The Importance of Spatial Configuration When Restoring Intensive Production Landscapes for Biodiversity and Ecosystem Service Multifunctionality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Virtual Landscape Creation
2.1.1. Topography
2.1.2. Baseline Landscapes
2.1.3. Restoration Scenarios
2.2. Landscape Performance Indicators
2.2.1. Carbon Stocks
2.2.2. Greenhouse Gas Emissions
2.2.3. Erosion
2.2.4. Nitrogen Retention
2.2.5. Crop Pollination
2.2.6. Recreation
2.2.7. Bird Habitat Suitability
2.2.8. Agricultural Production Profit
2.3. Data Analysis
2.3.1. Landscape Configuration Indices
2.3.2. Landscape Performance
2.3.3. Data Analysis
3. Results
3.1. Landscape Configuration
3.2. Ecosystem Service and Biodiversity Indicator Performance
3.3. Multifunctionality
4. Discussion
4.1. Interactions between Restoration Composition and Configuration
4.2. Virtual Landscapes as a Tool for Informing Restoration Principles
4.3. Towards General Guidelines for Restoring Landscapes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Goldewijk, K.K.; Beusen, A.; Van Drecht, G. The HYDE 3.1 Spatially Explicit Database of Human-Induced Global Land-Use Change over the Past 12,000 Years. Glob. Ecol. Biogeogr. 2011, 20, 73–86. [Google Scholar] [CrossRef]
- Song, X.; Hansen, M.C.; Stephen, V.; Peter, V.; Tyukavina, A.; Vermote, E.F.; Townshend, J.R. Global Land Change from 1982 to 2016. Nature 2018, 560, 639–643. [Google Scholar] [CrossRef]
- Bardgett, R.D.; Bullock, J.M.; Lavorel, S.; Manning, P.; Schaffner, U.; Ostle, N.; Chomel, M.; Durigan, G.; Fry, E.L.; Johnson, D.; et al. Combatting Global Grassland Degradation. Nat. Rev. Earth Environ. 2021, 2, 720–735. [Google Scholar] [CrossRef]
- Rey Benayas, J.M.; Bullock, J.M. Restoration of Biodiversity and Ecosystem Services on Agricultural Land. Ecosystems 2012, 15, 883–899. [Google Scholar] [CrossRef]
- Landis, D.A. Designing Agricultural Landscapes for Biodiversity-Based Ecosystem Services. Basic Appl. Ecol. 2017, 18, 1–12. [Google Scholar] [CrossRef]
- Garibaldi, L.A.; Oddi, F.J.; Miguez, F.E.; Bartomeus, I.; Orr, M.C.; Jobbágy, E.G.; Kremen, C.; Schulte, L.A.; Hughes, A.C.; Bagnato, C.; et al. Working Landscapes Need at Least 20% Native Habitat. Conserv. Lett. 2021, 14, e12773. [Google Scholar] [CrossRef]
- Scherr, S.J.; Shames, S.; Friedman, R. From Climate-Smart Agriculture to Climate-Smart Landscapes. Agric. Food Soc. 2012, 1, 12. [Google Scholar] [CrossRef]
- Harvey, C.A.; Chac, M.; Donatti, C.I.; Garen, E.; Hannah, L.; Andrade, A.; Bede, L.; Brown, D.; Calle, A.; Char, J.; et al. Climate-Smart Landscapes: Opportunities and Challenges for Integrating Adaptation and Mitigation in Tropical Agriculture. Conserv. Lett. 2014, 7, 77–90. [Google Scholar] [CrossRef]
- Lavorel, S.; Colloff, M.J.; Mcintyre, S.; Doherty, M.D.; Murphy, H.T.; Metcalfe, D.J.; Dunlop, M.; Williams, R.J.; Wise, R.M.; Williams, K.J. Ecological Mechanisms Underpinning Climate Adaptation Services. Glob. Change Biol. 2015, 21, 12–31. [Google Scholar] [CrossRef]
- Colloff, M.J.; Wise, R.M.; Palomo, I.; Lavorel, S.; Pascual, U. Nature’s Contribution to Adaptation: Insights from Examples of the Transformation of Social-Ecological Systems. Ecosyst. People 2020, 16, 137–150. [Google Scholar] [CrossRef]
- Orwin, K.H.; Mason, N.W.H.; Berthet, E.T.; Grelet, G.; Mudge, P.; Lavorel, S. Integrating Design and Ecological Theory to Achieve Adaptive Diverse Pastures. Trends Ecol. Evol. 2022, 37, 861–871. [Google Scholar] [CrossRef] [PubMed]
- Valdés, A.; Lenoir, J.; De Frenne, P.; Andrieu, E.; Chabrerie, O.; Cousins, S.A.O.; Deconchat, M.; De, P.; Diekmann, M.; Valdés, A.; et al. High Ecosystem Service Delivery Potential of Small Woodlands in Agricultural Landscapes. J. Appl. Ecol. 2020, 57, 4–16. [Google Scholar] [CrossRef]
- Case, B.S.; Pannell, J.L.; Stanley, M.C.; Norton, D.A.; Brugman, A.; Funaki, M.; Mathieu, C.; Songling, C.; Suryaningrum, F.; Buckley, H.L. The Roles of Non-Production Vegetation in Agroecosystems: A Research Framework for Filling Process Knowledge Gaps in a Social-Ecological Context. People Nat. 2020, 2, 292–304. [Google Scholar] [CrossRef]
- Tscharntke, T.; Grass, I.; Wanger, T.C.; Westphal, C.; Batáry, P. Beyond Organic Farming—Harnessing Biodiversity-Friendly Landscapes. Trends Ecol. Evol. 2021, 36, 919–930. [Google Scholar] [CrossRef] [PubMed]
- Grass, I.; Loos, J.; Baensch, S.; Batáry, P.; Librán-Embid, F.; Ficiciyan, A.; Klaus, F.; Riechers, M.; Rosa, J.; Tiede, J.; et al. Land-Sharing/-Sparing Connectivity Landscapes for Ecosystem Services and Biodiversity Conservation. People Nat. 2019, 1, 262–272. [Google Scholar] [CrossRef]
- Arroyo-Rodríguez, V.; Fahrig, L.; Tabarelli, M.; Watling, J.I.; Tischendorf, L.; Benchimol, M.; Cazetta, E.; Faria, D.; Leal, I.R.; Melo, F.P.L.; et al. Designing Optimal Human-Modified Landscapes for Forest Biodiversity Conservation. Ecol. Lett. 2020, 23, 1404–1420. [Google Scholar] [CrossRef] [PubMed]
- Díaz, S.; Zafra-Calvo, N.; Purvis, A.; Verburg, P.H.; Obura, D.; Leadley, P.; Chaplin-Kramer, R.; De Meester, L.; Dulloo, E.; Martín-López, B.; et al. Set Ambitious Goals for Biodiversity and Sustainability. Science 2020, 370, 411–413. [Google Scholar] [CrossRef]
- Smith, F.P.; Prober, S.M.; House, A.P.N.; McIntyre, S. Maximizing Retention of Native Biodiversity in Australian Agricultural Landscapes-The 10:20:40:30 Guidelines. Agric. Ecosyst. Environ. 2013, 166, 35–45. [Google Scholar] [CrossRef]
- European Commission. New EU Forest Strategy for 2030; European Commission: Brussels, Belgium, 2021. [Google Scholar]
- Government of India. National Forest Policy; Government of India: New Delhi, India, 1988.
- Mitchell, M.G.E.; Suarez-Castro, A.F.; Martinez-Harms, M.; Maron, M.; McAlpine, C.; Gaston, K.J.; Johansen, K.; Rhodes, J.R. Reframing Landscape Fragmentation’s Effects on Ecosystem Services. Trends Ecol. Evol. 2015, 30, 190–198. [Google Scholar] [CrossRef]
- Verhagen, W.; Van Teeffelen, A.J.A.; Baggio, A.; Poggio, L.; Gimona, A.; Verburg, P.H. Effects of Landscape Configuration on Mapping Ecosystem Service Capacity: A Review of Evidence and a Case Study in Scotland. Landsc. Ecol. 2016, 31, 1457–1479. [Google Scholar] [CrossRef]
- Qiu, J.; Turner, M.G. Importance of Landscape Heterogeneity in Sustaining Hydrologic Ecosystem Services in an Agricultural Watershed. Ecosphere 2015, 6, 1–19. [Google Scholar] [CrossRef]
- Cordingley, J.E.; Newton, A.C.; Rose, R.J.; Clarke, R.T.; Bullock, J.M. Can Landscape-Scale Approaches to Conservation Management Resolve Biodiversity-Ecosystem Service Trade-Offs? J. Appl. Ecol. 2016, 53, 96–105. [Google Scholar] [CrossRef]
- Prestele, R.; Verburg, P.H. The Overlooked Spatial Dimension of Climate-Smart Agriculture. Glob. Change Biol. 2020, 26, 1045–1054. [Google Scholar] [CrossRef]
- Lavorel, S.; Grigulis, K.; Richards, D.R.; Etherington, T.R.E.; Law, R.M.; Herzig, A. Templates for Multifunctional Landscape Design. Landsc. Ecol. 2022, 37, 913–934. [Google Scholar] [CrossRef]
- Mason, N.W.H.; Wiser, S.K.; Richardson, S.J.; Thorsen, M.J.; Holdaway, R.J.; Dray, S.; Thomson, F.J.; Carswell, F.E. Functional Traits Reveal Processes Driving Natural Afforestation at Large Spatial Scales. PLoS ONE 2013, 8, e75219. [Google Scholar] [CrossRef] [PubMed]
- Cortina-Segarra, J.; García-Sánchez, I.; Grace, M.; Andrés, P.; Baker, S.; Bullock, C.; Decleer, K.; Dicks, L.V.; Fisher, J.L.; Frouz, J.; et al. Barriers to Ecological Restoration in Europe: Expert Perspectives. Restor. Ecol. 2021, 29, e13346. [Google Scholar] [CrossRef]
- Fullerton, A.H.; Steel, E.A.; Lange, I.; Caras, Y. Effects of Spatial Pattern and Economic Uncertainties on Freshwater Habitat Restoration Planning: A Simulation Exercise. Restor. Ecol. 2010, 18, 354–369. [Google Scholar] [CrossRef]
- Coombes, B.L. Ecospatial Outcomes of Neoliberal Planning: Habitat Management in Auckland Region, New Zealand. Environ. Plan. B Plan. Des. 2003, 30, 201–218. [Google Scholar] [CrossRef]
- Lamichhane, B.R.; Persoon, G.A.; Leirs, H.; Poudel, S.; Subedi, N.; Pokheral, C.P.; Bhattarai, S.; Gotame, P.; Mishra, R.; de Iongh, H.H. Contribution of Buffer Zone Programs to Reduce Human-Wildlife Impacts: The Case of the Chitwan National Park, Nepal. Hum. Ecol. 2019, 47, 95–110. [Google Scholar] [CrossRef]
- Digiovinazzo, P.; Ficetola, G.F.; Bottoni, L.; Andreis, C.; Padoa-Schioppa, E. Ecological Thresholds in Herb Communities for the Management of Suburban Fragmented Forests. For. Ecol. Manag. 2010, 259, 343–349. [Google Scholar] [CrossRef]
- Schultz, C.B.; Crone, E.E. Patch Size and Connectivity Thresholds for Butterfly Habitat Restoration. Conserv. Biol. 2005, 19, 887–896. [Google Scholar] [CrossRef]
- Fahrig, L.; Arroyo-Rodríguez, V.; Bennett, J.R.; Boucher-Lalonde, V.; Cazetta, E.; Currie, D.J.; Eigenbrod, F.; Ford, A.T.; Harrison, S.P.; Jaeger, J.A.G.; et al. Is Habitat Fragmentation Bad for Biodiversity? Biol. Conserv. 2019, 230, 179–186. [Google Scholar] [CrossRef]
- Meli, P.; Rey-Benayas, J.M.; Brancalion, P.H.S. Balancing Land Sharing and Sparing Approaches to Promote Forest and Landscape Restoration in Agricultural Landscapes: Land Approaches for Forest Landscape Restoration. Perspect. Ecol. Conserv. 2019, 17, 201–205. [Google Scholar] [CrossRef]
- Barral, M.P.; Rey Benayas, J.M.; Meli, P.; Maceira, N.O. Quantifying the Impacts of Ecological Restoration on Biodiversity and Ecosystem Services in Agroecosystems: A Global Meta-Analysis. Agric. Ecosyst. Environ. 2015, 202, 223–231. [Google Scholar] [CrossRef]
- Stott, I.; Soga, M.; Inger, R.; Gaston, K.J. Land Sparing Is Crucial for Urban Ecosystem Services. Front. Ecol. Environ. 2015, 13, 387–393. [Google Scholar] [CrossRef]
- Saunders, C. Conservation Covenants in New Zealand. Land Use Policy 1996, 13, 325–329. [Google Scholar] [CrossRef]
- Adams, W.M.; Hodge, I.D.; Macgregor, N.A.; Sandbrook, L.C. Creating Restoration Landscapes: Partnerships in Large-Scale Conservation in the UK. Ecol. Soc. 2016, 21, 1. [Google Scholar] [CrossRef]
- Yletyinen, J.; Perry, G.L.W.; Brown, P.; Pech, R.; Tylianakis, J.M. Multiple Social Network Influences Can Generate Unexpected Environmental Outcomes. Sci. Rep. 2021, 11, 9768. [Google Scholar] [CrossRef]
- Westerink, J.; Jongeneel, R.; Polman, N.; Prager, K.; Franks, J.; Dupraz, P.; Mettepenningen, E. Collaborative Governance Arrangements to Deliver Spatially Coordinated Agri-Environmental Management. Land Use Policy 2017, 69, 176–192. [Google Scholar] [CrossRef]
- Thomas, A.; Masante, D.; Jackson, B.; Cosby, B.; Emmett, B.; Jones, L. Fragmentation and Thresholds in Hydrological Flow-Based Ecosystem Services. Ecol. Appl. 2020, 30, e02046. [Google Scholar] [CrossRef]
- Gao, X.; Wang, J.; Li, C.; Shen, W.; Song, Z.; Nie, C.; Zhang, X. Land Use Change Simulation and Spatial Analysis of Ecosystem Service Value in Shijiazhuang under Multi-Scenarios. Environ. Sci. Pollut. Res. 2021, 28, 31043–31058. [Google Scholar] [CrossRef] [PubMed]
- Shoemaker, D.A.; BenDor, T.K.; Meentemeyer, R.K. Anticipating Trade-Offs between Urban Patterns and Ecosystem Service Production: Scenario Analyses of Sprawl Alternatives for a Rapidly Urbanizing Region. Comput. Environ. Urban Syst. 2019, 74, 114–125. [Google Scholar] [CrossRef]
- Gómez-Creutzberg, C.; Lagisz, M.; Nakagawa, S.; Brockerhoff, E.G.; Tylianakis, J.M. Consistent Trade-Offs in Ecosystem Services between Land Covers with Different Production Intensities. Biol. Rev. 2021, 96, 1989–2008. [Google Scholar] [CrossRef] [PubMed]
- Hanisch, M.; Schweiger, O.; Cord, A.F.; Volk, M.; Knapp, S. Plant Functional Traits Shape Multiple Ecosystem Services, Their Trade-Offs and Synergies in Grasslands. J. Appl. Ecol. 2020, 57, 1535–1550. [Google Scholar] [CrossRef]
- Oberlack, C.; Sietz, D.; Bonanomi, E.B.; De Bremond, A.; Dell’ Angelo, J.; Eisenack, K.; Ellis, E.C.; David, M.; Giger, M.; Heinimann, A.; et al. Archetype Analysis in Sustainability Research: Meanings, Motivations, and Evidence-Based Policy Making. Ecol. Soc. 2019, 24, 26. [Google Scholar] [CrossRef]
- Fiedler, S.; Monteiro, J.A.F.; Hulvey, K.B.; Standish, R.J.; Perring, M.P.; Tietjen, B. Global Change Shifts Trade-Offs among Ecosystem Functions in Woodlands Restored for Multifunctionality. J. Appl. Ecol. 2021, 58, 1705–1717. [Google Scholar] [CrossRef]
- Vallet, A.; Locatelli, B.; Levrel, H.; Wunder, S.; Seppelt, R.; Scholes, R.J.; Oszwald, J. Relationships Between Ecosystem Services: Comparing Methods for Assessing Tradeoffs and Synergies. Ecol. Econ. 2018, 150, 96–106. [Google Scholar] [CrossRef]
- Richards, D.R.; Moggridge, H.L.; Maltby, L.; Warren, P.H. Impacts of Habitat Heterogeneity on the Provision of Multiple Ecosystem Services in a Temperate Floodplain. Basic Appl. Ecol. 2018, 29, 32–43. [Google Scholar] [CrossRef]
- van der Plas, F.; Allan, E.; Fischer, M.; Alt, F.; Arndt, H.; Binkenstein, J.; Blaser, S.; Blüthgen, N.; Böhm, S.; Hölzel, N.; et al. Towards the Development of General Rules Describing Landscape Heterogeneity–Multifunctionality Relationships. J. Appl. Ecol. 2019, 56, 168–179. [Google Scholar] [CrossRef]
- Etherington, T.R.; Morgan, F.J.; Sullivan, D.O. Binary Space Partitioning Generates Hierarchical and Rectilinear Neutral Landscape Models Suitable for Human-Dominated Landscapes. Landsc. Ecol. 2022, 37, 1761–1769. [Google Scholar] [CrossRef]
- Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J.; et al. Array Programming with NumPy. Nature 2020, 585, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Van Der Walt, S.; Schönberger, J.L.; Nunez-Iglesias, J.; Boulogne, F.; Warner, J.D.; Yager, N.; Gouillart, E.; Yu, T. Scikit-Image: Image Processing in Python. PeerJ 2014, 2, e453. [Google Scholar] [CrossRef] [PubMed]
- Etherington, T.R.; Holland, E.P.; O’Sullivan, D. NLMpy: A Python Software Package for the Creation of Neutral Landscape Models within a General Numerical Framework. Methods Ecol. Evol. 2015, 6, 164–168. [Google Scholar] [CrossRef]
- Open Source Geospatial Foundation GDAL/OGR Geospatial Data Abstraction Software Library 2020. Available online: https://gdal.org (accessed on 1 October 2022). [CrossRef]
- Barnes, R. RichDEM Terrain Analysis Software. 2020. Available online: http://github.com/r-barnes/richdem (accessed on 1 October 2022).
- Rojas, I.M.; Pidgeon, A.M.; Radeloff, V.C. Restoring Riparian Forests According to Existing Regulations Could Greatly Improve Connectivity for Forest Fauna in Chile. Landsc. Urban Plan. 2020, 203, 103895. [Google Scholar] [CrossRef]
- Hölting, L.; Beckmann, M.; Volk, M.; Cord, A.F. Multifunctionality Assessments—More than Assessing Multiple Ecosystem Functions and Services ? A Quantitative Literature Review. Ecol. Indic. 2019, 103, 226–235. [Google Scholar] [CrossRef]
- Duarte, G.T.; Mitchell, M.; Martello, F.; Gregr, E.J.; Paglia, A.P.; Chan, K.M.A.; Ribeiro, M.C. A User-Inspired Framework and Tool for Restoring Multifunctional Landscapes: Putting into Practice Stakeholder and Scientific Knowledge of Landscape Services. Landsc. Ecol. 2020, 35, 2535–2548. [Google Scholar] [CrossRef]
- Case, B.; Ryan, C. A Preliminary Analysis of Carbon Stocks and Net Carbon Position for New Zealand Sheep and Beef Farmland; Auckland University of Technology: Auckland, New Zealand, 2020. [Google Scholar]
- Paul, T.S.H.; Kimberley, M.O.; Beets, P.N. Carbon Stocks and Change in New Zealand’s Natural Forests; Estimates from the First Two Complete Inventory Cycles 2002–2007 and 2007–2014; New Zealand Forest Research Institute Limited: Rotorua, New Zealand, 2019. [Google Scholar]
- Thomas, S.; Ausseil, A.-G.; Guo, J.; Herzig, A.; Khaembah, E.; Palmer, D.; Renwick, A.; Teixeira, E.; van der Weerden, T.; Wakelin, S. Evaluation of Profitability and Future Potential for Low Emission Productive Uses of Land That Is Currently Used for Livestock SLMACC Project 405422; Department of Global Value Chains and Trade, Lincoln University: Canterbury, New Zealand, 2020. [Google Scholar]
- Dymond, J.R. Soil Erosion in New Zealand Is a Net Sink of CO2. Earth Surf. Process. Landf. 2010, 35, 1763–1772. [Google Scholar] [CrossRef]
- Sharp, R.; Tallis, H.T.; Ricketts, T.; Guerry, A.D.; Wood, S.A.; Chaplin-Kramer, R.; Nelson, E.; Ennaanay, D.; Wolny, S.; Olwero, N.; et al. InVEST 3.8.9. User’s Guide; The Natural Capital Project; Stanford University: Stanford, CA, USA; University of Minnesota: Minneapolis, MN, USA; The Nature Conservancy, and World Wildlife Fund: Gland, Switzerland, 2016. [Google Scholar]
- Stachelek, J. Rinvest: InVEST: Ecosystem Service and Valuation Models; R Package v 0.1; 2022. Available online: https://github.com/jsta/rinvest (accessed on 1 October 2022).
- Byczek, C.; Longaretti, P.Y.; Renaud, J.; Lavorel, S. Benefits of Crowd-Sourced GPS Information for Modelling the Recreation Ecosystem Service. PLoS ONE 2018, 13, e0202645. [Google Scholar] [CrossRef]
- Richards, D.R.; Lavorel, S. Integrating Social Media Data and Machine Learning to Analyse Scenarios of Landscape Appreciation. Ecosyst. Serv. 2022, 55, 101422. [Google Scholar] [CrossRef]
- Bal, P.; Tulloch, A.I.T.; Addison, P.F.E.; Mcdonald-madden, E.; Rhodes, J.R. Selecting Indicator Species for Biodiversity Management. Front. Ecol. Environ. 2018, 16, 589–598. [Google Scholar] [CrossRef]
- Lindenmayer, D.B.; Likens, G.E. Surrogate Indicator Species for Evaluating Environmental Change and Biodiversity Loss. Ecosystems 2011, 14, 47–59. [Google Scholar] [CrossRef]
- Zhang, J.; Pannell, J.L.; Case, B.S.; Hinchliffe, G.; Stanley, M.C.; Buckley, H.L. Interactions between Landscape Structure and Bird Mobility Traits Affect the Connectivity of Agroecosystem Networks. Ecol. Indic. 2021, 129, 107962. [Google Scholar] [CrossRef]
- Mestre, F.; Silva, B. Lconnect: Simple Tools to Compute Landscape Connectivity Metrics. 2021. Available online: https://CRAN.R-project.org/package=lconnect (accessed on 1 October 2022).
- McGarigal, K.; Marks, B.J. FRAGSTATS: Spatial Pattern Analysis Program for Quantifying Landscape Structure; General Technical Report; US Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 1995.
- Hesselbarth, M.H.K.; Sciaini, M.; With, K.A.; Wiegand, K.; Nowosad, J. Landscapemetrics: An Open-Source R Tool to Calculate Landscape Metrics. Ecography 2019, 42, 1648–1657. [Google Scholar] [CrossRef]
- Bates, D.; Mächler, M.; Bolker, B.M.; Walker, S.C. Fitting Linear Mixed-Effects Models Using Lme4. J. Stat. Softw. 2015, 67, 48. [Google Scholar] [CrossRef]
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H.B. LmerTest Package: Tests in Linear Mixed Effects Models. J. Stat. Softw. 2017, 82, 1–26. [Google Scholar] [CrossRef]
- Luke, S.G. Evaluating Significance in Linear Mixed-Effects Models in R. Behav. Res. Methods 2017, 49, 1494–1502. [Google Scholar] [CrossRef] [PubMed]
- Bullock, J.M.; Fuentes-Montemayor, E.; McCarthy, B.; Park, K.; Hails, R.S.; Woodcock, B.A.; Watts, K.; Corstanje, R.; Harris, J. Future Restoration Should Enhance Ecological Complexity and Emergent Properties at Multiple Scales. Ecography 2022, 2022, 1–11. [Google Scholar] [CrossRef]
- Ward, M.; Saura, S.; Williams, B.; Ramírez-Delgado, J.P.; Arafeh-Dalmau, N.; Allan, J.R.; Venter, O.; Dubois, G.; Watson, J.E.M. Just Ten Percent of the Global Terrestrial Protected Area Network Is Structurally Connected via Intact Land. Nat. Commun. 2020, 11, 4563. [Google Scholar] [CrossRef]
- Montoya, D.; Haegeman, B.; Gaba, S.; de Mazancourt, C.; Bretagnolle, V.; Loreau, M. Trade-Offs in the Provisioning and Stability of Ecosystem Services in Agroecosystems. Ecol. Appl. 2019, 29, e01853. [Google Scholar] [CrossRef]
- Maes, J.; Paracchini, M.L.; Zulian, G.; Dunbar, M.B.; Alkemade, R. Synergies and Trade-Offs between Ecosystem Service Supply, Biodiversity, and Habitat Conservation Status in Europe. Biol. Conserv. 2020, 155, 1–12. [Google Scholar] [CrossRef]
- Neyret, M.; Fischer, M.; Allan, E.; Hölzel, N.; Klaus, V.H.; Kleinebecker, T.; Krauss, J.; Le Provost, G.; Peter, S.; Schenk, N.; et al. Assessing the Impact of Grassland Management on Landscape Multifunctionality. Ecosyst. Serv. 2021, 52, 101366. [Google Scholar] [CrossRef]
- Abbott, M.; Boyle, C.; Lee, W.; Xuejing, L. Interweaving Protected Areas and Productive Landscapes in Aotearoa New Zealand: Using Design to Explore Multifunctionality in the Mackenzie Basin. J. Landsc. Archit. 2019, 14, 6–19. [Google Scholar] [CrossRef]
- de Souza, A.R.; Dupas, F.A.; da Silva, I.A. Spatial Targeting Approach for a Payment for Ecosystem Services Scheme in a Peri-Urban Wellhead Area in Southeastern Brazil. Environ. Chall. 2021, 5, 100206. [Google Scholar] [CrossRef]
- Plieninger, T.; Kizos, T.; Bieling, C.; Le Dû-Blayo, L.; Budniok, M.A.; Bürgi, M.; Crumley, C.L.; Girod, G.; Howard, P.; Kolen, J.; et al. Exploring Ecosystem-Change and Society through a Landscape Lens: Recent Progress in European Landscape Research. Ecol. Soc. 2015, 20, 5. [Google Scholar] [CrossRef]
- Bartkowski, B.; Beckmann, M.; Drechsler, M.; Kaim, A.; Liebelt, V.; Müller, B.; Witing, F.; Strauch, M. Aligning Agent-Based Modeling with Multi-Objective Land-Use Allocation: Identification of Policy Gaps and Feasible Pathways to Biophysically Optimal Landscapes. Front. Environ. Sci. 2020, 8, 103. [Google Scholar] [CrossRef]
- Wu, J. Landscape Sustainability Science (II): Core Questions and Key Approaches; Springer: Dordrecht, The Netherlands, 2021; ISBN 0123456789. [Google Scholar]
- Mansourian, S.; Parrotta, J.; Balaji, P.; Bellwood-Howard, I.; Bhasme, S.; Bixler, R.P.; Boedhihartono, A.K.; Carmenta, R.; Jedd, T.; de Jong, W.; et al. Putting the Pieces Together: Integration for Forest Landscape Restoration Implementation. Land Degrad. Dev. 2020, 31, 419–429. [Google Scholar] [CrossRef]
- Gillson, L.; Dirk, C.; Gell, P. Using Long-Term Data to Inform a Decision Pathway for Restoration of Ecosystem Resilience. Anthropocene 2021, 36, 100315. [Google Scholar] [CrossRef]
- Murray-Rust, D.; Brown, C.; van Vliet, J.; Alam, S.J.; Robinson, D.T.; Verburg, P.H.; Rounsevell, M. Combining Agent Functional Types, Capitals and Services to Model Land Use Dynamics. Environ. Model. Softw. 2014, 59, 187–201. [Google Scholar] [CrossRef]
- Bakker, M.M.; Alam, S.J.; van Dijk, J.; Rounsevell, M.D.A. Land-Use Change Arising from Rural Land Exchange: An Agent-Based Simulation Model. Landsc. Ecol. 2015, 30, 273–286. [Google Scholar] [CrossRef]
- West, T.A.P.; Monge, J.J.; Dowling, L.J.; Wakelin, S.J.; Yao, R.T.; Dunningham, A.G.; Payn, T. Comparison of Spatial Modelling Frameworks for the Identification of Future Afforestation in New Zealand. Landsc. Urban Plan. 2020, 198, 103780. [Google Scholar] [CrossRef]
- Simelton, E.; Carew-Reid, J.; Coulier, M.; Damen, B.; Howell, J.; Pottinger-Glass, C.; Tran, H.V.; Van Der Meiren, M. NBS Framework for Agricultural Landscapes. Front. Environ. Sci. 2021, 9, 678367. [Google Scholar] [CrossRef]
- Manning, P.; Van Der Plas, F.; Soliveres, S.; Allan, E.; Maestre, F.T.; Mace, G.; Whittingham, M.J.; Fischer, M. Redefining Ecosystem Multifunctionality. Nat. Ecol. Evol. 2018, 2, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Kremen, C. Ecological Intensification and Diversification Approaches to Maintain Biodiversity, Ecosystem Services and Food Production in a Changing World. Emerg. Top. Life Sci. 2020, 4, 229–240. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Queiroz, C.; Bennett, E.M.; Cord, A.F.; Crouzat, E.; Lavorel, S.; Maes, J.; Meacham, M.; Norström, A.V.; Peterson, G.D.; et al. Land-Use Intensity Mediates Ecosystem Service Tradeoffs across Regional Social-Ecological Systems. Ecosyst. People 2021, 17, 264–278. [Google Scholar] [CrossRef]
- Campbell-Arvai, V.; Lindquist, M. From the Ground up: Using Structured Community Engagement to Identify Objectives for Urban Green Infrastructure Planning. Urban For. Urban Green. 2021, 59, 127013. [Google Scholar] [CrossRef]
- Do, T.H.; Vu, T.P.; Catacutan, D.; Nguyen, V.T. Governing Landscapes for Ecosystem Services: A Participatory Land-Use Scenario Development in the Northwest Montane Region of Vietnam. Environ. Manag. 2021, 68, 665–682. [Google Scholar] [CrossRef]
Treatment Combination Name | Natural Woody Restoration Low | Natural Woody Restoration High | Natural Woody Restoration with Extensive Low | Natural Woody Restoration with Extensive High |
---|---|---|---|---|
Summary name for plot labels | NatLow | NatHigh | NatExtLow | NatExtHigh |
Restored area treatment | Low restoration | High restoration | Low restoration | High restoration |
Extensive grassland treatment | No extensive grassland | No extensive grassland | Extensive grassland | Extensive grassland |
Extensive grass cover restored (%) | 0 | 0 | 5 | 10 |
Scrub cover restored (%) | 2.5 | 5 | 2.5 | 5 |
Natural forest cover restored (%) | 7.5 | 15 | 7.5 | 15 |
Total percentage altered | 10 | 20 | 15 | 30 |
Dependent Variable: | |||||||||
---|---|---|---|---|---|---|---|---|---|
Carbon | GHG | Erosion | Nitrogen Retention | Pollination | Recreation | Kiwi | Kereru | Profit | |
Contiguous | −0.046 *** | 0.004 | −0.002 | 0.143 *** | 0.193 *** | −0.124 *** | −0.218 *** | −0.067 *** | 0.267 *** |
−0.005 | −0.005 | −0.004 | −0.005 | −0.006 | −0.003 | −0.018 | −0.008 | −0.007 | |
Random | 0.004 | 0.002 | 0.004 | 0.440 *** | 0.771 *** | −0.315 *** | −0.296 *** | −0.040 *** | −0.009 |
−0.005 | −0.005 | −0.004 | −0.005 | −0.006 | −0.003 | −0.018 | −0.008 | −0.007 | |
No extensive grassland | 0.051 *** | −0.262 *** | −0.168 *** | −0.110 *** | −0.016 *** | −0.078 *** | −0.091 *** | 0.140 *** | 0.261 *** |
−0.005 | −0.004 | −0.004 | −0.005 | −0.006 | −0.003 | −0.017 | −0.007 | −0.007 | |
Low restoration | −0.409 *** | −0.446 *** | −0.263 *** | −0.127 *** | −0.024 *** | −0.382 *** | −0.330 *** | −0.310 *** | 0.419 *** |
−0.005 | −0.004 | −0.004 | −0.005 | −0.006 | −0.003 | −0.017 | −0.007 | −0.007 | |
Contiguous: No extensive | 0.006 | −0.002 | −0.003 | 0.008 | −0.038 *** | 0.009 ** | 0.006 | 0.014 | −0.055 *** |
−0.006 | −0.005 | −0.005 | −0.006 | −0.007 | −0.004 | −0.021 | −0.009 | −0.009 | |
Random: No extensive | −0.011 * | −0.006 | −0.009 * | −0.066 *** | −0.163 *** | 0.089 *** | 0.029 | 0.005 | 0.021 ** |
−0.006 | −0.005 | −0.005 | −0.006 | −0.007 | −0.004 | −0.021 | −0.009 | −0.009 | |
Contiguous: Low restoration | 0.020 *** | −0.002 | 0.002 | −0.043 *** | −0.055 *** | 0.002 | 0.065 *** | 0.020 ** | −0.121 *** |
−0.006 | −0.005 | −0.005 | −0.006 | −0.007 | −0.004 | −0.021 | −0.009 | −0.009 | |
Random: Low restoration | −0.003 | −0.002 | −0.0004 | −0.190 *** | −0.244 *** | 0.074 *** | 0.130 *** | 0.004 | 0.003 |
−0.006 | −0.005 | −0.005 | −0.006 | −0.007 | −0.004 | −0.021 | −0.009 | −0.009 | |
No extensive: Low restoration | −0.026 *** | 0.131 *** | 0.083 *** | 0.064 *** | 0.008 | 0.041 *** | 0.081 *** | −0.068 *** | −0.120 *** |
−0.005 | −0.004 | −0.004 | −0.005 | −0.006 | −0.003 | −0.017 | −0.007 | −0.007 | |
Constant | 0.830 *** | 0.902 *** | 0.800 *** | 0.437 *** | 0.164 *** | 0.853 *** | 0.592 *** | 0.681 *** | 0.144 *** |
−0.004 | −0.004 | −0.015 | −0.008 | −0.006 | −0.008 | −0.015 | −0.006 | −0.006 | |
Observations | 600 | 600 | 600 | 600 | 600 | 600 | 600 | 600 | 600 |
Log likelihood | 1203.434 | 1268.990 | 1191.685 | 1149.200 | 1051.965 | 1354.217 | 448.540 | 955.304 | 988.003 |
Akaike Inf. Crit. | −2382.867 | −2513.981 | −2359.371 | −2274.400 | −2079.930 | −2684.435 | −873.080 | −1886.608 | −1952.006 |
Bayesian Inf. Crit. | −2330.104 | −2461.218 | −2306.607 | −2221.637 | −2027.167 | −2631.671 | −820.317 | −1833.845 | −1899.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Richards, D.; Etherington, T.R.; Herzig, A.; Lavorel, S. The Importance of Spatial Configuration When Restoring Intensive Production Landscapes for Biodiversity and Ecosystem Service Multifunctionality. Land 2024, 13, 460. https://doi.org/10.3390/land13040460
Richards D, Etherington TR, Herzig A, Lavorel S. The Importance of Spatial Configuration When Restoring Intensive Production Landscapes for Biodiversity and Ecosystem Service Multifunctionality. Land. 2024; 13(4):460. https://doi.org/10.3390/land13040460
Chicago/Turabian StyleRichards, Daniel, Thomas R. Etherington, Alexander Herzig, and Sandra Lavorel. 2024. "The Importance of Spatial Configuration When Restoring Intensive Production Landscapes for Biodiversity and Ecosystem Service Multifunctionality" Land 13, no. 4: 460. https://doi.org/10.3390/land13040460
APA StyleRichards, D., Etherington, T. R., Herzig, A., & Lavorel, S. (2024). The Importance of Spatial Configuration When Restoring Intensive Production Landscapes for Biodiversity and Ecosystem Service Multifunctionality. Land, 13(4), 460. https://doi.org/10.3390/land13040460