Multi-Scenario Simulation of Urban–Rural Land Use Spatial Reconstruction in Highly Urbanized Areas: A Case Study from the Southern Jiangsu Region
Abstract
:1. Introduction
2. Theoretical Framework, Materials, and Methods
2.1. Theoretical Framework
2.2. Overview of the Study Area
2.3. Model Logic and Data Sources
2.4. Model Settings
2.4.1. The SD Model
2.4.2. The FLUS Model
3. Results
3.1. Spatial and Temporal Evolution Characteristics of Land Use
3.2. Simulating Land Demand in Southern Jiangsu Based on SD
3.2.1. Establishment of SD Model
Regional GDP = INTEG (GDP change, Initial value: 25,270.6) (unit: CNY 100 million) Change in GDP = regional GDP ∗ GDP growth rate (unit: CNY 100 million) GDP growth rate = With LOOKUP (Time) (unit: %) Total population = INTEG (population change, initial value: 2368.14) (unit: 10,000 people) Population change = total population ∗ population growth rate (unit: 10,000 people) Population growth rate = With LOOKUP (Time) (unit: %) Temperature = With LOOKUP (Time) (unit: °C) Precipitation = With LOOKUP (Time) (unit: mL) Agricultural mechanization power = With LOOKUP (Time) (unit: 10,000 kWh) Per capita meat demand = With LOOKUP (Time) (unit: Kg/person) Afforestation area = With LOOKUP (Time) (unit: Km2) Area of rural residential areas = INTEG (change in rural residential areas, initial value: 2486.43) (unit: Km2) Change amount of rural residential areas = rural residential area ∗ change rate of rural residential areas—Rural residential area remediation intensity (unit: Km2) Area of arable land = INTEG (area of arable land change, initial value: 13,323.3) (unit: Km2) Area of arable land change = arable land area ∗ arable land change rate—Intensity of returning farmland to forests (unit: Km2) Area of urban construction land = INTEG (area of urban construction land change, initial value: 4141.55) (unit: Km2) Area of urban construction land change = urban construction land area ∗ urban construction land change rate (unit: Km2) The total area of regional land = the area of rural residential areas + the area of arable land + the area of urban construction land + the area of forest land + the area of grassland + the area of water area + the area of unused land |
3.2.2. Land Use Demand Forecast Under Different Scenarios
3.3. Multi-Scenario Simulation of Land Spatial Distribution Based on the FLUS Model
3.3.1. FLUS Model Parameter Settings
3.3.2. Land Use Spatial Layout Under Different Scenarios
4. Discussion
4.1. Simulation Analysis of the Spatial Evolution of Urban–Rural Land Use in Typical Regions
4.2. Extracting the Model of Future Urban–Rural Land Use Reconstruction
4.3. Policy Choices for Reducing Land Contradiction in Southern Jiangsu
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiang, C.J.; Li, J.T.; Liu, J.L. Does urbanization affect the gap between urban and rural areas? Evidence from China. Socio-Econ. Plan. Sci. 2022, 82, 101271. [Google Scholar] [CrossRef]
- Wen, S.S.; Xiao, Q.; Li, J.J.; Li, J.P. The Impact of Agricultural Insurance on Urban-Rural Income Gap: Empirical Evidence from China. Agriculture 2023, 13, 1950. [Google Scholar] [CrossRef]
- Jiang, C.J.; Li, Y.X. The Effect of Government Environmental Concern Strength and Differential Supply of Construction Land on Urban Environmental Protection Pressure. J. Urban Plan. Dev. 2023, 149, 05023033. [Google Scholar] [CrossRef]
- Fan, Y.; Yu, G.M.; He, Z.Y.; Yu, H.L.; Bai, R.; Yang, L.R.; Wu, D. Entropies of the Chinese Land Use/Cover Change from 1990 to 2010 at a County Level. Entropy 2017, 19, 51. [Google Scholar] [CrossRef]
- He, C.Y.; Zhang, J.X.; Liu, Z.F.; Huang, Q.X. Characteristics and progress of land use/cover change research during 1990-2018. J. Geogr. Sci. 2022, 32, 537–559. [Google Scholar] [CrossRef]
- Chen, G.Z.; Zhuang, H.M.; Liu, X.P. Cell-level coupling of a mechanistic model to cellular automata for improving land simulation. Giscience Remote Sens. 2023, 60, 2166443. [Google Scholar] [CrossRef]
- Varga, O.G.; Pontius, R.G.; Szabó, Z.; Szabó, S. Effects of Category Aggregation on Land Change Simulation Based on Corine Land Cover Data. Remote Sens. 2020, 12, 1314. [Google Scholar] [CrossRef]
- Xu, Q.L.; Wang, Q.; Liu, J.; Liang, H. Simulation of Land-Use Changes Using the Partitioned ANN-CA Model and Considering the Influence of Land-Use Change Frequency. Int. J. Geo-Inf. 2021, 10, 346. [Google Scholar] [CrossRef]
- Jiao, M.Y.; Hu, M.M.; Xia, B.C. Spatiotemporal dynamic simulation of land-use and landscape-pattern in the Pearl River Delta, China. Sustain. Cities Soc. 2019, 49, 101581. [Google Scholar] [CrossRef]
- Liu, B.C.; Sun, X.B.; Liu, C.H.; Xiang, J. Supercapacitor module quality prewarning based on the improved whale optimization algorithm and GM (1,1) gray prediction model. Control Eng. Appl. Inform. 2023, 25, 52–59. [Google Scholar] [CrossRef]
- Fu, F.; Jia, X.; Zhao, Q.J.; Tian, F.Z.; Wei, D.; Zhao, Y.; Zhang, Y.Z.; Zhang, J.; Hu, X.; Yang, L.C. Predicting land use change around railway stations: An enhanced CA-Markov model. Sustain. Cities Soc. 2024, 101, 105138. [Google Scholar] [CrossRef]
- Han, Z.; Li, B.D.; Han, Z.P.; Wang, S.Y.; Peng, W.Q.; Liu, X.B.; Benson, D. Dynamic Simulation of Land Use and Habitat Quality Assessment in Baiyangdian Basin Using the SD-PLUS Coupled Model. Water 2024, 16, 678. [Google Scholar] [CrossRef]
- Mei, Z.X.; Wu, H.; Li, S.Y. Simulating land-use changes by incorporating spatial autocorrelation and self-organization in CLUE-S modeling: A case study in Zengcheng District, Guangzhou, China. Front. Earth Sci. 2018, 12, 299–310. [Google Scholar] [CrossRef]
- Zhong, Y.Q.; Zhang, X.X.; Yang, Y.F.; Xue, M.H. Optimization and Simulation of Mountain City Land Use Based on MOP-PLUS Model: A Case Study of Caijia Cluster, Chongqing. Int. J. Geo-Inf. 2023, 12, 451. [Google Scholar] [CrossRef]
- He, Z.J.; Wang, X.B.; Liang, X.; Wu, L.; Yao, J. Integrating spatiotemporal co-evolution patterns of land types with cellular automata to enhance the reliability of land use projections. Int. J. Geogr. Inf. Sci. 2024, 38, 956–980. [Google Scholar] [CrossRef]
- Ito, J. Impediments to efficient land reallocation in agriculture: Multi-agent simulation model of transaction costs and farm retirement. Land Degrad. Dev. 2024, 35, 1553–1566. [Google Scholar] [CrossRef]
- Pawe, C.K.; Saikia, A. Simulating urban land use change trajectories in Guwahati city, India. Int. J. Environ. Sci. Technol. 2024, 21, 4385–4404. [Google Scholar] [CrossRef]
- Liu, X.P.; Liang, X.; Li, X.; Xu, X.C.; Ou, J.P.; Chen, Y.M.; Li, S.Y.; Wang, S.J.; Pei, F.S. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landsc. Urban Plan. 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Liang, X.; Liu, X.P.; Li, X.; Chen, Y.M.; Tian, H.; Yao, Y. Delineating multi-scenario urban growth boundaries with a CA-based FLUS model and morphological method. Landsc. Urban Plan. 2018, 177, 47–63. [Google Scholar] [CrossRef]
- Abdallah, A.-H.; Ayamga, M.; Awuni, J.A. Large-Scale Land Acquisition and Household Farm Investment in Northern Ghana. Land 2023, 12, 737. [Google Scholar] [CrossRef]
- Wu, Y.; Nico, H.; Yu, L.H. Beyond the collateral channel: Real estate prices and manufacturing firm investment in China. Int. Rev. Econ. Financ. 2024, 94, 103352. [Google Scholar] [CrossRef]
- Wei, Y.H.D.; Gu, C.L. Industrial development and spatial structure in Changzhou City, China: The restructuring of the Sunan model. Urban Geogr. 2010, 31, 321–347. [Google Scholar] [CrossRef]
- Yuan, F.; Wei, Y.D.; Chen, W. Economic transition, industrial location and corporate networks: Remaking the Sunan Model in Wuxi City, China. Habitat Int. 2014, 42, 58–68. [Google Scholar] [CrossRef]
- Gao, J.L.; Yang, J.; Chen, C.; Chen, W. From forsaken site to model village: Unraveling the multi-scalar process of rural revitalization in China. Habitat Int. 2023, 133, 102766. [Google Scholar] [CrossRef]
- Ci, F.Y.; Wang, Z.H.; Hu, Q. Spatial pattern characteristics and optimization policies of low-carbon innovation levels in the urban agglomerations in the Yellow River Basin. J. Clean. Prod. 2024, 439, 140856. [Google Scholar] [CrossRef]
- Katusiime, J.; Schütt, B.; Mutai, N. The relationship of land tenure, land use and land cover changes in Lake Victoria basin. Land Use Policy 2023, 126, 106542. [Google Scholar] [CrossRef]
- Mao, W.; Jiao, L. Land-use intensification dominates China’s land provisioning services: From the perspective of land system science. J. Environ. Manag. 2024, 356, 120541. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Ajjarapu, V.; Vaidya, U. Data-driven identification of nonlinear power system dynamics using output-only measurements. IEEE Trans. Power Syst. 2022, 37, 3458–3468. [Google Scholar] [CrossRef]
- Yu, B.; Zhang, C.; Kong, L.; Bao, H.L.; Wang, W.S.; Ke, S.P.; Ning, G.B. System dynamics modeling for the land transportation system in a port city. Simul.-Trans. Soc. Model. Simul. Int. 2014, 90, 706–716. [Google Scholar] [CrossRef]
- Lin, Z.Q.; Peng, S.Y. Comparison of multimodel simulations of land use and land cover change considering integrated constraints- A case study of the Fuxian Lake basin. Ecol. Indic. 2022, 142, 109254. [Google Scholar] [CrossRef]
- Wu, J.Y.; Luo, J.A.; Zhang, H.; Qin, S.; Yu, M.J. Projections of land use change and habitat quality assessment by coupling climate change and development patterns. Sci. Total Environ. 2022, 847, 157491. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Shen, J.; Yan, W.; Chen, C. Backcasting approach with multi-scenario simulation for assessing effects of land use policy using GeoSOS-FLUS software. MethodsX 2019, 6, 1384–1397. [Google Scholar] [CrossRef]
- Ma, R.R.; Zhou, W.; Ren, J.; Huang, Y.H.; Wang, H.Y. Multi-scenario simulation and optimization control of ecological security based on GeoSOS-FLUS model in ecological fragile area in northeast Qinghai-Tibet Plateau, China. Ecol. Indic. 2023, 151, 110324. [Google Scholar] [CrossRef]
- Liu, X.R.; Ma, F.F.; Guo, T.Z.; Ding, Z.W. Spatial pattern of China’s rural digital economy based on subjective–objective evaluation: Evidence from 2085 counties. PLoS ONE 2024, 19, e0292249. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, M.X.; Liang, C. Urbanization of county in China: Spatial patterns and influencing factors. J. Geogr. Sci. 2022, 32, 1241–1260. [Google Scholar] [CrossRef]
- Zhang, L.Y.; Ma, X.C. Analysis on the path of digital villages affecting rural residents’ consumption ppgrade: Based on the investigation and research of 164 administrative villages in the pilot area of digital villages in Zhejiang Province. Comput. Intell. Neurosci. 2022, 2022, 1–9. [Google Scholar] [CrossRef]
- Wang, N.; Hao, J.M.; Zhang, L.; Duan, W.K.; Shi, Y.Y.; Zhang, J.Y.; Wusimanjiang, P. Basic farmland protection system in China: Changes, conflicts and prospects. Agronomy 2023, 13, 651. [Google Scholar] [CrossRef]
- Li, S.N.; Zhao, X.Q.; Pu, J.W.; Miao, P.P.; Wang, Q.; Tan, K. Optimize and control territorial spatial functional areas to improve the ecological stability and total environment in karst areas of Southwest China. Land Use Policy 2021, 100, 104940. [Google Scholar] [CrossRef]
- Chen, Y.D.; Xu, F.F. The optimization of ecological service function and planning control of territorial space planning for ecological protection and restoration. Sustain. Comput.-Inform. Syst. 2022, 35, 100748. [Google Scholar] [CrossRef]
- Hu, P.; Zhou, Y.; Zhou, J.H.; Wang, G.X.; Zhu, G.W. Uncovering the willingness to pay for ecological red lines protection: Evidence from China. Ecol. Indic. 2022, 134, 108458. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, B.G.; Liu, Y.; Wu, S.; Cui, Y.J.; Xu, T.H. High-precision Ecological Protection Red Line Boundary Optimization for Fangshan District, Beijing, China. Sens. Mater. 2023, 35, 835–854. [Google Scholar] [CrossRef]
Factor Layer | ESPE | Spatial Driving Factor | |
---|---|---|---|
Point/km | Axis/km | ||
Economy | Fixed assets investment (CNY 10,000) | Distance to prefecture cities | Distance to railway |
GDP growth rate (%) | Distance to county center | Distance to highway | |
Agricultural investment ratio (%) | Distance to township | Distance to county road | |
Value added by secondary industry (CNY 100 million) | Distance to river | ||
Real estate investment ratio (%) | |||
Society | Population growth rate (%) | ||
Population urbanization rate (%) | |||
Total population (1000 people) | |||
Per capita demand for meat (kg) | |||
Per capita demand for aquatic products (kg) | |||
Power of agricultural mechanization (10,000 kw) | |||
Policy | Afforestation area (km2) | ||
Returning the grain plots to forestry (km2) | |||
Rural settlement renovation (km2) | |||
Environment | Atmospheric temperature (°C) | ||
Precipitation (mm) |
Types | Factor | Scenario (B) | Scenario (C) |
---|---|---|---|
Urbanization | Urbanization rate (%) | +5% | +8% |
Economy | GDP growth rate (%) | −1% | +5% |
Population | Population growth rate (%) | Unchanged | +2% |
Policy | Rural settlement renovation (hm2) | +20% | Unchanged |
Returning forests to farmland (hm2) | +20% | Unchanged |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, C.; Chen, H. Multi-Scenario Simulation of Urban–Rural Land Use Spatial Reconstruction in Highly Urbanized Areas: A Case Study from the Southern Jiangsu Region. Land 2024, 13, 2199. https://doi.org/10.3390/land13122199
Jiang C, Chen H. Multi-Scenario Simulation of Urban–Rural Land Use Spatial Reconstruction in Highly Urbanized Areas: A Case Study from the Southern Jiangsu Region. Land. 2024; 13(12):2199. https://doi.org/10.3390/land13122199
Chicago/Turabian StyleJiang, Changjun, and Huiguang Chen. 2024. "Multi-Scenario Simulation of Urban–Rural Land Use Spatial Reconstruction in Highly Urbanized Areas: A Case Study from the Southern Jiangsu Region" Land 13, no. 12: 2199. https://doi.org/10.3390/land13122199
APA StyleJiang, C., & Chen, H. (2024). Multi-Scenario Simulation of Urban–Rural Land Use Spatial Reconstruction in Highly Urbanized Areas: A Case Study from the Southern Jiangsu Region. Land, 13(12), 2199. https://doi.org/10.3390/land13122199