, W.; Zhao, Y.; Wan, H.; Xie, Z.; Shi, X.; Wu, B.; et al. Carbon pools in China’s terrestrial ecosystems: New estimates based on an intensive field survey. Proc. Natl. Acad. Sci. USA 2018, 115, 4021–4026. [Google Scholar] [CrossRef]
- Wei, Z.-Q.; Wu, S.-H.; Zhou, S.-L.; Li, J.-T.; Zhao, Q.-G. Soil Organic Carbon Transformation and Related Properties in Urban Soil Under Impervious Surfaces. Pedosphere 2014, 24, 56–64. [Google Scholar] [CrossRef]
- Young, P.J.; Harper, A.B.; Huntingford, C.; Paul, N.D.; Morgenstern, O.; Newman, P.A.; Oman, L.D.; Madronich, S.; Garcia, R.R. The Montreal Protocol protects the terrestrial carbon sink. Nature 2021, 596, 384–388. [Google Scholar] [CrossRef] [PubMed]
- Gampe, D.; Zscheischler, J.; Reichstein, M.; O’Sullivan, M.; Smith, W.K.; Sitch, S.; Buermann, W. Increasing impact of warm droughts on northern ecosystem productivity over recent decades. Nat. Clim. Chang. 2021, 11, 772–779. [Google Scholar] [CrossRef]
- Guo, H.; Du, E.; Terrer, C.; Jackson, R.B. Global distribution of surface soil organic carbon in urban greenspaces. Nat. Commun. 2024, 15, 806. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wu, Y.; Liu, S.; Xiao, J.; Zhao, W.; Chen, J.; Alexandrov, G.; Cao, Y. Decipher soil organic carbon dynamics and driving forces across China using machine learning. Glob. Chang. Biol. 2022, 28, 3394–3410. [Google Scholar] [CrossRef]
- Song, Y.; Chen, B.; Ho, H.C.; Kwan, M.-P.; Liu, D.; Wang, F.; Wang, J.; Cai, J.; Li, X.; Xu, Y.; et al. Observed inequality in urban greenspace exposure in China. Environ. Int. 2021, 156, 106778. [Google Scholar] [CrossRef]
- Zhang, W.; Randall, M.; Jensen, M.B.; Brandt, M.; Wang, Q.; Fensholt, R. Socio-economic and climatic changes lead to contrasting global urban vegetation trends. Glob. Environ. Chang. 2021, 71, 102385. [Google Scholar] [CrossRef]
- Jiao, K.; Liu, Z.; Wang, W.; Yu, K.; McGrath, M.J.; Xu, W. Carbon cycle responses to climate change across China’s terrestrial ecosystem: Sensitivity and driving process. Sci. Total Environ. 2024, 915, 170053. [Google Scholar] [CrossRef]
- Peng, Y.L.; Cheng, W.Y.; Xu, X.X.; Song, H.F. Analysis and prediction of the spatiotemporal characteristics of land-use ecological risk and carbon storage in Wuhan metropolitan area. Ecol. Indic. 2024, 158, 111432. [Google Scholar] [CrossRef]
- Yang, S.; Li, L.Q.; Zhu, R.H.; Luo, C.; Lu, X.; Sun, M.L.; Xu, B.C. Assessing land-use changes and carbon storage: A case study of the Jialing River Basin, China. Sci. Rep. 2024, 14, 15984. [Google Scholar] [CrossRef]
- Naizheng, X.; Hongying, L.; Feng, W.; Yiping, Z. Urban expanding pattern and soil organic, inorganic carbon distribution in Shanghai, China. Environ. Earth Sci. 2012, 66, 1233–1238. [Google Scholar] [CrossRef]
- Wang, Z.; Cui, X.; Yin, S.; Shen, G.; Han, Y.; Liu, C. Characteristics of carbon storage in Shanghai’s urban forest. Chin. Sci. Bull. 2013, 58, 1130–1138. [Google Scholar] [CrossRef]
- Xu, L.; He, N.; Yu, G. A dataset of carbon density in Chinese terrestrial ecosystems (2010s). China Sci. Data 2019, 4, 2096–2223. [Google Scholar] [CrossRef]
- Sun, Y.; Xie, S.; Zhao, S. Valuing urban green spaces in mitigating climate change: A city-wide estimate of aboveground carbon stored in urban green spaces of China’s Capital. Glob. Chang. Biol. 2019, 25, 1717–1732. [Google Scholar] [CrossRef]
- Cao, M.; Tian, Y.; Wu, K.; Chen, M.; Chen, Y.; Hu, X.; Sun, Z.; Zuo, L.; Lin, J.; Luo, L.; et al. Future land-use change and its impact on terrestrial ecosystem carbon pool evolution along the Silk Road under SDG scenarios. Sci. Bull. 2023, 68, 740–749. [Google Scholar] [CrossRef]
- Wu, B.W.; Zhang, Y.Y.; Wang, Y.; Lin, X.B.; Wu, Y.F.; Wang, J.W.; Wu, S.D.; He, Y.M. Urbanization promotes carbon storage or not? The evidence during the rapid process of China. J. Environ. Manag. 2024, 359, 121061. [Google Scholar] [CrossRef]
- Rachid, L.; Elmostafa, A.; Mehdi, M.; Hassan, R. Assessing carbon storage and sequestration benefits of urban greening in Nador City, Morocco, utilizing GIS and the InVEST model. Sustain. Futures 2024, 7, 100171. [Google Scholar] [CrossRef]
- Chen, D.; Liu, R.R.; Zhou, M.X. Delineation of Urban Growth Boundary Based on Habitat Quality and Carbon Storage: A Case Study of Weiyuan County in Gansu, China. Land 2023, 12, 1006. [Google Scholar] [CrossRef]
- Tang, L.P.; Ke, X.L.; Zhou, T.; Zheng, W.W.; Wang, L.Y. Impacts of cropland expansion on carbon storage: A case study in Hubei, China. J. Environ. Manag. 2020, 265, 110515. [Google Scholar] [CrossRef]
- Wang, R.Y.; Mo, X.Y.; Ji, H.; Zhu, Z.; Wang, Y.S.; Bao, Z.L.; Li, T.H. Comparison of the CASA and InVEST models’ effects for estimating spatiotemporal differences in carbon storage of green spaces in megacities. Sci. Rep. 2024, 14, 5456. [Google Scholar] [CrossRef]
- Nie, X.; Lu, B.; Chen, Z.P.; Yang, Y.W.; Chen, S.; Chen, Z.H.; Wang, H. Increase or decrease? Integrating the CLUMondo and InVEST models to assess the impact of the implementation of the Major Function Oriented Zone planning on carbon storage. Ecol. Indic. 2020, 118, 106708. [Google Scholar] [CrossRef]
- Liang, Y.J.; Hashimoto, S.; Liu, L.J. Integrated assessment of land-use/land-cover dynamics on carbon storage services in the Loess Plateau of China from 1995 to 2050. Ecol. Indic. 2021, 120, 106939. [Google Scholar] [CrossRef]
- Wang, C.; Li, M.; Wang, X.; Deng, M.; Wu, Y.; Hong, W. Spatio-Temporal Dynamics of Carbon Storage in Rapidly Urbanizing Shenzhen, China: Insights and Predictions. Land 2024, 13, 1566. [Google Scholar] [CrossRef]
- He, J.; Wang, H. Economic structure, development policy and environmental quality: An empirical analysis of environmental Kuznets curves with Chinese municipal data. Ecol. Econ. 2012, 76, 49–59. [Google Scholar] [CrossRef]
- Long, X.; Ji, X. Economic Growth Quality, Environmental Sustainability, and Social Welfare in China—Provincial Assessment Based on Genuine Progress Indicator (GPI). Ecol. Econ. 2019, 159, 157–176. [Google Scholar] [CrossRef]
- Feng, S.; Mohd Shafiei, M.W.; Ng, T.F.; Ren, J.; Jiang, Y. The intersection of economic growth and environmental sustainability in China: Pathways to achieving SDG. Energy Strategy Rev. 2024, 55, 101530. [Google Scholar] [CrossRef]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global Change and the Ecology of Cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef]
- Bao, T.; Jia, G.; Xu, X. Weakening greenhouse gas sink of pristine wetlands under warming. Nat. Clim. Chang. 2023, 13, 462–469. [Google Scholar] [CrossRef]
- Zhang, Y.; Piao, S.; Sun, Y.; Rogers, B.M.; Li, X.; Lian, X.; Liu, Z.; Chen, A.; Peñuelas, J. Future reversal of warming-enhanced vegetation productivity in the Northern Hemisphere. Nat. Clim. Chang. 2022, 12, 581–586. [Google Scholar] [CrossRef]
Data | Resolution | Time | Data Sources |
---|---|---|---|
Land Use and Land Cover | 30 m | 2000, 2010, 2020 | GlobeLand30 (https://www.webmap.cn/commres.do?method=dataDownload, accessed on 6 August 2024) |
DEM | 12.5 m | \ | EARTHDATA (https://search.asf.alaska.edu/, accessed on 6 August 2024) |
Carbon Density | \ | 2010s | Field Investigation and Dataset [34] |
Economic and Social Statistics Data | \ | 2010, 2020 | ShangHai Statistical Yearbook 2020 (https://tjj.sh.gov.cn/tjnj/20210303/2abf188275224739bd5bce9bf128aca8.html, accessed on 6 August 2024), ShangHai Statistical Yearbook 2010 (https://tjj.sh.gov.cn/tjnj/20210303/2abf188275224739bd5bce9bf128aca8.html, accessed on 15 August 2024) |
Land Use Type | c_above | c_below | c_soil | c_dead |
---|---|---|---|---|
Cultivated Land | 5 | 1 | 25.6 | 0 |
Forest | 47.8 | 9.94 | 120.8 | 40 |
Grassland | 0.25 | 1.11 | 18.2 | 5.2 |
Shrubland | 9.303 | 2 | 25.6 | 3 |
Wetland | 1 | 0 | 33 | 0 |
Water Bodies | 0 | 0 | 0 | 0 |
Artificial Surfaces | 0 | 0 | 25.3 | 0 |
Ocean | 0 | 0 | 0 | 0 |
Land Use | 2000 (Mt) | 2010 (Mt) | 2020 (Mt) |
---|---|---|---|
Cultivated Land | 12.23 | 10.05 | 8.52 |
Artificial Surfaces | 4.08 | 6.14 | 7.03 |
Water Bodies | 0.00 | 0.00 | 0.00 |
Ocean | 0.00 | 0.00 | 0.00 |
Wetland | 0.39 | 0.63 | 0.63 |
Grassland | 0.04 | 0.05 | 0.25 |
Forest | 0.04 | 0.21 | 1.98 |
Shrubland | \ | 0.00 | 0.00 |
Total | 16.78 | 17.07 | 18.40 |
Year | CenterX | CenterY | XStdDist | YStdDist | Rotation |
---|---|---|---|---|---|
2000 | 348,260.0464 | 3,439,685.635 | 31,942.7048 | 27,870.226 | 105.205774 |
2010 | 349,733.5511 | 3,438,921.271 | 33,270.53219 | 27,802.36061 | 108.528043 |
2020 | 348,749.2127 | 3,440,560.12 | 33,410.61056 | 27,572.50858 | 97.007432 |
Carbon Storage (t) | 2010 Artificial Surfaces | 2010 Cultivate Land | 2010 Forest | 2010 Grassland | 2010 Ocean | 2010 Shrubland | 2010 Water Bodies | 2010 Wetland | Total |
---|---|---|---|---|---|---|---|---|---|
2020 Artificial Surfaces | −410,396.24 | −28,365.70 | 138.95 | 1259.18 | −2.63 | 54,219.92 | −9447.68 | −392,594.19 | |
2020 Cultivate Land | 121,182.06 | −85,485.79 | 4689.64 | 8512.09 | 268,339.92 | −16,708.25 | 300,529.66 | ||
2020 Forest | 651,784.98 | 1,134,112.65 | 24,782.53 | 16.08 | 53,734.62 | 19,199.54 | 1,883,630.39 | ||
2020 Grassland | −3043.43 | −29,642.98 | −10,150.20 | 766.57 | −2.73 | 5227.83 | −449.06 | −37,294.00 | |
2020 Ocean | −220.87 | −28.44 | −19.67 | −91.36 | −4427.82 | −4788.16 | |||
2020 Shrubland | 42.06 | 772.68 | 86.19 | 900.92 | |||||
2020 Water Bodies | −42,534.36 | −371,241.52 | −13,964.71 | −1704.73 | −3.59 | −89,899.74 | −519,348.64 | ||
2020 Wetland | 458.84 | 6066.36 | −32,968.07 | 1562.58 | 50,211.54 | 222,293.70 | 247,624.94 | ||
Total | 727,669.28 | 329,642.51 | −170,954.14 | 29,377.60 | 60,749.38 | 7.13 | 603,902.17 | −101,733.01 | 1,478,660.92 |
2010 Artificial Surfaces | −567,815.2581 | −25,148.2531 | 223.705609 | 6441.63286 | 81,425.51823 | −11,454.50689 | −516,327.1614 | ||
2010 Cultivate Land | 24,520.47821 | −13,409.20638 | 4245.792308 | 11,316.27545 | 445,034.7865 | −12,862.80477 | 458,845.3213 | ||
2010 Forest | 660.880787 | 106,634.3162 | 65,889.07864 | 2438.90641 | 25,175.80811 | 763.995628 | 201,562.9858 | ||
2010 Grassland | −105.70491 | −8199.174678 | −17.440201 | 2707.50599 | 3485.217587 | −47.401197 | −2176.997409 | ||
2010 Ocean | −507.770989 | −1786.031914 | −6.6852 | −575.279989 | −2875.768092 | ||||
2010 Shrubland | 1.31427 | 3.736351 | 5.050621 | ||||||
2010 Water Bodies | −15,476.76866 | −270,913.7389 | −4740.13262 | −911.415597 | −23,929.19955 | −315,971.2554 | |||
2010 Wetland | 32.103 | 863.78432 | 331,489.7938 | 173,101.1368 | 505,486.8179 | ||||
Total | 9124.531701 | −741,212.3668 | −43,315.0323 | 69,440.47576 | 354,394.1145 | 728,222.4672 | −48,105.19677 | 328,548.9933 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, H.; Yang, C.; Liang, A.; Qin, Y.; Dunchev, D.; Ivanova, B.; Che, S. Urbanization and Carbon Storage Dynamics: Spatiotemporal Patterns and Socioeconomic Drivers in Shanghai. Land 2024, 13, 2098. https://doi.org/10.3390/land13122098
Wu H, Yang C, Liang A, Qin Y, Dunchev D, Ivanova B, Che S. Urbanization and Carbon Storage Dynamics: Spatiotemporal Patterns and Socioeconomic Drivers in Shanghai. Land. 2024; 13(12):2098. https://doi.org/10.3390/land13122098
Chicago/Turabian StyleWu, Hao, Caihua Yang, Anze Liang, Yifeng Qin, Dobri Dunchev, Boryana Ivanova, and Shengquan Che. 2024. "Urbanization and Carbon Storage Dynamics: Spatiotemporal Patterns and Socioeconomic Drivers in Shanghai" Land 13, no. 12: 2098. https://doi.org/10.3390/land13122098
APA StyleWu, H., Yang, C., Liang, A., Qin, Y., Dunchev, D., Ivanova, B., & Che, S. (2024). Urbanization and Carbon Storage Dynamics: Spatiotemporal Patterns and Socioeconomic Drivers in Shanghai. Land, 13(12), 2098. https://doi.org/10.3390/land13122098