Productivity, Soil Health, and Tree Diversity in Dynamic Cacao Agroforestry Systems in Ecuador
Abstract
:1. Introduction
2. Materials and Methods
3. Results
Soil and Tree Samples
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Plieninger, T.; Muñoz-Rojas, J.; Buck, L.E.; Scherr, S.J. Agroforestry for sustainable landscape management. Sustain. Sci. 2020, 15, 1255–1266. [Google Scholar] [CrossRef]
- Critchley, W.; Harari, N.; Mollee, E.; Mekdaschi-Studer, R.; Eichenberger, J. Sustainable Land Management and Climate Change Adaptation for Small-Scale Land Users in Sub-Saharan Africa. Land 2023, 12, 1206. [Google Scholar] [CrossRef]
- Niether, W.; Jacobi, J.; Blaser, W.J.; Andres, C.; Armengot, L. Cacao agroforestry systems versus monocultures: A multi-dimensional meta-analysis. Environ. Res. Lett. 2020, 15, 104085. [Google Scholar] [CrossRef]
- Mortimer, R.; Saj, S.; David, C. Supporting and regulating ecosystem services in cacao agroforestry systems. Agrofor. Syst. 2018, 92, 1639–1657. [Google Scholar] [CrossRef]
- De Beenhouwer, M.; Aerts, R.; Honnay, O. A global meta-analysis of the biodiversity and ecosystem service benefits of coffee and cacao agroforestry. Agric. Ecosyst. Environ. 2013, 175, 1–7. [Google Scholar] [CrossRef]
- Middendorp, R.S.; Vanacker, V.; Lambin, E.F. Impacts of shaded agroforestry management on carbon sequestration, biodiversity and farmers income in cacao production landscapes. Landsc. Ecol. 2018, 33, 1953–1974. [Google Scholar] [CrossRef]
- Obeng, E.A.; Aguilar, F.X. Marginal effects on biodiversity, carbon sequestration and nutrient cycling of transitions from tropical forests to cacao farming systems. Agrofor. Syst. 2015, 89, 19–35. [Google Scholar] [CrossRef]
- Sistla, S.A.; Roddy, A.B.; Williams, N.E.; Kramer, D.B.; Stevens, K.; Allison, S.D. Agroforestry practices promote biodiversity and natural resource diversity in Atlantic Nicaragua. PLoS ONE 2016, 11, e0162529. [Google Scholar] [CrossRef]
- Tully, K.; Ryals, R. Nutrient cycling in agroecosystems: Balancing food and environmental objectives. Agroecol. Sustain. Food Syst. 2017, 41, 761–798. [Google Scholar] [CrossRef]
- Ngaba, M.J.Y.; Mgelwa, A.S.; Gurmesa, G.A.; Uwiragiye, Y.; Zhu, F.; Qiu, Q.; Fang, Y.; Hu, B.; Rennenberg, H. Meta-analysis unveils differential effects of agroforestry on soil properties in different zonobiomes. Plant Soil 2024, 496, 589–607. [Google Scholar] [CrossRef]
- McQueen, J.P.; Treonis, A.M. Cacao agroforestry in Belize: Effects on soil nematode community structure. Agrofor. Syst. 2020, 94, 1123–1132. [Google Scholar] [CrossRef]
- Feliciano, D.; Ledo, A.; Hillier, J.; Nayak, D.R. Which agroforestry options give the greatest soil and above ground carbon benefits in different world regions? Agric. Ecosyst. Environ. 2018, 254, 117–129. [Google Scholar] [CrossRef]
- Jacobi, J.; Andres, C.; Schneider, M.; Pillco, M.; Calizaya, P.; Rist, S. Carbon stocks, tree diversity, and the role of organic certification in different cacao production systems in Alto Beni, Bolivia. Agrofor. Syst. 2014, 88, 1117–1132. [Google Scholar] [CrossRef]
- Jadán, O.; Cifuentes, J.M.; Torres, B.; Selesi, D.; Veintimilla, D.; Günter, S. Influence of tree cover on diversity, carbon sequestration and productivity of cacao systems in the Ecuadorian Amazon. Bois For. Des Trop. 2015, 3, 35–47. [Google Scholar] [CrossRef]
- Fowzia, A.; Csorba, A.; Dawoe, E.; Ocansey, C.M.; Asamoah, E.; Szegi, T.; Fuchs, M.; Michéli, E. Soil organic carbon changes under selected agroforestry cocoa systems in Ghana. Geoderma Reg. 2023, 35, e00737. [Google Scholar] [CrossRef]
- Cardinael, R.; Guenet, B.; Chevallier, T.; Dupraz, C.; Cozzi, T.; Chenu, C. High organic inputs explain shallow and deep SOC storage in a long-term agroforestry system—Combining experimental and modeling approaches. Biogeosciences 2018, 15, 297–317. [Google Scholar] [CrossRef]
- Monroe, P.H.M.; Gama-Rodrigues, E.F.; Gama-Rodrigues, A.C.; Marques, J.R. Soil carbon stocks and origin under different cacao agroforestry systems in Southern Bahia, Brazil. Agric. Ecosyst. Environ. 2016, 221, 99–108. [Google Scholar] [CrossRef]
- Rajab, A.Y.; Leuschner, C.; Barus, H.; Tjoa, A.; Hertel, D. Cacao cultivation under diverse shade tree cover allows high carbon storage and sequestration without yield losses. PLoS ONE 2016, 11, e0149949. [Google Scholar] [CrossRef] [PubMed]
- Nöldeke, B.; Winter, E.; Laumonier, Y.; Simamora, T. Simulating Agroforestry Adoption in Rural Indonesia: The Potential of Trees on Farms for Livelihoods and Environment. Land 2021, 10, 385. [Google Scholar] [CrossRef]
- Tschora, H.; Cherubini, F. Co-benefits and trade-offs of agroforestry for climate change mitigation and other sustainability goals in West Africa. Glob. Ecol. Conserv. 2020, 22, e00919. [Google Scholar] [CrossRef]
- Cerda, R.; Deheuvels, O.; Calvache, D.; Niehaus, L.; Saenz, Y.; Kent, J.; Vilchez, S.; Villota, A.; Martinez, C.; Somarriba, E. Contribution of cacao agroforestry systems to family income and domestic consumption: Looking toward intensification. Agrofor. Syst. 2014, 88, 957–981. [Google Scholar] [CrossRef]
- Schneider, M.; Andres, C.; Trujillo, G.; Alcon, F.; Amurrio, P.; Perez, E.; Weibel, F.; Milz, J. Cacao and total system yields of organic and conventional agroforestry vs. monoculture systems in a long-term field trial in Bolivia. Exp. Agric. 2017, 53, 351–374. [Google Scholar] [CrossRef]
- Armengot, L.; Barbieri, P.; Andres, C.; Milz, J.; Schneider, M. Cacao agroforestry systems have higher return on labor compared to full-sun monocultures. Agron. Sustain. Dev. 2016, 36, 70. [Google Scholar] [CrossRef]
- Tinoco-Jaramillo, L.; Vargas-Tierras, Y.; Habibi, N.; Caicedo, C.; Chanaluisa, A.; Paredes-Arcos, F.; Viera, W.; Almeida, M.; Vásquez-Castillo, W. Agroforestry Systems of Cocoa (Theobroma cacao L.) in the Ecuadorian Amazon. Forests 2024, 15, 195. [Google Scholar] [CrossRef]
- Niether, W.; Armengot, L.; Andres, C.; Schneider, M.; Gerold, G. Shade trees and tree pruning alter throughfall and microclimate in cacao (Theobroma cacao L.) production systems. Ann. For. Sci. 2018, 75, 38. [Google Scholar] [CrossRef]
- Heming, N.M.; Schroth, G.; Talora, D.C.; Faria, D. Cabruca agroforestry systems reduce vulnerability of cacao plantations to climate change in southern Bahia. Agron. Sustain. Dev. 2022, 42, 48. [Google Scholar] [CrossRef]
- Siarudin, M.; Rahman, S.A.; Artati, Y.; Indrajaya, Y.; Narulita, S.; Ardha, M.J.; Larjavaara, M. Carbon Sequestration Potential of Agroforestry Systems in Degraded Landscapes in West Java, Indonesia. Forests 2021, 12, 714. [Google Scholar] [CrossRef]
- Armengot, L.; Ferrari, L.; Milz, J.; Velásquez, F.; Hohmann, P.; Schneider, M. Cacao agroforestry systems do not increase pest and disease incidence compared with monocultures under good cultural management practices. Crop Prot. 2020, 1, 130. [Google Scholar] [CrossRef]
- Pumariño, L.; Sileshi, G.W.; Gripenberg, S.; Kaartinen, R.; Barrios, E.; Muchane, M.N.; Midega, C.; Jonsson, M. Effects of agroforestry on pest, disease and weed control: A meta-analysis. Basic. Appl. Ecol. 2015, 16, 573–582. [Google Scholar] [CrossRef]
- Jezeer, R.E.; Verweij, P.A.; Santos, M.J.; Boot, R.G. Shaded Coffee and Cacao—Double Dividend for Biodiversity and Small-Scale Farmers. Ecol. Econ. 2017, 140, 136–145. [Google Scholar] [CrossRef]
- Rottiers, H.; Tzompa, S.D.A.; Lemarcq, V.; De Winne, A.; De Wever, J.; Everaert, H.; Jaime, J.A.B.; Dewettinck, K.; Messens, K. A multipronged flavor comparison of Ecuadorian CCN51 and Nacional cacao cultivars. Eur. Food Res. Technol. 2019, 245, 2459–2478. [Google Scholar] [CrossRef]
- Loor Solórzano, R.G.; Sotomayor Cantos, I.A.; Jiménez Barragán, J.C.; Tarqui Freire, O.M.; Rodríguez Zamora, G.A.; Casanova Mendoza, T.J.; y Quijano Rivadeneira, G.C. INIAP-EETP-800 e INIAP-EETP-801 Nuevos Clones de Cacao Fino y de Aroma con Alto Rendimiento; Plegable no. 436; INIAP, Estación Experimental Tropical Pichilingue, Programa Nacional de Cacao y Café: Mocache, Ecuador, 2018. [Google Scholar]
- Poverty Probability Index. Innovations for Poverty Action; Poverty Probability Index: Washington, DC, USA, 2022; Available online: https://www.povertyindex.org/country/ecuador (accessed on 8 May 2023).
- World Bank. Poverty & Equity Brief, Latin America & the Caribbean: Ecuador. April 2023. Available online: https://databankfiles.worldbank.org/public/ddpext_download/poverty/987B9C90-CB9F-4D93-AE8C-750588BF00QA/current/Global_POVEQ_ECU.pdf (accessed on 12 December 2023).
- Ho, D.; Imai, K.; King, G.; Stuart, E. MatchIt: Nonparametric Preprocessing for Parametric Causal Inference. J. Stat. Softw. 2011, 42, 1–28. [Google Scholar] [CrossRef]
- Food and Agriculture Organization. A Protocol for Measurement, Monitoring, Reporting and Verification of Soil Organic Carbon in Agricultural Landscapes—GSOC-MRV Protocol; Food and Agriculture Organization: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Smith, P.; Soussana, J.F.; Angers, D.; Schipper, L.; Chenu, C.; Rasse, D.P.; Batjes, N.H.; Van Egmond, F.; McNeill, S.; Kuhnert, M.; et al. How to measure, report and verify soil carbon change to realize the potential of soil carbon sequestration for atmospheric greenhouse gas removal. Glob. Chang. Biol. 2020, 26, 219–241. [Google Scholar] [CrossRef]
- Ackerson, J.P. Soil Sampling Guidelines: Purdue Extension. Available online: https://www.extension.purdue.edu/extmedia/AY/AY-368-w.pdf (accessed on 20 June 2024).
- Alvarado, S.J.; Córdova, J.; López, M. Methodologies for Physical and Chemical Analysis of Soil, Water and Leaves; National Autonomous Institute of Agricultural Research: Quito, Ecuador, 2000; pp. 5–58. [Google Scholar]
- Tamayo, E.; Valverde, F. Generation of Technology for Plant Nutrition. INIAP. 2010. Available online: https://repositorio.iniap.gob.ec/bitstream/41000/1057/1/iniapscP.V112e2010.pdf (accessed on 8 May 2023).
- Bertsch, F.; Ostinelli, M. Standard Operating Procedure for Soil Total Carbon: Dumas Dry Combustion Method; Food and Agriculture Organization of the United Nations, Global Soil Laboratory Network GLOSLAN: Rome, Italy, 2019; Available online: https://openknowledge.fao.org/handle/20.500.14283/ca7781en (accessed on 8 May 2023).
- Silva, A.; Melo, C.C.d.F.; Cíntia, C.; Pena, L.K.; de Lima, S.; Yara, K.; Carvalho, F.A.; de Carvalho, X.; Mundstock, A. Comparison of samplers in the evaluation of soil physical properties. Investig. Agrar. 2021, 23, 17–21. [Google Scholar] [CrossRef]
- Quiroz, J.; Mestanza, S. Calibration of Cacao Orchards. MAGAP and INIAP; Project for the Reactivation of National Fine Aroma Cacao: Quito, Ecuador, 2013; 19p. [Google Scholar]
- StataCorp. Stata Statistical Software: Version 17.1; StataCorp LP: College Station, TX, USA, 2021. [Google Scholar]
- Ruxton, G.D. The unequal variance t-test is an underused alternative to Student’s t-test and the Mann–Whitney U test. Behav. Ecol. 2006, 17, 688–690. [Google Scholar] [CrossRef]
- Mattalia, G.; Wezel, A.; Costet, P.; Jagoret, P.; Deheuvels, O.; Migliorini, P.; David, C. Contribution of cacao agroforestry versus mono-cropping systems for enhanced sustainability. A review with a focus on yield. Agrofor. Syst. 2022, 96, 1077–1089. [Google Scholar] [CrossRef]
- FAO. Standard Operating Procedure for Soil Bulk Density, Cylinder Method; FAO: Rome, Italy, 2023. [Google Scholar] [CrossRef]
- Lori, M.; Armengot, L.; Schneider, M.; Schneidewind, U.; Bodenhausen, N.; Mäder, P.; Krause, H.M. Organic management enhances soil quality and drives microbial community diversity in cocoa production systems. Sci. Total Environ. 2022, 834, 155223. [Google Scholar] [CrossRef] [PubMed]
- Silva, C.F.; Pereira, M.G.; Gomes, J.H.G.; Fontes, M.A.; Silva, M.R. Enzyme activity, glomalin, and soil organic carbon in agroforestry systems. Floresta Ambiente 2020, 27, e20170716. [Google Scholar] [CrossRef]
- Nijmeijer, A.; Lauri, E.P.; Harmand, J.M.; Freschet, G.T.; Nieboukaho, J.D.E.; Fogang, P.K.; Enock, S.; Saj, S. Long-term dynamics of cocoa agroforestry systems established on lands previously occupied by savannah or forests. Agric. Ecosyst. Environ. 2019, 275, 100–111. [Google Scholar] [CrossRef]
- Gusli, S.; Sumeni, S.; Sabodin, R.; Muqfi, I.H.; Nur, M.; Hairiah, K.; Useng, D.; Van Noordwijk, M. Soil organic matter, mitigation of and adaptation to climate change in cacao–based agroforestry systems. Land 2020, 9, 323. [Google Scholar] [CrossRef]
- Blaser, W.J.; Oppong, J.; Yeboah, E.; Six, J. Shade trees have limited benefits for soil fertility in cacao agroforests. Agric. Ecosyst. Environ. 2017, 243, 83–91. [Google Scholar] [CrossRef]
- Esche, L.; Schneider, M.; Milz, J.; Armengot, L. The role of shade tree pruning in cacao agroforestry systems: Agronomic and economic benefits. Agrofor. Syst. 2023, 97, 175–185. [Google Scholar] [CrossRef]
- Ambele, C.F.; Bisseleua, H.D.B.; Djuideu, C.T.L.; Akutse, K.S. Managing insect services and disservices in cocoa agroforestry systems. Agroforest Syst. 2023, 97, 965–984. [Google Scholar] [CrossRef]
Control (Non FINCA) N = 130 | Treatment (FINCA) N = 99 | Statistical Analysis | |||
---|---|---|---|---|---|
Mean | Standard Deviation | Mean | Standard Deviation | Welch-t-Test; Prtest for Proportions | |
Age of producer | 58.68 | −16.26 | 59.84 | −14.11 | |
Household size | 3.46 | −1.61 | 3.52 | −2.09 | |
Highest level of education in household (range of 0–3) | 1.95 | −0.94 | 2.27 | −0.79 | ** |
Number of plots with cacao | 1.22 | −0.57 | 1.44 | −0.73 | * |
Hectares in cacao | 2.28 | −1.86 | 2.18 | −1.85 | |
% of income from cacao | 43.92 | −21.03 | 38.73 | −24.79 | |
% of income from agriculture | 67.61 | −27.4 | 63.59 | −32.69 | |
% of cacao sold to the association (N = 191) | 90.25 | −27.7 | 89.14 | −30.54 | |
producer has non-agriculture related occupations | 60.77% | 61.62% | |||
children have interest in cacao (N = 100) | 49.15% | 46.34% | |||
women not involved in decisions | 70.00% | 69.70% | |||
concerned about food insecurity | 60.77% | 57.57% |
Control (Non FINCA) N = 159 | Treatment (FINCA) N = 124 | Statistical Analysis | |||
---|---|---|---|---|---|
Mean | Standard Deviation | Mean | Standard Deviation | Welch-t-Test | |
number of producing cacao trees per ha | 670.7 | 343.41 | 488.36 | 558.46 | ** |
number of growing cacao trees per ha | 85.92 | −272.15 | 306.22 | −351.48 | *** |
quintals of cacao per ha | 14.27 | −19.45 | 8.12 | −11.26 | ** |
quintals of cacao per producing tree | 0.02 | −0.02 | 0.02 | −0.02 | |
income from cacao Nacional by hectare (USD) | 676.65 | −1041.08 | 659.67 | −1952.53 | |
timber trees per ha | 8.72 | −35.85 | 66.45 | −244.48 | * |
number of crops per parcel | 0.5 | −0.81 | 1.39 | −1.5 | *** |
income other crops by hectare (USD) | 518.55 | −1839.49 | 570.31 | −967.73 | |
total productivity (in USD) for all crops by hectare | 2477.09 | −12,744.86 | 3011.44 | −10,324.67 | |
number of developing crops (plants per ha) | 22.47 | −87.13 | 145.91 | −410.11 | ** |
clusters of plantains per ha (N = 120) | 205.78 | −269.4 | 365.54 | −483.69 | * |
% of cacao harvested (not lost) | 89.38 | −22.41 | 81.1 | −30.16 | ** |
labor days per hectare of cacao (paid and family) | 27.71 | −30.76 | 42.21 | −51.28 | ** |
total productivity (in USD) for all crops per labor day used | 199.99 | −1062.06 | 110.26 | −443.08 |
Marginal Effect | Standard Errors | Significance | |
---|---|---|---|
Association | −0.210 | −0.06 | ** |
Live in farm | 0.524 | −0.18 | ** |
Hectares with cacao | −0.163 | −0.05 | ** |
Own car | 0.237 | −0.19 | |
Education in household | 0.301 | −0.11 | ** |
Years producing cacao | 0.012 | −0.01 | * |
PPI score | 0.026 | −0.01 | ** |
Number of lots in cacao | 0.539 | −0.13 | *** |
Los Ríos province | 1.033 | −0.28 | *** |
Food security | −0.149 | −0.12 | |
Constant | −1.758 | −0.52 | ** |
N | 275 | ||
LR chi2(11) | 73.39 | ||
Psuedo R2 | 0.194 |
Mean Difference FINCA vs. Non-FINCA | t-Stats | df | Significance | |
---|---|---|---|---|
quintals of cacao per ha | −5.12 | −3.018 | 122 | ** |
quintals of cacao per producing tree | −0.001 | −0.243 | 77 | |
income from cacao Nacional per ha | −138.29 | −1.28 | 76 | |
income per ha (all sold products) | −99.298 | −0.343 | 122 | |
price per quintal | −2.793 | −1.989 | 76 | |
% of cacao harvested (not lost) | −6.457 | −1.592 | 80 | |
days of labor per ha (including family labor) | 13.188 | −2.416 | 122 | * |
total estimated productivity (USD) for all crops per ha | 181.234 | −0.111 | 122 | |
total productivity (USD) per labor day used | −110.823 | −0.958 | 122 |
Estimate | SE | z Stat | p Value | Conf. Low | Conf. High | |
---|---|---|---|---|---|---|
ATT for income from cacao Nacional per hectare | −15.2 | 324 | −0.047 | 0.963 | −649 | 619 |
ATT for total productivity (USD) per hectare | 99.3 | 3531 | 0.028 | 0.978 | −6958 | 7019 |
ATT for total productivity (USD) per labor day | −114 | 251 | −0.455 | 0.649 | −606 | 378 |
Non-FINCA (N = 58) | FINCA Program (N = 53) | |||
---|---|---|---|---|
Variable | 10 cm | 30 cm | 10 cm | 30 cm |
N (mg/kg) | 26.72 | 22.23 | 24.06 | 22.11 |
P (mg/kg) | 20.07 | 17.28 | 27.76 | 21.39 |
S (mg/kg) | 16.73 | 16.49 | 16.63 | 15.24 |
K (meq/100 mL) | 0.79 | 0.70 | 0.70 | 0.70 |
Ca (meq/100 mL) | 12.54 | 11.06 | 10.56 | 11.24 |
Mg (meq/100 mL) | 3.35 | 3.36 | 3.43 | 3.39 |
pH | 6.53 | 6.41 | 6.41 | 6.51 |
C (%) | 3.12 | 2.08 | 2.88 | 2.15 |
C (t/ha) | 32.34 | 66.73 | 30.32 | 68.99 |
SOM (%) | 5.38 | 3.58 | 4.97 | 3.71 |
Bulk density (g/cm3) | 1.07 | 1.11 | 1.08 | 1.12 |
Porosity | 51.25 | 50.27 | 51.42 | 51.36 |
Non-FINCA | FINCA Program | |||
---|---|---|---|---|
<32 cm (N = 10) | >32 cm (N = 8) | <32 cm (N = 10) | >32 cm (N = 8) | |
N (mg/kg) | 26.892 | 18.796 | 23.515 | 14.389 |
P (mg/kg) | 12.455 | 6.238 | 14.946 | 10.691 |
S (mg/kg) | 16.486 | 7.019 | 16.101 | 14.487 |
K (meq/100 mL) | 0.793 | 0.325 | 0.538 | 0.570 |
Ca (meq/100 mL) | 12.482 | 9.007 | 12.616 | 8.333 |
pH | 6.480 | 6.516 | 6.606 | 6.679 |
C (%) | 2.668 | 0.503 | 1.620 | 0.633 |
C (t/ha) | 48.822 | 35.988 | 55.054 | 38.552 |
SOM (%) | 4.600 | 0.866 | 2.793 | 1.090 |
Bulk density (g/cm3) | 1.120 | 0.995 | 1.185 | 1.125 |
Porosity | 52.540 | 58.478 | 48.950 | 55.118 |
Non-FINCA (N = 33) | FINCA Program (N = 32) | |||
---|---|---|---|---|
Mean | SD | Mean | SD | |
cacao nacional trees per hectare | 762.12 | 480.84 | 942.19 | 628.85 |
cacao trinitario trees per hectare | 161.82 | 300.33 | 63.13 | 254.16 |
Number of fruit tree species/ha *** | 2.82 | 1.89 | 5.84 | 2.48 |
Number of timber tree species/ha *** | 0.85 | 1.12 | 2.53 | 1.85 |
Number of all tree species/ha *** | 3.73 | 2.63 | 8.50 | 3.34 |
Number of shade trees/ha ** | 234.55 | 201.99 | 417.81 | 234.37 |
Shade cover (%) *** | 29.00 | 17.43 | 52.75 | 18.22 |
Diseased nacional pods (%), N = 46 | 0.270 | 0.251 | 0.295 | 0.269 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Allen, S.L.; Robayo, L.A.; Martin, C.D.; Ganem, J.L. Productivity, Soil Health, and Tree Diversity in Dynamic Cacao Agroforestry Systems in Ecuador. Land 2024, 13, 959. https://doi.org/10.3390/land13070959
Allen SL, Robayo LA, Martin CD, Ganem JL. Productivity, Soil Health, and Tree Diversity in Dynamic Cacao Agroforestry Systems in Ecuador. Land. 2024; 13(7):959. https://doi.org/10.3390/land13070959
Chicago/Turabian StyleAllen, Summer L., Lenin Alejandro Robayo, Carla D. Martin, and José Lopez Ganem. 2024. "Productivity, Soil Health, and Tree Diversity in Dynamic Cacao Agroforestry Systems in Ecuador" Land 13, no. 7: 959. https://doi.org/10.3390/land13070959
APA StyleAllen, S. L., Robayo, L. A., Martin, C. D., & Ganem, J. L. (2024). Productivity, Soil Health, and Tree Diversity in Dynamic Cacao Agroforestry Systems in Ecuador. Land, 13(7), 959. https://doi.org/10.3390/land13070959