Soil Water Capacity and Pore Size Distribution in Different Soil Tillage Systems in the Spring Barley Crop
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design and Agricultural Practices
2.2.1. Assessment of Soil Properties
2.2.2. Statistical Analysis
2.3. Meteorological Conditions
3. Results
3.1. Soil Pore Size Distributiom
3.2. Soil Pore Structure
3.3. Total Porosity
3.4. Density
3.5. Soil Water Capacity
4. Discussion
5. Conclusions
- In the years 2022–2023, it was determined that in the upper soil layers (0–5 cm and 5–10 cm) of deep tillage plots (DC), the quantity of mesopores (0.2–30 µm) increased. In most cases, the amount of micropores (<0.2 µm) in the studied soil layers decreased, while the amount of macropores (>30 µm) increased when applying simplified tillage systems.
- In the studied years (2022–2023), comparing reduced intensity tillage systems with deep plowing (DP) technology, it can be stated that in most cases in the examined soil layers, the fields with simplified tillage technologies showed a decrease in soil density and total soil porosity, and water retention capacity (with pressures from −4 to 30 hPa) had a tendency to increase. However, when applying the maximum pressure (15,000 hPa), the opposite trends were observed. In no-tillage (NT) plots, applying different pressures revealed higher soil moisture content compared with deep plowing (DP) plots.
- Comparing simplified tillage systems with deep plowing (DP), it can be concluded that the no-tillage (NT) technology most significantly improved the studied indicators, while the deep plowing (DP) technology exhibited the poorest results.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lal, R. Managing soils for negative feedback to climate change and positive impact on food and nutritional security. Soil Sci. Plant Nutr. 2020, 66, 1–9. [Google Scholar] [CrossRef]
- Majeed, M.T. Information and communication technology (ICT) and environmental sustainability in developed and developing countries. Pak. J. Comer. Soc. Sci. 2018, 12, 758–783. [Google Scholar]
- Toth, M.; Stumpp, C.; Klik, A.; Strauss, P.; Mehdi-Sculz, B.; Liebhard, G.; Strohmeier, S. Long-term effects of tillage systems on soil health of a silt loam in Lower Austria. Soil Till. Res. 2024, 241, 106120. [Google Scholar] [CrossRef]
- Badagliacca, G.; Benítez, E.; Amato, G.; Badalucco, L.; Giambalvo, D.; Laudicina, V.A.; Ruisi, P. Long-term no-tillage application increases soil organic carbon, nitrous oxide emissions and faba bean (Vicia faba L.) yields under rain-fed Mediterranean conditions. Sci. Total Environ. 2018, 639, 350–359. [Google Scholar] [CrossRef]
- White, H.J.; León-Sánchez, L.; Burton, V.J.; Cameron, E.K.; Caruso, T.; Cunha, L.; Caplat, P. Methods and approaches to advance soil macroecology. Glob. Ecol. Biogeogr. 2020, 29, 1674–1690. [Google Scholar] [CrossRef]
- Jian, J.; Du, X.; Stewart, R.D. Quantifying cover crop effects on soil health and productivity. Data Brief. 2020, 29, 105376. [Google Scholar] [CrossRef]
- de Melo, M.L.A.; van Lier, Q.D.J. Revisiting the Feddes reduction function for modeling root water uptake and crop transpiration. J. Hydrol. 2021, 603, 126952. [Google Scholar] [CrossRef]
- Jaagus, J.; Aasa, A.; Aniskevich, S.; Boincean, B.; Bojariu, R.; Briede, A.; Zahradniček, P. Long-term changes in drought indices in eastern and central Europe. Int. J. Climatol. 2022, 42, 225–249. [Google Scholar] [CrossRef]
- Romaneckas, K.; Pilipavičius, V.; Trečiokas, K.; Šarauskis, E.; Liakas, V. Agronomijos pagrindai: Vadovėlis; Vytautas Magnus University: Kaunas, Lithuania, 2011. [Google Scholar]
- Pagliai, M.; Pelegrini, S.; Vignozzi, N.; Rausseva, S.; Grasseli, O. The quantification of the effect of subsoil compaction on soil porosity and related physical properties under conventional to reduced managment practices. Adv. Soil Geoecol. 2000, 32, 305–313. [Google Scholar]
- Marasca, I.; Lemos, S.V.; Silva, R.B.; Guerra, S.P.S.; Lancas, K.P. Soil compaction curve of an Oxisol under sugarcane planted after in-row deep tillage. R. Bras. Ci. Solo. 2015, 39, 1490–1497. [Google Scholar] [CrossRef]
- Li, J.; Chen, L.; Zhang, C.; Ma, D.; Zhou, G.; Nin, Q.; Zhang, J. Combining rotary and deep tillage increases crop yields by improving the soil physical structure and accumulating organic carbon of subsoil. Soil Till. Res. 2024, 244, 106252. [Google Scholar] [CrossRef]
- Luo, L.; Lin, H.; Li, S. Quantification of 3-D soil macropore networks in different soil types and land uses using computed tomography. J. Hydrol. 2010, 393, 53–64. [Google Scholar] [CrossRef]
- Munkholm, L.J.; Heck, R.J.; Deen, B.; Zidar, T. Relationship between soil aggregate strength, shape and porosity for soils under different long-term management. Geoderma 2016, 268, 52–59. [Google Scholar] [CrossRef]
- World Reference Base for Soil Resources (WRB). International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; Food and Agriculture Organization: Rome, Italy, 2015. [Google Scholar]
- Andruškaitė, I. Dirvožemio Tvarumas Didinant Anglies Sankaupų Sluoksniavimąsi Armenyje Skirtingo Žemės Dirbimo Sąlygomis. Ph.D. Thesis, Vytautas Magnus University, Kaunas, Lithuania, 2022. [Google Scholar]
- Buragienė, S. Impact of Different Soil Tillage Technologies on the Environment. Ph.D. Thesis, Aleksandras Stulginskis University, Kaunas, Lithuania, 2013. [Google Scholar]
- Romaneckas, K.; Adamavičienė, A.; Sinkevičienė, A.; Kimbirauskienė, R.; Bogužas, V.; Šarauskkis, E.; Butkus, V.; Jasinskas, A.; Buragienė, S.; Čekanauskas, S. Influence of five tillage patters on faba bean productivity parameters. In Proceedings of the Proceedings of the 48th International Symposium: Actual Tasks on Agricultural Engineering, Zagreb, Croatia, 2–4 March 2021; pp. 183–190. [Google Scholar]
- Klute, A. Water retention: Laboratory methods. In Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods; Wiley: Hoboken, NJ, USA, 1986; Volume 5, pp. 635–662. Available online: https://acsess.onlinelibrary.wiley.com/doi/abs/10.2136/sssabookser5.1.2ed.c26 (accessed on 27 November 2024).
- Gijsman, A.J.; Jagtap, S.S.; Jones, J.W. Wading through a swamp of complete confusion: How to choose a method for estimating soil water retention parameters for crop models. Int. J. Agr. 2002, 18, 77–106. [Google Scholar] [CrossRef]
- Schjønning, P.; Munkholm, L.J.; Moldrup, P.; Jacobsen, O.H. Modelling soil pore characteristics from measurements of air exchange: The long-term effects of fertilization and crop rotation. Eur. J. Soil Sci. 2002, 53, 331–339. [Google Scholar] [CrossRef]
- Kadžiene, G.; Munkholm, L.J.; Mutegi, J.K. Root growth conditions in the topsoil as affected by tillage intensity. Geoderma 2011, 166, 66–73. [Google Scholar] [CrossRef]
- SPSS. Instat 10; Statistics I.; SPSS: Chicago, IL, USA, 2000. [Google Scholar]
- Raudonius, S. Statistikos taikymas augalų ir pasėlių tyrimuose: Svarbūs klausimai. Zemdirb. Agric. 2017, 104, 377–382. [Google Scholar] [CrossRef]
- Sinkevičius, A. Žemės Dirbimo Technologijų Ilgalaikis Poveikis Agroekosistemų Tvarumui. Ph.D. Thesis, Vytautas Magnus University, Kaunas, Lithuania, 2023; p. 54. [Google Scholar]
- Klopp, H.W.; Blanco-Canqui, H.; Creech, C.F.; Easterly, A.C. Identifying the best tillage system to maintain soil properties and crop yields after Conservation Reserve Program grassland conversion. Soil Till. Res. 2024, 239, 106060. [Google Scholar] [CrossRef]
- Wang, Y.; Zou, L.; Lou, C.; Geng, X.; Zhang, S.; Chen, X.; Zhang, Y.; Huang, D.; Liang, A. No-tillage with straw retention influenced maize root growth morphology by changing soil physical properties and aggregate structure in Northeast China: A ten-year field experiment. Geoderma Reg. 2024, 38, 840. [Google Scholar] [CrossRef]
- Andruškaitė, I.; Bogužas, V. Impact of tillage intensity with vertical soil stratification on soil physical quality indexes. In Proceedings of the AgroEco 2020: 3rd International Scientific Virtual Conference: Agroecosystem Sustainability: Links between Carbon Sequestration in Soils, Food Security and Climate Change, Kaunas, Lithuania, 2–3 December 2020; Vytautas Magnus University Agriculture Academy: Kaunas, Lithuania, 2020. [Google Scholar]
- Steponavičienė, V. Agroekosistemų Tvarumas ir Anglies Sankaupos Dirvožemyje Taikant Ilgalaikes Kompleksines Priemones. Ph.D. Thesis, Vytautas Magnus University, Kaunas, Lithuania, 2017; p. 145. [Google Scholar]
- Phogat, V.; Petrie, P.R.; Collins, C.; Bonada, M. Plant-available water capacity of soils at a regional scale: Analysis of fixed and dynamic field capacities. Pedosphere 2024, 34, 590–605. [Google Scholar] [CrossRef]
- Awe, G.O.; Fontanela, G.; Reichert, J.M. Degree of compaction, aeration, and soil water retention indices of a sugarcane field without soil disturbance after initial tillage. Can. J. Soil Sci. 2023, 104, 91–107. [Google Scholar] [CrossRef]
- Talukder, R.; Plaza-Bonilla, D.; Cantero-Martinez, C.; Wendroth, O.; Lampurlanes, J. Soil hydraulic properties and pore dynamics under different tillage and irrigated crop sequences. Geoderma 2023, 430, 116293. [Google Scholar] [CrossRef]
- Canet-Marti, A.; Morales-Santos, A.; Nolz, R.; Langergraber, G.; Stumpp, C. Quantification of water fluxes and soil water balance in agricultural fields under different tillage and irrigation systems using water stable isotopes. Soil Till. Ress. 2024, 231, 105732. [Google Scholar] [CrossRef]
- Rocco, S.; Munkholm, L.J.; Jensen, J.L. Long-term soil quality and C stock effects of tillage and cover cropping in a conservation agriculture system. Soil Till. Res. 2024, 241, 106129. [Google Scholar] [CrossRef]
- Sinkevičienė, A.; Romaneckas, K.; Jackevičienė, K.; Petrikaitė, T.; Balandaitė, B.; Kimbirauskienė, R. Long-term effect of tillage systems on planosol physical properties, CO2 emissions and spring barley productivity. Land J. 2024, 13, 1289. [Google Scholar] [CrossRef]
- Kauppi, K.; Kaseva, J.; Jalli, M.; Palojarvi, A.; Alakukku, L. Long-term nitrogen and phosphorus balances for spring barley (Hordeum vulgare L.) cultivation as affected by primary tillage of a Nordic clay soil. Eur. J. Agron. 2024, 155, 127131. [Google Scholar] [CrossRef]
- Hofbauer, M.; Bloch, R.; Bachinger, J.; Gerke, H.H. Effects of shallow non-inversion tillage on sandy loam soil properties and winter rye yield in organic farming. Soil Till. Res. 2022, 222, 105435. [Google Scholar] [CrossRef]
Tillage System | Stubble Tillage | Primary Tillage | Implement | Depth of Tillage (cm) |
---|---|---|---|---|
Deep plowing | Yes | Inversion | Moldboard plow | 22–25 |
Shallow plowing | Yes | Inversion | Moldboard plow | 12–15 |
Deep cultivation | Yes | Non-inversion | Chisel cultivator | 25–30 |
Shallow cultivation | Yes, twice | No | Chisel cultivator | 10–12 |
No tillage | No | No | None | 0 |
Year/Month | May | June | July | August |
---|---|---|---|---|
2022 | 11.0 | 17.7 | 18.0 | 20.8 |
2023 | 12.6 | 17.3 | 17.9 | 20.2 |
Long-term (1974–2023) average | 13.2 | 16.1 | 18.7 | 17.3 |
Year/Month | May | June | July | August |
---|---|---|---|---|
2022 | 84.0 | 77.6 | 100.5 | 38.7 |
2023 | 14.3 | 64.0 | 36.8 | 96.2 |
Long-term (1974–2023) average | 61.7 | 76.9 | 96.6 | 88.9 |
Soil Pores, μm | Years | Tillage System | ||||
---|---|---|---|---|---|---|
Deep Plowing (DP) | Shallow Plowing (SP) | Deep Cultivation (DC) | Shallow Cultivation (SC) | No Tillage (NT) | ||
Macropores (>30 µm) | ||||||
>750 | 2022 | 0.032 | 0.034 | 0.049 | 0.026 | 0.040 |
2023 | 0.057 | 0.088 | 0.086 | 0.141 | 0.104 | |
300–750 | 2022 | 0.008 | 0.011 | 0.015 | 0.010 | 0.011 |
2023 | 0.003 | 0.011 | 0.013 | 0.023 | 0.009 | |
100–300 | 2022 | 0.005 | 0.016 | 0.024 | 0.013 | 0.017 |
2023 | 0.004 | 0.037 | 0.014 | 0.057 | 0.013 | |
30–100 | 2022 | 0.025 | 0.038 | 0.048 | 0.033 | 0.045 |
2023 | 0.039 | 0.047 | 0.087 | 0.086 | 0.027 | |
Mesopores (0.2–30 µm) | ||||||
10–30 | 2022 | 0.044 | 0.040 | 0.038 | 0.044 | 0.056 |
2023 | 0.136 | 0.119 | 0.198 | 0.157 | 0.157 | |
0.2–10 | 2022 | 0.087 | 0.068 | 0.129 | 0.125 | 0.143 |
2023 | 0.279 | 0.383 | 0.231 | 0.260 | 0.306 | |
Micropores (<0.2 µm) | ||||||
<0.2 | 2022 | 0.208 | 0.226 | 0.170 | 0.185 | 0.156 |
2023 | 0.478 | 0.302 | 0.373 | 0.296 * | 0.414 |
Soil Pores, μm | Years | Tillage System | ||||
---|---|---|---|---|---|---|
Deep Plowing (DP) | Shallow Plowing (SP) | Deep Cultivation (DC) | Shallow Cultivation (SC) | No Tillage (NT) | ||
Macropores (>30 µm) | ||||||
>750 | 2022 | 0.013 | 0.013 | 0.018 | 0.014 | 0.020 |
2023 | 0.013 | 0.003 | 0.032 | 0.094 | 0.046 | |
300–750 | 2022 | 0.014 | 0.013 | 0.014 | 0.013 | 0.010 |
2023 | 0.005 | 0.001 | 0.003 | 0.014 | 0.006 | |
100–300 | 2022 | 0.007 | 0.007 | 0.009 *** | 0.012 *** | 0.008 |
2023 | 0.010 | 0.007 | 0.000 | 0.031 | 0.024 | |
30–100 | 2022 | 0.025 | 0.038 | 0.048 | 0.033 | 0.045 |
2023 | 0.018 | 0.016 | 0.018 | 0.090 | 0.071 | |
Mesopores (0.2–30 µm) | ||||||
10–30 | 2022 | 0.064 | 0.072 | 0.072 | 0.073 | 0.089 |
2023 | 0.120 | 0.132 | 0.164 | 0.183 | 0.141 | |
0.2–10 | 2022 | 0.050 | 0.054 | 0.117 | 0.110 | 0.096 |
2023 | 0.305 | 0.495* | 0.324 | 0.231 | 0.278 | |
Micropores (<0.2 µm) | ||||||
<0.2 | 2022 | 0.258 | 0.252 | 0.187 * | 0.188 | 0.183 * |
2023 | 0.523 | 0.301 | 0.437 | 0.356 | 0.434 |
Soil Pores, μm | Years | Tillage System | ||||
---|---|---|---|---|---|---|
Deep Plowing (DP) | Shallow Plowing (SP) | Deep Cultivation (DC) | Shallow Cultivation (SC) | No Tillage (NT) | ||
Macropores (>30 µm) | ||||||
>750 | 2022 | 0.018 | 0.027 | 0.022 | 0.031* | 0.024 |
2023 | 0,035 | 0.039 | 0.028 | 0.079 | 0.037 | |
300–750 | 2022 | 0.004 | 0.006 | 0.006 | 0.004 | 0.003 |
2023 | 0.003 | 0.005 | 0.006 | 0.008 | 0.015 | |
100–300 | 2022 | 0.003 | 0.004 | 0.012 *** | 0.009 * | 0.018 *** |
2023 | 0.012 | 0.042 | 0.006 | 0.042 | 0.063 | |
30–100 | 2022 | 0.007 | 0.029 *** | 0.025 *** | 0.029 *** | 0.030 *** |
2023 | 0.008 | 0.037 | 0.065 | 0.075 | 0.039 | |
Mesopores (0.2–30 µm) | ||||||
10–30 | 2022 | 0.061 | 0.060 | 0.097 * | 0.092 * | 0.091 * |
2023 | 0.112 | 0.178 | 0.270 | 0.194 | 0.217 | |
0.2–10 | 2022 | 0.074 | 0.054 | 0.094 | 0.097 | 0.031 |
2023 | 0.390 | 0.300 | 0.217 | 0.244 | 0.237 | |
Micropores (<0.2 µm) | ||||||
<0.2 | 2022 | 0.257 | 0.268 | 0.168 | 0.175 | 0.168 |
2023 | 0.437 | 0.396 | 0.398 | 0.357 | 0.390 |
Tillage System | Soil Layer, cm | Total Porosity, m3 m−3 | |
---|---|---|---|
2022 | 2023 | ||
Deep plowing (DP) | 0–5 | 0.409 | 0.390 |
5–10 | 0.414 | 0.370 | |
15–20 | 0.425 | 0.377 | |
Shallow plowing (SP) | 0–5 | 0.433 | 0.427 |
5–10 | 0.421 | 0.395 | |
15–20 | 0.447 | 0.405 | |
Deep cultivation (DC) | 0–5 | 0.474 * | 0.433 |
5–10 | 0.429 | 0.377 | |
15–20 | 0.425 | 0.393 | |
Shallow cultivation (SC) | 0–5 | 0.436 | 0.473 |
5–10 | 0.419 | 0.450 | |
15–20 | 0.438 | 0.433 | |
No tillage (NT) | 0–5 | 0.477 * | 0.440 |
5–10 | 0.421 | 0.410 | |
15–20 | 0.365 | 0.400 |
Tillage System | Layer, cm | Density, Mg m−3 | |
---|---|---|---|
2022 | 2023 | ||
Deep plowing (DP) | 0–5 | 1.604 | 1.623 |
5–10 | 1.602 | 1.673 | |
15–20 | 1.624 | 1.660 | |
Shallow plowing (SP) | 0–5 | 1.503 | 1.520 |
5–10 | 1.542 | 1.625 | |
15–20 | 1.534 | 1.585 | |
Deep cultivation (DC) | 0–5 | 1.607 | 1.497 |
5–10 | 1.693 | 1.657 | |
15–20 | 1.525 | 1.607 | |
Shallow cultivation (SC) | 0–5 | 1.494 | 1.390 * |
5–10 | 1.538 | 1.460 ** | |
15–20 | 1.612 | 1.500 ** | |
No tillage (NT) | 0–5 | 1.383 | 1.533 |
5–10 | 1.534 | 1.563 | |
15–20 | 1.115 | 1.600 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sinkevičienė, A.; Sinkevičiūtė, I.; Jackevičienė, K.; Romaneckas, K.; Balandaitė, J.; Sederevičius, A.; Kimbirauskienė, R. Soil Water Capacity and Pore Size Distribution in Different Soil Tillage Systems in the Spring Barley Crop. Land 2024, 13, 2198. https://doi.org/10.3390/land13122198
Sinkevičienė A, Sinkevičiūtė I, Jackevičienė K, Romaneckas K, Balandaitė J, Sederevičius A, Kimbirauskienė R. Soil Water Capacity and Pore Size Distribution in Different Soil Tillage Systems in the Spring Barley Crop. Land. 2024; 13(12):2198. https://doi.org/10.3390/land13122198
Chicago/Turabian StyleSinkevičienė, Aušra, Inesa Sinkevičiūtė, Karolina Jackevičienė, Kęstutis Romaneckas, Jovita Balandaitė, Augustas Sederevičius, and Rasa Kimbirauskienė. 2024. "Soil Water Capacity and Pore Size Distribution in Different Soil Tillage Systems in the Spring Barley Crop" Land 13, no. 12: 2198. https://doi.org/10.3390/land13122198
APA StyleSinkevičienė, A., Sinkevičiūtė, I., Jackevičienė, K., Romaneckas, K., Balandaitė, J., Sederevičius, A., & Kimbirauskienė, R. (2024). Soil Water Capacity and Pore Size Distribution in Different Soil Tillage Systems in the Spring Barley Crop. Land, 13(12), 2198. https://doi.org/10.3390/land13122198