Influence of Self-Identity and Social Identity on Farmers’ Willingness for Cultivated Land Quality Protection
Abstract
:1. Introduction
2. Theoretical Analysis and Research Hypotheses
2.1. Self-Identity and Farmers’ WCQP
2.1.1. Impact of Cognitive Identity on Farmers’ WCQP
2.1.2. Impact of Emotional Identity on Farmers’ WCQP
2.1.3. Impact of Behavioral Identity on Farmers’ WCQP
2.2. Social Identity and Farmers’ WCQP
2.3. Self-Identity, Social Identity, and Farmers’ WCQP
3. Materials and Methods
3.1. Data Source
3.2. Variable Selection
3.2.1. Dependent Variable
3.2.2. Core Independent Variables
3.2.3. Control Variables
3.3. Research Methods
3.3.1. Structural Equation Modeling (SEM)
+ β6EID × SID + β7BID × SID+ ηCV + μ,
3.3.2. Instrumental Variable Method
4. Results
4.1. Descriptive Statistics of the Sample
4.2. Reliability and Validity Tests
4.3. Model Fit Tests and Estimation Results
4.4. Endogenous Treatment
4.4.1. Instrumental Variable Estimation Results
4.4.2. Propensity Score Matching (PSM)
4.5. Robustness Checks
4.6. Further Analysis of the Relationship between Emotional Identity, Social Identity, and Farmers’ WCQP
5. Discussion
6. Conclusions and Policy Recommendations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, H.; Fan, Z.; Ahmad, F.; Zhang, D. Exploring the Ecological Protection Impacts of Cultivated Land Transfer: Explanation Based on Fertilizers and Pesticides. Ecol. Indic. 2023, 154, 110681. [Google Scholar] [CrossRef]
- Marques, M.; dos Anjos, L.; Delgado, A. Land Recovery and Soil Management with Agroforestry Systems. Span. J. Soil Sci. 2022, 12, 10457. [Google Scholar] [CrossRef]
- Craig, E.; Lowe, K.; Akerman, G.; Dawson, J.; May, B.; Reaves, E.; Lowit, A. Reducing the Need for Animal Testing While Increasing Efficiency in a Pesticide Regulatory Setting: Lessons from the EPA Office of Pesticide Programs’ Hazard and Science Policy Council. Regul. Toxicol. Pharmacol. 2019, 108, 104481. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, W.; Lian, Z.; Hao, X.; Gu, X.; Hao, F.; Lin, C.; Zhou, F. Increased Ammonia Emissions from Synthetic Fertilizers and Land Degradation Associated with Reduction in Arable Land Area in China. Land Degrad. Dev. 2018, 29, 3928–3939. [Google Scholar] [CrossRef]
- Finger, R.; Schneider, K.; Candel, J.; Möhring, N. Europe Needs Better Pesticide Policies to Reduce Impacts on Biodiversity. Food Policy 2024, 125, 102632. [Google Scholar] [CrossRef]
- McGuire, J.M.; Morton, L.W.; Arbuckle, J.G.; Cast, A.D. Farmer Identities and Responses to the Social–Biophysical Environment. J. Rural Stud. 2015, 39, 145–155. [Google Scholar] [CrossRef]
- van Dam, Y.K.; Fischer, A.R.H. Buying Green Without Being Seen. Environ. Behav. 2015, 47, 328–356. [Google Scholar] [CrossRef]
- Dent, H.; Ward, T. An Enactive View of Identity Transformation: Implications for Correctional Rehabilitation. Aggress. Violent Behav. 2023, 69, 101810. [Google Scholar]
- Zhu, X.; Wang, G. Impact of Agricultural Cooperatives on Farmers’ Collective Action: A Study Based on the Socio-Ecological System Framework. Agriculture 2024, 14, 14010096. [Google Scholar] [CrossRef]
- Schulte, M.; Bamberg, S.; Rees, J.; Rollin, P. Social Identity as a Key Concept for Connecting Transformative Societal Change with Individual Environmental Activism. J. Environ. Psychol. 2020, 72, 101525. [Google Scholar]
- Xu, Q.; Perkins, D.; Chow, J. Sense of Community, Neighboring, and Social Capital as Predictors of Local Political Participation in China. Am. J. Community Psychol. 2010, 45, 259–271. [Google Scholar] [CrossRef] [PubMed]
- Lundh, L.-G.; Foster, L. Embodiment as a Synthesis of Having a Body and Being a Body, and Its Role in Self-Identity and Mental Health. New Ideas Psychol. 2024, 74, 101083. [Google Scholar] [CrossRef]
- Rise, J.; Sheeran, P.; Sommer Hukkelberg, S. The Role of Self-identity in the Theory of Planned Behavior: A Meta-Analysis. J. Appl. Soc. Psychol. 2010, 40, 1085–1105. [Google Scholar] [CrossRef]
- Stets, J.E.; Burke, P.J. A Sociological Approach to Self and Identity. In Handbook of Self and Identity; The Guilford Press: New York, NY, USA, 2003; pp. 128–152. [Google Scholar]
- Rowe, I.; Marcia, J.E. Ego Identity Status, Formal Operations, and Moral Development. J. Youth Adolesc. 1980, 9, 87–99. [Google Scholar] [CrossRef] [PubMed]
- Stets, J.; Burke, P. Identity Theory and Social Identity Theory. Soc. Psychol. Q. 2000, 63, 224–237. [Google Scholar] [CrossRef]
- Ryan, R.M.; Deci, E.L. Chapter 2—When Rewards Compete with Nature: The Undermining of Intrinsic Motivation and Self-Regulation. In Intrinsic and Extrinsic Motivation; Sansone, C., Harackiewicz, J.M., Eds.; Academic Press: San Diego, CA, USA, 2000; pp. 13–54. [Google Scholar]
- Lequin, S.; Grolleau, G.; Mzoughi, N. Harnessing the Power of Identity to Encourage Farmers to Protect the Environment. Environ. Sci. Policy 2019, 93, 112–117. [Google Scholar] [CrossRef]
- Vande Velde, F.; Hudders, L.; Cauberghe, V.; Claerebout, E. Changing Farmers’ Behavior Intention with a Hint of Wit: The Moderating Influence of Humor on Message Sidedness. J. Environ. Psychol. 2018, 56, 97–103. [Google Scholar] [CrossRef]
- Nazu, S.; Saha, S.; Hossain, M.; Haque, S.; Khan, M. Willingness to Pay for Adopting Conservation Tillage Technologies in Wheat Cultivation: Policy Options for Small-Scale Farmers. Environ. Sci. Pollut. Res. 2022, 29, 63458–63471. [Google Scholar] [CrossRef]
- Bonasia, M.; De Simone, E.; D’Uva, M.; Napolitano, O. Environmental Protection and Happiness: A Long-Run Relationship in Europe. Environ. Impact Assess. Rev. 2022, 93, 106704. [Google Scholar] [CrossRef]
- Tiba, A.; Manea, L. The Embodied Simulation Account of Cognition in Rational Emotive Behaviour Therapy. New Ideas Psychol. 2018, 48, 12–20. [Google Scholar] [CrossRef]
- Weed, E.A.; Smith-Lovin, L. Theory in Sociology of Emotions. In Handbook of Contemporary Sociological Theory; Abrutyn, S., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 411–433. [Google Scholar]
- Vishkin, A.; Tamir, M. Emotion Norms Are Unique. Affect. Sci. 2023, 4, 453–457. [Google Scholar] [CrossRef] [PubMed]
- Burnham, E.; Zabel, S.; Navarro-Villarroel, C.; Ermakov, D.; Castro, M.; Neaman, A.; Otto, S. Enhancing Farmers’ Soil Conservation Behavior: Beyond Soil Science Knowledge. Geoderma 2023, 437, 116583. [Google Scholar] [CrossRef]
- Brown, É. Kantian Constructivism and the Normativity of Practical Identities. Dialogue-Can. Philos. Rev. 2018, 57, 571–590. [Google Scholar] [CrossRef]
- Savari, M.; Damaneh, H.; Damaneh, H.; Cotton, M. Integrating the Norm Activation Model and Theory of Planned Behaviour to Investigate Farmer Pro-Environmental Behavioural Intention. Sci. Rep. 2023, 13, 5584. [Google Scholar] [CrossRef] [PubMed]
- Scheepers, D.; Ellemers, N. Social Identity Theory. In Social Psychology in Action: Evidence-Based Interventions from Theory to Practice; Sassenberg, K., Vliek, M.L.W., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 129–143. [Google Scholar]
- Xin, Q.; Hao, S.; Xiaoqin, W.; Jiali, P. Brain Source Localization and Functional Connectivity in Group Identity Regulation of Overbidding in Contest. Neuroscience 2024, 541, 101–117. [Google Scholar] [CrossRef] [PubMed]
- Syropoulos, S.; Markowitz, E. Responsibility towards Future Generations Is a Strong Predictor of Proenvironmental Engagement. J. Environ. Psychol. 2024, 93, 102218. [Google Scholar] [CrossRef]
- Tay, M.-J.; Ng, T.-H.; Lim, Y.-S. Fostering Sustainable Agriculture: An Exploration of Localised Food Systems through Community Supported Agriculture. Environ. Sustain. Indic. 2024, 22, 100385. [Google Scholar] [CrossRef]
- Akerlof, G.; Kranton, R. Economics and Identity. Q. J. Econ. 2000, 115, 715–753. [Google Scholar] [CrossRef]
- Burke, J.; Running, K. Role Identities and Pro-Environmental Behavior among Farmers. Hum. Ecol. Rev. 2019, 25, 3–22. [Google Scholar] [CrossRef]
- Kiral Ucar, G.; Gezici Yalcin, M.; Özdemir Planalı, G.; Reese, G. Social Identities, Climate Change Denial, and Efficacy Beliefs as Predictors of pro-Environmental Engagements. J. Environ. Psychol. 2023, 91, 102144. [Google Scholar] [CrossRef]
- Song, B.; Robinson, G.M.; Zhou, Z. Agricultural Transformation and Ecosystem Services: A Case Study from Shaanxi Province, China. Habitat Int. 2017, 69, 114–125. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, F. Correlation between Land Use Spatial and Functional Transition: A Case Study of Shaanxi Province, China. Land Use Policy 2022, 119, 106194. [Google Scholar] [CrossRef]
- Liu, H.; Zhou, Y. Farmers’ Cognition and Behavioral Response towards Cultivated Land Quality Protection in Northeast China. Sustainability 2018, 10, 1905. [Google Scholar] [CrossRef]
- Wang, X. Exploration on the Level and Influencing Factors of Rural Teachers’ Self-Identification of Social Identity from the Perspective of Space—Based on the Machine Learning Model of SHAP Interpretation Method. Learn. Motiv. 2023, 83, 101895. [Google Scholar] [CrossRef]
- Faghani, A.; Valizadeh, N.; Bijani, M.; Haghighi, N. Towards Participation in Pro-Environmental Activities: Application of Dual-Pathway Model of Collective Action. J. Agric. Sci. Technol. 2023, 25, 565–579. [Google Scholar]
- Burton, R. The Influence of Farmer Demographic Characteristics on Environmental Behaviour: A Review. J. Environ. Manag. 2014, 135, 19–26. [Google Scholar] [CrossRef]
- Tatlidil, F.F.; Boz, I.; Tatlidil, H. Farmers’ Perception of Sustainable Agriculture and Its Determinants: A Case Study in Kahramanmaras Province of Turkey. Environ. Dev. Sustain. 2009, 11, 1091–1106. [Google Scholar] [CrossRef]
- Chin, W.W.; Marcolin, B.L.; Newsted, P.R. A Partial Least Squares Latent Variable Modeling Approach for Measuring Interaction Effects: Results from a Monte Carlo Simulation Study and an Electronic-Mail Emotion/Adoption Study. Inf. Syst. Res. 2003, 14, 189–217. [Google Scholar] [CrossRef]
- Hair, J.F.; Sarstedt, M.; Ringle, C.M.; Mena, J.A. An Assessment of the Use of Partial Least Squares Structural Equation Modeling in Marketing Research. J. Acad. Mark. Sci. 2012, 40, 414–433. [Google Scholar] [CrossRef]
- Dijkstra, T. Latent Variables and Indices: Herman Wold’s Basic Design and Partial Least Squares. In Handbook of Partial Least Squares. Springer Handbooks of Computational Statistics; Springer: Berlin/Heidelberg, Germany, 2010; pp. 23–46. [Google Scholar]
- Guo, H.; Rogers, S.; Li, J.; Li, C. Farmers to Urban Citizens? Understanding Resettled Households’ Adaptation to Urban Life in Shaanxi, China. Cities 2024, 145, 104667. [Google Scholar] [CrossRef]
- Ye, J. Left-behind Elderly: Shouldering a Disproportionate Share of Production and Reproduction in Supporting China’s Industrial Development Introduction: The Issue of Left-behind Elderly People in the Context of China’s Modernization. J. Peasant Stud. 2017, 44, 971–978. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, C.; Cai, Y. Varieties of Agri-Environmental Schemes in China: A Quantitative Assessment. Land Use Policy 2018, 71, 505–517. [Google Scholar] [CrossRef]
- Marine, S.C.; Martin, D.A.; Adalja, A.; Mathew, S.; Everts, K.L. Effect of Market Channel, Farm Scale, and Years in Production on Mid-Atlantic Vegetable Producers’ Knowledge and Implementation of Good Agricultural Practices. Food Control 2016, 59, 128–138. [Google Scholar] [CrossRef]
- Liu, J.; Fang, Y.; Wang, G.; Liu, B.; Wang, R. The Aging of Farmers and Its Challenges for Labor-Intensive Agriculture in China: A Perspective on Farmland Transfer Plans for Farmers’ Retirement. J. Rural Stud. 2023, 100, 103013. [Google Scholar] [CrossRef]
- Ye, S.; Ren, S.; Song, C.; Du, Z.; Wang, K.; Du, B.; Cheng, F.; Zhu, D. Spatial Pattern of Cultivated Land Fragmentation in Mainland China: Characteristics, Dominant Factors, and Countermeasures. Land Use Policy 2024, 139, 107070. [Google Scholar] [CrossRef]
- Alhebshi, S.; Hilary, S.; Safi, S.K.H.; Ali, H.I.; Cheikh Ismail, L.; Al Dhaheri, A.; Stojanovska, L. Validity and Reliability of the Arabic Version of the Three-Factor Eating Questionnaire-R18. Heliyon 2023, 9, e17623. [Google Scholar] [CrossRef]
- Asaye, M.; Gelaye, K.; Matebe, Y.; Lindgren, H.; Erlandsson, K. Valid and Reliable Neonatal Near-Miss Assessment Scale in Ethiopia: A Psychometric Validation. Glob. Health Action 2022, 15, 2029334. [Google Scholar] [CrossRef]
- Boudreau, M.-C.; Gefen, D.; Straub, D.W. Validation in Information Systems Research: A State-of-the-Art Assessment. MIS Q. 2001, 25, 1–16. [Google Scholar] [CrossRef]
- Fornell, C.; Larcker, D.F. Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Hu, L.; Bentler, P.M. Fit Indices in Covariance Structure Modeling: Sensitivity to Underparameterized Model Misspecification. Psychol. Methods 1998, 3, 424–453. [Google Scholar] [CrossRef]
- Harrison, J.; Freeman, R. Is Organizational Democracy Worth the Effort? Acad. Manag. Exec. 2004, 18, 49–53. [Google Scholar]
- Garrone, M.; Emmers, D.; Olper, A.; Swinnen, J. Jobs and Agricultural Policy: Impact of the Common Agricultural Policy on EU Agricultural Employment. Food Policy 2019, 87, 101744. [Google Scholar] [CrossRef]
- Hébert, B.; Woodford, M. Neighborhood-Based Information Costs. Am. Econ. Rev. 2021, 111, 3225–3255. [Google Scholar] [CrossRef]
- Xu, G.; Liu, Y.; Huang, X.; Xu, Y.; Wan, C.; Zhou, Y. How Does Resettlement Policy Affect the Place Attachment of Resettled Farmers? Land Use Policy 2021, 107, 105476. [Google Scholar] [CrossRef]
- Zhang, C.; Song, Y. Road to the City: Impact of Land Expropriation on Farmers’ Urban Settlement Intention in China. Land Use Policy 2022, 123, 106432. [Google Scholar] [CrossRef]
- Yin, Z.; Wang, R.; Wu, X. Financial Inclusion, Natural Disasters and Energy Poverty: Evidence from China. Energy Econ. 2023, 126, 106986. [Google Scholar] [CrossRef]
- Li, H.; Chen, Y.; Chang, W. Place Attachment, Self-Efficacy, and Farmers’ Farmland Quality Protection Behavior: Evidence from China. Land 2023, 12, 1711. [Google Scholar] [CrossRef]
- Abadie, A.; Imbens, G.W. Large Sample Properties of Matching Estimators for Average Treatment Effects. Econometrica 2006, 74, 235–267. [Google Scholar] [CrossRef]
- Lavuri, R.; Roubaud, D.; Grebinevych, O. Sustainable Consumption Behaviour: Mediating Role of pro-Environment Self-Identity, Attitude, and Moderation Role of Environmental Protection Emotion. J. Environ. Manag. 2023, 347, 119106. [Google Scholar] [CrossRef]
- Shipley, N.; van Riper, C.; Stewart, W.; Chu, M.; Stedman, R.; Dolcos, F. Pride and Guilt as Place-Based Affective Antecedents to pro-Environmental Behavior. Front. Psychol. 2023, 13, 1084741. [Google Scholar] [CrossRef]
- Carfora, V.; Caso, D.; Sparks, P.; Conner, M. Moderating Effects of Pro-Environmental Self-Identity on pro-Environmental Intentions and Behaviour: A Multi-Behaviour Study. J. Environ. Psychol. 2017, 53, 92–99. [Google Scholar] [CrossRef]
- Van der Werff, E.; Steg, L.; Keizer, K. I Am What I Am, by Looking Past the Present The Influence of Biospheric Values and Past Behavior on Environmental Self-Identity. Environ. Behav. 2014, 46, 626–657. [Google Scholar] [CrossRef]
- Jacobs, T.P.; McConnell, A.R. Self-Transcendent Emotion Dispositions: Greater Connections with Nature and More Sustainable Behavior. J. Environ. Psychol. 2022, 81, 101797. [Google Scholar] [CrossRef]
- Ruvalcaba-Romero, N.A.; Fernández-Berrocal, P.; Salazar-Estrada, J.G.; Gallegos-Guajardo, J. Positive Emotions, Self-Esteem, Interpersonal Relationships and Social Support as Mediators between Emotional Intelligence and Life Satisfaction. J. Behav. Health Soc. Issues 2017, 9, 1–6. [Google Scholar] [CrossRef]
- Githinji, M.; van Noordwijk, M.; Muthuri, C.; Speelman, E.N.; Kampen, J.; Hofstede, G.J. “You Never Farm Alone”: Farmer Land-Use Decisions Influenced by Social Relations. J. Rural Stud. 2024, 108, 103284. [Google Scholar] [CrossRef]
Variable (Abbreviation) | Question (Units) | Scale/Definition |
---|---|---|
Dependent variable | ||
WCQP | WCQP1—Are you willing to replace chemical fertilizers with organic fertilizers? | 1 = Very Unwilling, 2 = Unwilling, 3 = Neutral, 4 = Willing, 5 = Very Willing |
WCQP2—Are you willing to reduce the use of pesticides? | ||
Core independent variable | ||
Cognitive identity | Cog1—You are a true rural person. | 1 = Strongly Disagree, 2 = Disagree, 3 = Neutral, 4 = Agree, 5 = Strongly Agree |
Cog2—You fully accept the characteristics of rural people. | ||
Cog3—You believe your rural identity deserves respect. | ||
Emotional identity | Emo1—You do not feel lonely in the countryside. | |
Emo2—Compared to urban identities, you do not feel inferior. | ||
Emo3—You enjoy the lifestyle of rural people. | ||
Behavior identity | Beh1—You enjoy interacting with rural people. | |
Beh2—You like to participate in rural community activities. | ||
Social identity | Soc1—You feel a sense of belonging to your village. | |
Soc2—You strongly identify with your village. | ||
Soc3—You are proud to be a member of your village. | ||
Control variable | ||
Gender | Male or Female. | 0 = Male and 1 = Female |
Age | Your age (years). | Actual age |
Edu | Education level. | 1= No schooling, 2 = Elementary school, 3 = Junior high school, 4 = High school, 5 = College or above |
Hlth | Health condition. | 1 = Very Poor, 2 = Poor, 3 = Average, 4 = Good, 5 = Very Good |
ALY | Years engaged in agricultural production (years). | Years engaged in agricultural production |
CLA | Your family’s grain crop cultivation area (mu). | Area of grain crops cultivated |
CLQ | How many plots of cultivated land does your family own (number of plots). | Number of cultivated land plots |
Income | Your family’s total income in 2022 (CNY 10,000). | Actual family income in 2022 |
Households | Number of people in your household (people). | Actual number of family members |
ALF | Number of family members engaged in agricultural labor (people). | Actual number of labor force members |
Variables | Indicator | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
Dependent Variable | |||||
WCQP | - | 3.752 | 1.004 | 1 | 5 |
- | WCQP1 | 3.500 | 1.184 | 1 | 5 |
- | WCQP2 | 4.005 | 1.157 | 1 | 5 |
Core Independent Variables | |||||
CID | - | 4.208 | 0.841 | 1 | 5 |
- | Cog1 | 4.469 | 0.926 | 1 | 5 |
- | Cog2 | 4.371 | 0.930 | 1 | 5 |
- | Cog3 | 3.784 | 1.257 | 1 | 5 |
EID | - | 3.423 | 1.201 | 1 | 5 |
- | Emo1 | 3.339 | 1.450 | 1 | 5 |
- | Emo2 | 3.467 | 1.378 | 1 | 5 |
- | Emo3 | 3.462 | 1.414 | 1 | 6 |
BID | - | 4.131 | 0.986 | 1 | 5 |
- | Beh1 | 4.212 | 0.999 | 1 | 5 |
- | Beh2 | 4.050 | 1.093 | 1 | 5 |
SID | - | 4.121 | 1.013 | 1 | 5 |
- | Soc1 | 4.185 | 1.066 | 1 | 5 |
- | Soc2 | 4.132 | 1.062 | 1 | 5 |
- | Soc3 | 4.048 | 1.116 | 1 | 5 |
Control Variables | |||||
Gender | - | 0.515 | 0.500 | 0 | 1 |
Age | - | 58.788 | 14.850 | 12 | 87 |
Edu | - | 2.651 | 1.160 | 1 | 5 |
Hlth | - | 3.524 | 1.244 | 1 | 5 |
ALY | - | 39.308 | 17.471 | 0 | 78 |
CLA | - | 5.021 | 3.738 | 0 | 25 |
CLQ | - | 2.959 | 1.972 | 0 | 18 |
Income | - | 5.019 | 4.696 | 0 | 35 |
Households | - | 4.777 | 1.956 | 1 | 14 |
ALF | - | 2.075 | 1.234 | 0 | 10 |
Variables | Factor Loading | Cronbach’s Alpha | CR | AVE | CID | EID | BID | SID | WCQP |
---|---|---|---|---|---|---|---|---|---|
CID | 0.844 | 0.749 | 0.858 | 0.671 | 0.819 | ||||
0.911 | |||||||||
0.687 | |||||||||
EID | 0.830 | 0.807 | 0.886 | 0.722 | 0.297 | 0.850 | |||
0.846 | |||||||||
0.872 | |||||||||
BID | 0.957 | 0.874 | 0.940 | 0.886 | 0.267 | 0.221 | 0.942 | ||
0.925 | |||||||||
SID | 0.922 | 0.930 | 0.955 | 0.876 | 0.402 | 0.189 | 0.168 | 0.936 | |
0.953 | |||||||||
0.933 | |||||||||
WCQP | 0.874 | 0.639 | 0.847 | 0.734 | 0.413 | 0.457 | 0.258 | 0.320 | 0.857 |
0.839 |
Index | Model Value | Recommended Value | Acceptance |
---|---|---|---|
SRMR | 0.043 | <0.08 good fit; <0.1 reasonable fit | Good |
d_ULS | 0.508 | Below 0.95 | Reasonable |
d_G | 0.290 | Below 0.95 | Reasonable |
NFI | 0.813 | >0.9 good fit; >0.8 reasonable fit | Reasonable |
Variables | First-Stage Regression | Second-Stage Regression | |||
---|---|---|---|---|---|
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | |
CID | - | 0.260 *** | |||
- | (0.057) | ||||
EID (subsidize policy) | 0.134 * | 2.111 *** | |||
(0.067) | (0.271) | ||||
BID | - | −0.445 *** | |||
- | (0.083) | ||||
SID (resettlement policy) | 0.200 *** | 0.685 *** | |||
(0.069) | (0.220) | ||||
Control variables | YES | YES | YES | YES | YES |
First-stage Chi2 | 0.190 | 6.379 ** | 1.341 | 25.343 *** | |
First-stage Cragg–Donald Wald F statistic | 37.551 | 109.920 | 63.846 | 148.807 | |
Second-stage R2 | 0.341 |
Variables | CID | EID | BID | SID | ||||
---|---|---|---|---|---|---|---|---|
Coef. | Robust Std. Err. | Coef. | Robust Std. Err. | Coef. | Robust Std. Err. | Coef. | Robust Std. Err. | |
Gender | 0.466 ** | 0.208 | 0.003 | 0.208 | −0.654 *** | 0.212 | 0.159 | 0.206 |
Age | −0.014 | 0.016 | −0.037 ** | 0.016 | −0.013 | 0.017 | −0.035 ** | 0.016 |
Edu | 0.058 | 0.108 | 0.333 *** | 0.102 | 0.237 ** | 0.106 | 0.175 * | 0.106 |
Hlth | 0.026 | 0.089 | −0.125 | 0.089 | 0.092 | 0.087 | 0.029 | 0.086 |
ALY | 0.035 ** | 0.014 | 0.032 ** | 0.013 | 0.034 ** | 0.015 | 0.038 *** | 0.013 |
CLA | 0.025 | 0.030 | 0.009 | 0.029 | 0.067 ** | 0.032 | −0.015 | 0.029 |
CLQ | 0.022 | 0.060 | −0.041 | 0.050 | 0.016 | 0.053 | −0.042 | 0.051 |
Income | 0.082 *** | 0.030 | 0.046 ** | 0.023 | 0.018 | 0.022 | 0.031 | 0.023 |
Households | 0.001 | 0.061 | 0.041 | 0.060 | −0.002 | 0.056 | 0.070 | 0.057 |
ALF | −0.031 | 0.085 | −0.122 | 0.088 | −0.083 | 0.089 | −0.076 | 0.088 |
Prob > chi2 | 0.000 | 0.002 | 0.001 | 0.065 |
Variable | Matching Method | Average Treatment Effect | Standard Deviation | t-Value |
---|---|---|---|---|
CID | 1:3 nearest neighbor matching | 0.501 *** | 0.111 | 4.99 |
Caliper match | 0.493 *** | 0.123 | 5.28 | |
Nuclear matching | 0.555 *** | 0.100 | 5.57 | |
ATT mean | 0.516 | - | - | |
EID | 1:3 nearest neighbor matching | 0.685 *** | 0.111 | 5.67 |
Caliper match | 0.737 *** | 0.098 | 7.32 | |
Nuclear matching | 0.760 *** | 0.094 | 8.09 | |
ATT mean | 0.727 | - | - | |
BID | 1:3 nearest neighbor matching | 0.805 *** | 0.116 | 6.61 |
Caliper match | 0.740 *** | 0.100 | 7.05 | |
Nuclear matching | 0.766 *** | 0.098 | 7.72 | |
ATT mean | 0.770 | - | - | |
SID | 1:3 nearest neighbor matching | 0.309 ** | 0.118 | 2.72 |
Caliper match | 0.102 *** | 0.103 | 3.42 | |
Nuclear matching | 0.357 ** | 0.101 | 2.34 | |
ATT mean | 0.256 | - | - |
Group | Matching Stage | Matching Method | Pseudo-R2 | LR | Mean Bias | Med. Bias | B |
---|---|---|---|---|---|---|---|
CID | Before matching | 0.054 | 32.45 *** | 30.5 | 32.3 | 54.6 + | |
After matching | 1:3 nearest neighbor matching | 0.001 | 0.46 | 2.8 | 1.3 | 6.0 | |
Caliper match | 0.002 | 1.19 | 5.1 | 4.2 | 10.0 | ||
Nuclear matching | 0.001 | 0.93 | 3.7 | 3.0 | 8.8 | ||
EID | Before matching | 0.037 | 22.36 *** | 18.7 | 19.1 | 45.1 + | |
After matching | 1:3 nearest neighbor matching | 0.002 | 1.29 | 5.7 | 5.7 | 10.8 | |
Caliper match | 0.001 | 0.81 | 5.3 | 5.5 | 8.6 | ||
Nuclear matching | 0.001 | 0.40 | 3.5 | 3.8 | 6.0 | ||
BID | Before matching | 0.051 | 30.72 *** | 22.4 | 28.9 | 53.7 + | |
After matching | 1:3 nearest neighbor matching | 0.001 | 0.81 | 3.1 | 3.4 | 8.9 | |
Caliper match | 0.000 | 0.21 | 1.7 | 1.5 | 4.6 | ||
Nuclear matching | 0.001 | 0.77 | 3.2 | 3.4 | 8.8 | ||
SID | Before matching | 0.018 | 10.87 ** | 9.3 | 7.6 | 32.3 + | |
After matching | 1:3 nearest neighbor matching | 0.001 | 1.00 | 6.1 | 6.7 | 8.7 | |
Caliper match | 0.000 | 0.15 | 2.9 | 3.3 | 3.5 | ||
Nuclear matching | 0.001 | 0.44 | 1.0 | 0.7 | 5.8 |
Variables | Model 6 | Model 7 | ||
---|---|---|---|---|
Coef. | Robust Std. Err. | Coef. | Robust Std. Err. | |
CID | 0.085 * | 0.050 | 0.270 *** | 0.059 |
EID | 0.333 *** | 0.041 | 0.309 *** | 0.041 |
BID | 0.089 ** | 0.042 | 0.098 ** | 0.041 |
SID | 0.227 *** | 0.051 | 0.140 *** | 0.049 |
CID×SID | 0.131 * | 0.069 | 0.087 ** | 0.044 |
EID×SID | −0.129 *** | 0.044 | −0.191 *** | 0.036 |
BID×SID | −0.041 | 0.066 | 0.015 | 0.044 |
Gender | 0.08 | 0.043 | 0.027 | 0.108 |
Age | −0.015 | 0.103 | 0.007 | 0.041 |
Edu | −0.016 | 0.048 | 0.072 | 0.048 |
Hlth | 0.057 | 0.044 | 0.088 ** | 0.044 |
ALY | 0.099 | 0.099 | 0.082 | 0.104 |
CLA | 0.062 | 0.042 | 0.046 | 0.042 |
CLQ | −0.088 ** | 0.040 | −0.108 *** | 0.038 |
Income | −0.089 | 0.046 | −0.070 | 0.049 |
Households | 0.066 | 0.049 | 0.065 | 0.047 |
ALF | −0.024 | 0.048 | −0.039 | 0.043 |
Variables | I | II | III | IV | ||||
---|---|---|---|---|---|---|---|---|
Coef. | Robust Std. Err. | Coef. | Robust Std. Err. | Coef. | Robust Std. Err. | Coef. | Robust Std. Err. | |
CID | 0.020 | 0.116 | −0.011 | 0.177 | 0.168 * | 0.087 | 0.267 *** | 0.099 |
EID | 0.135 | 0.105 | 0.956 *** | 0.162 | −0.060 | 0.098 | 0.250 *** | 0.085 |
BID | 0.171 * | 0.098 | −0.014 | 0.090 | −0.025 | 0.081 | 0.155 * | 0.085 |
SID | 0.256 ** | 0.114 | −0.029 | 0.102 | 0.477 *** | 0.052 | 0.052 | 0.090 |
EID×SID | −0.314 ** | 0.151 | 0.158 | 0.174 | −0.101 | 0.139 | 0.288 *** | 0.079 |
Control variables | YES | YES | YES | YES |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Liu, J.; Chang, W.-Y. Influence of Self-Identity and Social Identity on Farmers’ Willingness for Cultivated Land Quality Protection. Land 2024, 13, 1392. https://doi.org/10.3390/land13091392
Li H, Liu J, Chang W-Y. Influence of Self-Identity and Social Identity on Farmers’ Willingness for Cultivated Land Quality Protection. Land. 2024; 13(9):1392. https://doi.org/10.3390/land13091392
Chicago/Turabian StyleLi, Hao, Junchi Liu, and Wei-Yew Chang. 2024. "Influence of Self-Identity and Social Identity on Farmers’ Willingness for Cultivated Land Quality Protection" Land 13, no. 9: 1392. https://doi.org/10.3390/land13091392
APA StyleLi, H., Liu, J., & Chang, W. -Y. (2024). Influence of Self-Identity and Social Identity on Farmers’ Willingness for Cultivated Land Quality Protection. Land, 13(9), 1392. https://doi.org/10.3390/land13091392