Landscape Reconstruction with Earth-and-Timber Medieval Stronghold—Immersive Geovisualization
Abstract
:1. Introduction
2. Aim and Questions
- What types of data should be used when creating 3D reconstructions of objects? Does the inclusion of data from historical studies and the distinction between reconstruction and reference sources help in the development of visualizations, and which sources should be placed in these categories?
- Which typical objects in a stronghold should be distinguished and reconstructed?
- How can changes in the terrain and the developing structures be visualized in such a way that no information noise is created?
- Do GIS tools and game engines enable the effective implementation and integration of data to create an immersive geovisualization?
3. Materials and Methods
- Defining the basic visualization concepts (Section 3.1);
- Inquiry of the data acquisition and segmentation of the data (Section 3.2);
- Presentation of the individual fortress elements and selection of the time frame for the reconstruction of the fortress (Section 3.3);
- Data transformation using GIS software tools (Section 3.4);
- Data for the reconstruction of the terrain and lake (Section 3.5);
- Modeling of the reconstruction elements (Section 3.6);
- Immersive geovisualization of the research results (Section 3.7);
3.1. Concepts
- Collection and classification: structuring the data required for visualization and dividing the materials into two categories: reference sources and reconstruction sources.
- The literature [20] points to the existence of several typical elements that are typical of most strongholds regardless of the time of their construction and the culture of the builders, including the following:
- ▪
- Defensive facility (rampart).
- ▪
- Object of worship (church).
- ▪
- Residential facility of the government (palatium).
- ▪
- Additional defensive elements related to natural conditions (e.g., bridge).
- Visualization design: simple objects without excessive detail, aiming to represent the spatial distribution of features mainly related to the terrain and the functional transformations that have taken place within the site over the years.
- Software and Equipment: GIS software (QGIS 3.30, TreeIT2023), 3D graphics software (Blender 3.6), computer game engine (Unity 6).
- Visualization features: ability to navigate freely around objects and switch between different states of objects from different eras.
3.2. Distinguishing Individual Elements of the Stronghold and the States of Reconstruction
- The palatium of the fortress, closely linked to the reign of Mieszko I and his son Bolesław Chrobry—the first king of Poland—is a significant architectural complex [22]. The foundations, thoroughly studied by archaeologists and art historians, were excavated in the late 1950s and early 1960s. The palatium comprises two distinct components: a princely residence and a rotunda for religious purposes, serving as a testament to the architectural splendor and socio-political importance of the Middle Ages.
- The church of St. John the Baptist dates back to at least the early 11th century and was extended in at least two phases. It is now replaced by an 18th-century wooden church. There are overlaps between the medieval church and the current building, with the southern westwork of the Romanesque church lying beneath the foundations of the present church. Additionally, the apse of the medieval church overlaps with the old parish building.
- The defense ramparts surrounding the entire stronghold.
- The water reservoir or lake, which no longer exists today, was an important part of the stronghold’s defenses. Research is attempting to delineate its territorial extent.
- The wooden bridge served as a link between the eastern part of the fortress and the eastern shore of the lake and facilitated access to a trading settlement. Its structure was modified and reconstructed several times over the course of time.
- Hypothetical reconstruction of the stronghold in the first half of the 11th century.
- Hypothetical reconstruction of the stronghold in the second half of the 11th century.
- Reconstruction of the stronghold in its current appearance from 2024.
3.3. Data Query and Data Segmentation for Visualization
- Reconstruction data: In this study, the primary sources for reconstruction data include various photographic documentation, plastic models, illustrations, and scholarly articles. These sources help clarify the architectural concepts of objects, facilitating their temporal and spatial classification and contributing to the creation of geographically accurate geovisualizations. A key part of this project is evaluating and classifying these sources based on their utility, reliability, and credibility to summarize their contributions to the individual visualization elements. This evaluation is detailed in the chapter on creating virtual object models.
- Reference data: These sources are maintained by the Geodetic and Cartographic Agency of Poland and include data derived from measurements connected to the spatial data infrastructure (SDI) system. Such data can be categorized as exemplary, basic, normative, or fundamental [25]. For this study, we refer to them as reference data/sources. To be considered reliable, reference data must meet certain criteria: they must be recorded in an appropriate data format and spatial reference system, have sufficient accuracy, and possess a metadata structure that allows clear identification of the content [26]. The availability of data freely accessible via the national geoportal is also crucial.
3.4. Data Transformation
3.5. Terrain and Lake Reconstruction
3.6. Modeling
3.7. Immersive Geovisualization
4. Results
5. Discussion
6. Conclusions
- Changes in the height, structure, and geometry of the defensive embankment;
- Degradation of objects such as the bridge to the stronghold, the lake, and the castle church;
- A change in the general topographic level, which in the Middle Ages was about 1.5 m lower than today;
- Construction of new facilities such as a museum pavilion and a new wooden church.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, R. 3D Building Modeling Using Images and LiDAR: A Review. Int. J. Image Data Fusion 2013, 4, 273–292. [Google Scholar] [CrossRef]
- Kersten, T.P.; Tschirschwitz, F.; Deggim, S. Development of a Virtual Museum Including a 4D Presentation of Building History in Virtual Reality. In Proceedings of the ISPRS—International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Nafplio, Greece, 1–3 March 2017; Volume XLII-2/W3. pp. 361–367. [Google Scholar] [CrossRef]
- Medyńska-Gulij, B. Kartografia-Geomatycznie I Geomedialnie; Wydawnictwo Naukowe PWN: Warszawa, Poland, 2024; ISBN 9788301235888. [Google Scholar]
- Halik, Ł.; Wielebski, Ł. Usefulness of Plane-Based Augmented Geovisualization—Case of “The Crown of Polish Mountains 3D”. ISPRS Int. J. Geo Inf. 2023, 12, 38. [Google Scholar] [CrossRef]
- Bekele, M.K.; Champion, E. A comparison of immersive realities and interaction methods: Cultural learning in virtual heritage. Front. Robot. AI 2019, 6, 91. [Google Scholar] [CrossRef]
- Vital, R.; Sylaiou, S. Digital survey: How it can change the way we perceive and understand heritage sites. Digit. Appl. Archaeol. Cult. Herit. 2022, 24, e00212. [Google Scholar] [CrossRef]
- Forti, L.; Brandolini, F.; Oselini, V.; Peyronel, L.; Pezzotta, A.; Vacca, A.; Zerboni, A. Geomorphological Assessment of the Preservation of Archaeological Tell Sites. Sci. Rep. 2023, 13, 7683. [Google Scholar] [CrossRef]
- Spadoni, F.; Tariffi, F.; Rossi, R.; Lusso, S. Chapter A Techno Social Collaborative Platform to Manage Optimize and Crowdfund Cultural Heritage Initiatives. In Electronic Imaging & the Visual Arts; Firenze University Press: Florence, Italy, 2018. [Google Scholar]
- Mazzacca, G.; Karami, A.; Rigon, S.; Farella, E.M.; Trybala, P.; Remondino, F. NeRF for heritage 3D reconstruction. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, 48, 1051–1058. [Google Scholar]
- Pisoni, G.; Díaz-Rodríguez, N.; Gijlers, H.; Tonolli, L. Human-centered artificial intelligence for designing accessible cultural heritage. Appl. Sci. 2021, 11, 870. [Google Scholar] [CrossRef]
- Rodríguez-Gonzálvez, P.; Muñoz-Nieto, A.L.; del Pozo, S.; Sanchez-Aparicio, L.J.; Gonzalez-Aguilera, D.; Micoli, L.; Barsanti, S.G.; Guidi, G.; Mills, J.; Fieber, K.; et al. 4D reconstruction and visualization of cultural heritage: Analyzing our legacy through time. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42, 609–616. [Google Scholar]
- Guidi, G.; Russo, M. Diachronic 3D Reconstruction for Lost Cultural Heritage. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2011, 38, 371–376. [Google Scholar] [CrossRef]
- Rodríguez-Gonzálvez, P.; Guerra Campo, Á.; Muñoz-Nieto, Á.L.; Sánchez-Aparicio, L.J.; González-Aguilera, D. Diachronic Reconstruction and Visualization of Lost Cultural Heritage Sites. ISPRS Int. J. Geo-Inf. 2019, 8, 61. [Google Scholar] [CrossRef]
- Brůha, L.; Laštovička, J.; Palatý, T.; Štefanová, E.; Štych, P. Reconstruction of lost cultural heritage sites and landscapes: Context of ancient objects in time and space. ISPRS Int. J. Geo Inf. 2020, 9, 604. [Google Scholar]
- Griwodz, C.; Gasparini, S.; Calvet, L.; Gurdjos, P.; Castan, F.; Maujean, B.; Lanthony, Y. AliceVision Meshroom: An open-source 3D reconstruction pipeline. In Proceedings of the 12th ACM Multimedia Systems Conference, Istanbul, Turkey, 28 September–1 October 2021; pp. 241–247. [Google Scholar]
- Ramos, M.M.; Remondino, F. Data fusion in cultural heritage–A review. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 40, 359–363. [Google Scholar]
- Nishanbaev, I.; Champion, E.; McMeekin, D.A. A web Gis-based integration of 3D digital models with linked open data for cultural heritage exploration. ISPRS Int. J. Geo Inf. 2021, 10, 684. [Google Scholar]
- Lazarinis, F.; Boididis, I.; Kozanidis, L.; Kanellopoulos, D.; Education, S.M.O. An adaptable multi-learner serious game for learning cultural heritage. Adv. Mob. Learn. Educ. Res. 2022, 2, 201–215. [Google Scholar]
- Wiewióra, M.; Wasik, B.; Molewski, P.; Misiewicz, K.; Małkowski, W.; Bogacki, M. New historical data on the Teutonic Order crusades in Prussia: Geophysical and archaeological research into an earth-and-timber stronghold and city of the 1230s at Starogrod, northern-central Poland. Archaeol. Prospect. 2020, 27, 135–152. [Google Scholar] [CrossRef]
- Lisowska, E.; Jaworski, K. 8th–10th Century Hillforts in the Sudetes—Exploring Current State of Research and Observations, towards New Horizons. Acta Archaeol. Carpathica 2021, 56, 335–386. [Google Scholar]
- Krysztofiak, T. Wczesnopiastowski Kościół p.w. Św. Jana Chrzciciela na Grodzie w Gieczu w Świetle Najnowszych Odkryć. In Początki Architektury Monumentalnej w Polsce; Janiak, T., Stryjak, D., Eds.; 20-21 Muzeum Początków Państwa Polskiego: Gniezno, Poland, 2004; pp. 181–198. ISBN 83-921201-0-0. [Google Scholar]
- Kostrzewski, B. Gród Piastowski w Gieczu; Biblioteczka Popularnonaukowa Muzeum Archeologicznego: Poznań, Poland, 1966; Volume 2. [Google Scholar]
- Indycka, E.Z. Badań nad Cmentarzyskami Gieckiego Kompleksu Osadniczego. Stud. Lednickie 2000, 6, 69–90. [Google Scholar]
- Yakar, M.; Dogan, Y. 3D Reconstruction of Residential Areas with SfM Photogrammetry. In Advances in Remote Sensing and Geo Informatics Applications; El-Askary, H., Lee, S., Heggy, E., Pradhan, B., Eds.; Springer: Cham, Switzerland, 2018; ISBN 978-3-030-01440-7. [Google Scholar]
- Michałowska, K.; Nałęcz, T. Terminologia Definiująca Rejestry Zasobów Danych Przestrzennych jako Normatywne Źródła Krajowej Infrastruktury Informacji Przestrzennej. Rocz. Geomatyki 2012, 10, 79–91. [Google Scholar]
- Bielecka, E.; Zwirowicz-Rutkowska, A. Organisational aspects of spatial information infrastructure in Poland. Geod. Cartogr. 2013, 62, 85–95. [Google Scholar]
- Krąpiec, M.; Krysztofiak, T. Potwierdzenie Plemiennej Genezy Grodu w Gieczu. Wielkop. Spraw. Archeol. 2003, 6, 32–51. [Google Scholar]
- Kostrzewski, B. Sprawozdanie z Badań na Grodzisku w Gieczu w Pow. Średzkim za Rok 1949. Stud. Wczesnośredniowieczne 1952, 1, 149–170. [Google Scholar]
- Kowalewski, G.; Gałka, M. Współczesny i Dawniejszy Układ Hydrograficzny Rejonu Giecza w Świetle Źródeł Kartograficznych. In Architektoniczno-Przestrzenne i Przyrodnicze Podstawy Rekonstrukcji Wczesnośredniowiecznych Założeń Obronnych Giecza; Grygorowicz, A., Milecka, K., Tobolski, K., Eds.; Instytut Architektury i Planowania Przestrzennego Wydziału Architektury Politechniki Poznańskiej: Poznań, Poland, 2007; pp. 105–112. [Google Scholar]
- Tobolski, K.; Milecka, K.; Kowalewski, G. Development of wetlands adjacent to Giecz stronghold and its meaning during the early middle ages. In Physical, Chemicaland Biological Processes in Soils; Szajdak, W.J., Karabanov, A.K., Eds.; Instytut Środowiska Rolniczego i Leœnego PAN: Poznań, Poland, 2010; pp. 623–634. [Google Scholar]
- Krysztofiak, T. Ośrodek Grodowy w Gieczu w Okresie Przed i Wczesnopiastowskim. In Gród Piastowski w Gieczu—GenezaFunkcja—Kontekst; Kara, M., Krzysztofiak, T., Wyrwa, A., Eds.; Wydawnictwo Poznańskiego Towarzystwa Przyjaciół Nauk: Poznań, Poland, 2016; pp. 115–154. ISBN 9788376543307. [Google Scholar]
- Kubiak, L.; Makohonienko, M.; Polcyn, M. Wstępne Doniesienie z Badań Średniowiecznego Mostu/Grobli w Gieczu koło Środy Wlkp. Stud. Lednickie 1991, 2, 217–227. [Google Scholar]
- Volk, R.; Stengel, J.; Schultmann, F. Building Information Modeling (BIM) for existing buildings — Literature review and future needs. Autom. Constr. 2014, 38, 109–127. [Google Scholar]
- Zagata, K.; Gulij, J.; Halik, Ł.; Medyńska-Gulij, B. Mini-Map for Gamers Who Walk and Teleport in a Virtual Stronghold. ISPRS Int. J. Geo Inf. 2021, 10, 96. [Google Scholar] [CrossRef]
- Pietroni, E.; Ferdani, D. Virtual Restoration and Virtual Reconstruction in Cultural Heritage: Terminology, Methodologies, Visual Representation Techniques and Cognitive Models. Information 2021, 12, 167. [Google Scholar] [CrossRef]
- Baubinienė, A.; Morkūnaitė, R.; Bauža, D.; Vaitkevičius, G.; Petrošius, R. Aspects and methods in reconstructing the medieval terrain and deposits in Vilnius. Quat. Int. 2014, 386, 83–88. [Google Scholar] [CrossRef]
- Deggim, S.; Kersten, T.; Tschirschwitz, F.; Hinrichsen, N. Segeberg 1600—Reconstructing a Historic Town for Virtual Reality Visualisation as an Immersive Experience. In Proceedings of the ISPRS—International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Hamburg, Germany, 28–29 November 2017; Volume XLII-2/W8. pp. 87–94. [Google Scholar] [CrossRef]
- Schindling, J.; Gibbes, C. LiDAR as a Tool for Archaeological Research: A Case Study. Archaeol Anthr. Sci. 2014, 6, 411–423. [Google Scholar] [CrossRef]
- Mościcka, A.; Zwirowicz-Rutkowska, A. Description of old maps in the Europeana Data Model. J. Cult. Herit. 2020, 45, 315–326. [Google Scholar]
- Liritzis, I.; Volonakis, P.; Vosinakis, S. 3D Reconstruction of Cultural Heritage Sites as an Educational Approach. The Sanctuary of Delphi. Appl. Sci. 2021, 11, 3635. [Google Scholar] [CrossRef]
- Hruby, F.; Ressl, R.; de la Borbolla del Valle, G. Geovisualization with Immersive Virtual Environments in Theory and Practice. Int. J. Digit. Earth 2018, 12, 123–136. [Google Scholar] [CrossRef]
- Medyńska-Gulij, B.; Zagata, K. Experts and Gamers on Immersion into Reconstructed Strongholds. ISPRS Int. J. Geo Inf. 2020, 9, 655. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zawadzki, J.; Medyńska-Gulij, B. Landscape Reconstruction with Earth-and-Timber Medieval Stronghold—Immersive Geovisualization. Land 2024, 13, 1323. https://doi.org/10.3390/land13081323
Zawadzki J, Medyńska-Gulij B. Landscape Reconstruction with Earth-and-Timber Medieval Stronghold—Immersive Geovisualization. Land. 2024; 13(8):1323. https://doi.org/10.3390/land13081323
Chicago/Turabian StyleZawadzki, Jakub, and Beata Medyńska-Gulij. 2024. "Landscape Reconstruction with Earth-and-Timber Medieval Stronghold—Immersive Geovisualization" Land 13, no. 8: 1323. https://doi.org/10.3390/land13081323
APA StyleZawadzki, J., & Medyńska-Gulij, B. (2024). Landscape Reconstruction with Earth-and-Timber Medieval Stronghold—Immersive Geovisualization. Land, 13(8), 1323. https://doi.org/10.3390/land13081323