Synergistic Development Pathways for National Parks and Local Regions: Shared Socioeconomic Pathway Scenario Forecasting and Optimization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Introduction of the Sanjiangyuan National Park
2.2. Scenario Planning Framework of Sanjiangyuan National Park
2.2.1. Principle
2.2.2. Technical Framework
2.3. Simulation of Socioeconomic Factors Based on the SSPs
2.3.1. Shared Socioeconomic Pathways
2.3.2. Population–Development–Environment Model
2.3.3. GDP Forecasting Model
2.4. Scenario Planning
2.4.1. Introduction to Scenario Planning
2.4.2. Defining the Focal Issue and Identifying Local Key Factors
Nature Conservation
Economic Development
3. Results
3.1. Future Population Change in Sanjiangyuan National Park
3.2. Changes in GDP
3.3. Develop Narratives of Scenario Planning
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dudley, N.; University of Queensland, School of Earth and Environmental Sciences; Ali, N.; Kettunen, M.; MacKinnon, K. Protected Areas and the Sustainable Development Goals. Parks 2017, 23, 9–12. [Google Scholar] [CrossRef]
- Leal Filho, W.; Azeiteiro, U.; Alves, F.; Pace, P.; Mifsud, M.; Brandli, L.; Caeiro, S.S.; Disterheft, A. Reinvigorating the Sustainable Development Research Agenda: The Role of the Sustainable Development Goals (SDG). Int. J. Sustain. Dev. World Ecol. 2018, 25, 131–142. [Google Scholar] [CrossRef]
- Wang, J.-H.Z. National Parks in China: Parks for People or for the Nation? Land Use Policy 2019, 81, 825–833. [Google Scholar] [CrossRef]
- Pretty, J.N.; Pimbert, M.P. Beyond Conservation Ideology and the Wilderness. Nat. Resour. Forum 2009, 19, 5–14. [Google Scholar] [CrossRef]
- Peng, J.; Xiao, H.; Wang, R.; Qi, Y. The Impacts of Establishing Pilot National Parks on Local Residents’ Livelihoods and Their Coping Strategies in China: A Case Study of Qilianshan National Park. Sustainability 2022, 14, 3537. [Google Scholar] [CrossRef]
- Bryan, B.A.; Crossman, N.D. Systematic Regional Planning for Multiple Objective Natural Resource Management. J. Environ. Manag. 2008, 88, 1175–1189. [Google Scholar] [CrossRef] [PubMed]
- Lupp, G.; Konold, W.; Bastian, O. Landscape Management and Landscape Changes towards More Naturalness and Wilderness: Effects on Scenic Qualities-The Case of the Muritz National Park in Germany. J. Nat. Conserv. 2013, 21, 10–21. [Google Scholar] [CrossRef]
- Calkoen, S.T.S.v.B.; Muehlbauer, L.; Andren, H.; Apollonio, M.; Balciauskas, L.; Belotti, E.; Carranza, J.; Cottam, J.; Filli, F.; Gatiso, T.T.; et al. Ungulate Management in European National Parks: Why a More Integrated European Policy Is Needed. J. Environ. Manag. 2020, 260, 110068. [Google Scholar] [CrossRef]
- Lin, J.-J.; Li, C.-N. A Grey Programming Model for Regional Transit-Oriented Development Planning. Pap. Reg. Sci. 2008, 87, 119–138. [Google Scholar] [CrossRef]
- Radovanović, T.; Grandov, Z.; Filijović, M. The Essence and Implications of Integrated Local Development Planning. EMC Rev. Econ. Mark. Commun. Rev. 2019, 18, 248–263. [Google Scholar] [CrossRef]
- Schindler, S.; Kanai, J.M. Getting the Territory Right: Infrastructure-Led Development and the Re-Emergence of Spatial Planning Strategies. Reg. Stud. 2021, 55, 40–51. [Google Scholar] [CrossRef]
- Cong, N.; Shen, M.; Yang, W.; Yang, Z.; Zhang, G.; Piao, S. Varying Responses of Vegetation Activity to Climate Changes on the Tibetan Plateau Grassland. Int. J. Biometeorol. 2017, 61, 1433–1444. [Google Scholar] [CrossRef]
- Zhao, D.; Wu, S.; Yin, Y.; Yin, Z.-Y. Vegetation Distribution on Tibetan Plateau under Climate Change Scenario. Reg. Environ. Change 2011, 11, 905–915. [Google Scholar] [CrossRef]
- Piao, S.; Zhang, X.; Wang, T.; Liang, E.; Wang, S.; Zhu, J.; Niu, B. Responses and feedback of the Tibetan Plateau’s alpine ecosystem to climate change. Chin. Sci. Bull. Chin. 2019, 64, 2842–2855. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Kriegler, E.; Ebi, K.L.; Kemp-Benedict, E.; Riahi, K.; Rothman, D.S.; Van Ruijven, B.J.; Van Vuuren, D.P.; Birkmann, J.; Kok, K.; et al. The Roads Ahead: Narratives for Shared Socioeconomic Pathways Describing World Futures in the 21st Century. Glob. Environ. Change 2017, 42, 169–180. [Google Scholar] [CrossRef]
- Tsoukas, H.; Shepherd, J. Managing the Future: Strategic Foresight in the Knowledge Economy; John Wiley & Sons: Hoboken, NJ, USA, 2004; 240p. [Google Scholar]
- Ghamdi, S.M.A. The Use of Strategic Planning Tools and Techniques in Saudi Arabia: An Empirical Study. Int. J. Manag. 2005, 22, 376–395. [Google Scholar]
- Tapinos, E. Perceived Environmental Uncertainty in Scenario Planning. Futures 2012, 44, 338–345. [Google Scholar] [CrossRef]
- Meissner, P.; Wulf, T. Cognitive Benefits of Scenario Planning: Its Impact on Biases and Decision Quality. Technol. Forecast. Soc. Change 2013, 80, 801–814. [Google Scholar] [CrossRef]
- Garb, Y.; Pulver, S.; VanDeveer, S.D. Scenarios in Society, Society in Scenarios: Toward a Social Scientific Analysis of Storyline-Driven Environmental Modeling. Environ. Res. Lett. 2008, 3, 045015. [Google Scholar] [CrossRef]
- Bootz, J.-P. Strategic Foresight and Organizational Learning: A Survey and Critical Analysis. Technol. Forecast. Soc. Change 2010, 77, 1588–1594. [Google Scholar] [CrossRef]
- Jaoude, G.A.; Mumm, O.; Carlow, V.M. An Overview of Scenario Approaches: A Guide for Urban Design and Planning. J. Plan. Lit. 2022, 37, 467–487. [Google Scholar] [CrossRef]
- Zegras, C.; Rayle, L. Testing the Rhetoric: An Approach to Assess Scenario Planning’s Role as a Catalyst for Urban Policy Integration. Futures 2012, 44, 303–318. [Google Scholar] [CrossRef]
- Dongying, W. A Comparative Study of National Park Management System: A Case Study of the United States, Canada, Germany, the United Kingdom, New Zealand, South Africa, France, Russia, South Korea and Japan. J. Nanjing For. Univ. Soc. Sci. Ed. 2017, 17, 89–98. [Google Scholar]
- Rui, Y. Discussions on Nine Relationships to Build a National Park and Protected Area System in China. Chin. Landsc. Archit. 2014, 30, 5–8. [Google Scholar]
- Lu, Y.; Shan, Y. National Park System and Optimization of its Community Governance System: Based on the Experience of Sanjiangyuan National Park. J. Hohai Univ. Philos. Soc. Sci. 2023, 25, 67–76. [Google Scholar]
- Duzgunes, E.; Demirel, O. Importance of Visitor Management in National Park Planning. J. Environ. Prot. Ecol. 2016, 17, 675–680. [Google Scholar]
- Thede, A.K.; Haider, W.; Rutherford, M.B. Zoning in National Parks: Are Canadian Zoning Practices Outdated? J. Sustain. Tour. 2014, 22, 626–645. [Google Scholar] [CrossRef]
- Negru, C.; Dominguez Gaibor, I.; Halalisan, A.-F.; Popa, B. Management Effectiveness Assessment for Ecuador’s National Parks. Diversity 2020, 12, 487. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Z.; Shrestha, A.; Zhou, X.; Teng, M.; Wang, P.; Wang, G. Exploring the Main Determinants of National Park Community Management: Evidence from Bibliometric Analysis. Forests 2023, 14, 1850. [Google Scholar] [CrossRef]
- Reimann, L.; Merkens, J.-L.; Vafeidis, A.T. Regionalized Shared Socioeconomic Pathways: Narratives and Spatial Population Projections for the Mediterranean Coastal Zone. Reg. Environ. Change 2018, 18, 235–245. [Google Scholar] [CrossRef]
- Jones, B.; O’Neill, B.C. Spatially Explicit Global Population Scenarios Consistent with the Shared Socioeconomic Pathways. Environ. Res. Lett. 2016, 11, 084003. [Google Scholar] [CrossRef]
- Jiang, D.; Chang, Y.; Zhong, F.; Yao, W.; Zhang, Y.; Ding, X.; Huang, C. Future Growth Pattern Projections under Shared Socioeconomic Pathways: A Municipal City Bottom-up Aggregated Study Based on a Localised Scenario and Population Projections for China. Econ. Res. Ekon. Istraživanja 2022, 35, 2574–2595. [Google Scholar] [CrossRef]
- Rao, N.D.; Sauer, P.; Gidden, M.; Riahi, K. Income Inequality Projections for the Shared Socioeconomic Pathways (SSPs). Futures 2019, 105, 27–39. [Google Scholar] [CrossRef]
- Jiang, L.; O’Neill, B.C. Global Urbanization Projections for the Shared Socioeconomic Pathways. Glob. Environ. Change 2017, 42, 193–199. [Google Scholar] [CrossRef]
- Song, S.; Liu, Z.; He, C.; Lu, W. Evaluating the Effects of Urban Expansion on Natural Habitat Quality by Coupling Localized Shared Socioeconomic Pathways and the Land Use Scenario Dynamics-Urban Model. Ecol. Indic. 2020, 112, 106071. [Google Scholar] [CrossRef]
- Daigneault, A.; Favero, A. Global Forest Management, Carbon Sequestration and Bioenergy Supply under Alternative Shared Socioeconomic Pathways. Land Use Policy 2019, 103, 105302. [Google Scholar] [CrossRef]
- Yang, P.; Yao, Y.-F.; Mi, Z.; Cao, Y.-F.; Liao, H.; Yu, B.-Y.; Liang, Q.-M.; Coffman, D.; Wei, Y.-M. Social Cost of Carbon under Shared Socioeconomic Pathways. Glob. Environ. Change 2018, 53, 225–232. [Google Scholar] [CrossRef]
- Zhang, S.; Zhong, Q.; Cheng, D.; Xu, C.; Chang, Y.; Lin, Y.; Li, B. Landscape Ecological Risk Projection Based on the PLUS Model under the Localized Shared Socioeconomic Pathways in the Fujian Delta Region. Ecol. Indic. 2022, 136, 108642. [Google Scholar] [CrossRef]
- Martine, G. Population/Development/Environment Trends in a Globalized Context: Challenges for the 21st Century. Genus 2005, 61, 247–277. [Google Scholar]
- de Sherbinin, A.; Carr, D.; Cassels, S.; Jiang, L. Population and Environment. Annu. Rev. Environ. Resour. 2007, 32, 345–373. [Google Scholar] [CrossRef]
- Douglas, P.H. The Cobb-Douglas Production Function Once Again: Its History, Its Testing, and Some New Empirical Values. J. Polit. Econ. 1976, 84, 903–915. [Google Scholar] [CrossRef]
- Kc, S.; Lutz, W. The Human Core of the Shared Socioeconomic Pathways: Population Scenarios by Age, Sex and Level of Education for All Countries to 2100. Glob. Environ. Change 2017, 42, 181–192. [Google Scholar] [CrossRef] [PubMed]
- Shan, H. Reestimating the Capital Stock of China 1952–2006. J. Quant. Tech. Econ. 2008, 10, 17–31. [Google Scholar]
- Johansson, Å.; Guillemette, Y.; Murtin, F.; Turner, D.; Nicoletti, G.; de la Maisonneuve, C.; Bagnoli, P.; Bousquet, G.; Spinelli, F. Long-Term Growth Scenarios; OECD: Paris, France, 2013. [Google Scholar] [CrossRef]
- Dellink, R.; Chateau, J.; Lanzi, E.; Magné, B. Long-Term Economic Growth Projections in the Shared Socioeconomic Pathways. Glob. Environ. Change 2017, 42, 200–214. [Google Scholar] [CrossRef]
- Schoemaker, P.J.H.; Heijden, C.A.J.M. van der Integrating Scenarios into Strategic Planning at Royal Dutch/Shell. Strategy Leadersh. 1992, 20, 41–46. [Google Scholar]
- Chermack, T.J.; Coons, L.M. Scenario Planning: Pierre Wack’s Hidden Messages. Futures 2015, 73, 187–193. [Google Scholar] [CrossRef]
- O’Brien, F.A. Scenario Planning—Lessons for Practice from Teaching and Learning. Eur. J. Oper. Res. 2004, 152, 709–722. [Google Scholar] [CrossRef]
- Mackay, B.; Mckiernan, P. Creativity and Dysfunction in Strategic Processes: The Case of Scenario Planning. Futures 2010, 42, 271–281. [Google Scholar] [CrossRef]
- Wilson, I. From Scenario Thinking to Strategic Action. Technol. Forecast. Soc. Change 2000, 65, 23–29. [Google Scholar] [CrossRef]
- Amer, M.; Daim, T.U.; Jetter, A. A Review of Scenario Planning. Futures 2013, 46, 23–40. [Google Scholar] [CrossRef]
- Symstad, A.J.; Fisichelli, N.A.; Miller, B.W.; Rowland, E.; Schuurman, G.W. Multiple Methods for Multiple Futures: Integrating Qualitative Scenario Planning and Quantitative Simulation Modeling for Natural Resource Decision Making. Clim. Risk Manag. 2017, 17, 78–91. [Google Scholar] [CrossRef]
- Knapp, C.N.; Fresco, N.; Krutikov, L. Managing Alaska’s National Parks in an Era of Uncertainty: An Evaluation of Scenario Planning Workshops. Reg. Environ. Change 2017, 17, 1541–1552. [Google Scholar] [CrossRef]
- Moss, R.H.; Edmonds, J.A.; Hibbard, K.A.; Manning, M.R.; Rose, S.K.; van Vuuren, D.P.; Carter, T.R.; Emori, S.; Kainuma, M.; Kram, T.; et al. The next Generation of Scenarios for Climate Change Research and Assessment. Nature 2010, 463, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Riahi, K.; van Vuuren, D.P.; Kriegler, E.; Edmonds, J.; O’Neill, B.C.; Fujimori, S.; Bauer, N.; Calvin, K.; Dellink, R.; Fricko, O.; et al. The Shared Socioeconomic Pathways and Their Energy, Land Use, and Greenhouse Gas Emissions Implications: An Overview. Glob. Environ. Change 2017, 42, 153–168. [Google Scholar] [CrossRef]
- Zhou, D.Q.; Grumbine, R.E. National Parks in China: Experiments with Protecting Nature and Human Livelihoods in Yunnan Province, Peoples’ Republic of China (PRC). Biol. Conserv. 2011, 144, 1314–1321. [Google Scholar] [CrossRef]
- Sun, Q.; Liu, W.; Gao, Y.; Li, J.; Yang, C. Spatiotemporal Variation and Climate Influence Factors of Vegetation Ecological Quality in the Sanjiangyuan National Park. Sustainability 2020, 12, 6634. [Google Scholar] [CrossRef]
- Dietz, T.; Jorgenson, A.K. Towards a New View of Sustainable Development: Human Well-Being and Environmental Stress. Environ. Res. Lett. 2014, 9, 3. [Google Scholar] [CrossRef]
- Meng, M.; Fan, W.; Lu, J.; Dong, X.; Wei, H. Research on the Influence of Energy Utilization and Economic Development on Human Well-Being in Qinghai-Tibet Plateau. Sustainability 2021, 13, 196. [Google Scholar] [CrossRef]
- Fano, E.A.; Mistri, M.; Rossi, R. The Ecofunctional Quality Index (EQI): A New Tool for Assessing Lagoonal Ecosystem Impairment. Estuar. Coast. Shelf Sci. 2003, 56, 709–716. [Google Scholar] [CrossRef]
Aspects Involved in SSPS | SSP1 | SSP2 | SSP3 | SSP4 | SSP5 |
---|---|---|---|---|---|
Economic growth | High | Middle | Low | Middle | High |
Population growth | High | Middle | High | Middle | Low |
Technology development | High | Middle | Low | Middle | High |
Environmental policy | Improve management of local and global issues; better control of pollutants | Just focus on local pollutants, with only moderate success | Environmental concerns have low priority | Focus on the environment in areas with high-level development; less attention paid to vulnerable areas | Focus on the local environment with obvious improvements but little attention paid to global issues |
Environment | Improve conditions over time | Continuous degradation | Severe deterioration | High/middle income areas are highly improved; otherwise, the areas are degraded | Highly engineered method; successful management of local problems |
Pathway | SSP1 | SSP2 | SSP3 | SSP4 | SSP5 | ||
---|---|---|---|---|---|---|---|
Convergence target (numeric value) | 0.68 | Low and middle income | 0.7 | 0.6 | Low income | 0.71 | 0.8 |
High and middle income | 0.7 | Low and middle income | 0.74 | ||||
High income | 0.7 | High income | 0.78 | ||||
Convergence time (years) | 120 | Low and middle income | 120 | 80 | Low income | 200 | 100 |
High and middle income | 100 | Middle income | 150 | ||||
High income | 80 | High income | 100 |
Paths | Fertility Rate | Mortality Rate | Life Expectancy | Speed of Rural–Urban Migration |
---|---|---|---|---|
SSP1 | High | Low | High | Fast |
SSP2 | Medium | Medium | Medium | Medium |
SSP3 | Low | High | Low | Slow |
SSP4 | Low | Medium | Medium | High-income provinces, medium Low- and middle-income provinces, fast |
SSP5 | High | Low | High | Fast |
Pathway | SSP1 | SSP2 | SSP3 | SSP4 | SSP5 | ||
---|---|---|---|---|---|---|---|
Annual changes (years) | 0.10 | Low and middle income | 0.04 | 0.02 | Low income | 0.03 | 0.10 |
High and middle income | 0.06 | Middle income | 0.04 | ||||
High income | 0.08 | High income | 0.07 | ||||
2050 expected target (national average, year) | 13.6 | Low and middle income | 11.5 | 10.8 | Low income | 11.2 | 13.6 |
High and middle income | 12.2 | Middle income | 11.5 | ||||
High income | 12.9 | High income | 12.6 |
Pathway | SSP1 | SSP2 | SSP3 | SSP4 | SSP5 | ||
---|---|---|---|---|---|---|---|
Convergence level (numeric value) | 9.20% | Low and middle income | 10.80% | 11.90% | Low income | 11.10% | 12.80% |
High and middle income | 10.30% | Middle income | 11.50% | ||||
High income | 9.80% | High income | 12.30% | ||||
Convergence time (years) | 150 | Low and middleincome | 100 | 50 | Low income | 150 | 100 |
High and middle income | 100 | Middle income | 120 | ||||
High income | 100 | High income | 100 |
Pathway | SSP1 | SSP2 | SSP3 | SSP4 | SSP5 | ||
---|---|---|---|---|---|---|---|
Convergence level (%) | −0.54 | Low and middle income | −0.44 | −0.70 | Low income | −0.61 | −0.31 |
High and middle income | −0.47 | Middle income | −0.52 | ||||
High income | −0.50 | High income | −0.37 | ||||
Convergence time (%) | 27 | Low and middle income | 30 | 20 | Low income | 24 | 35 |
High and middle income | 29 | Middle income | 27 | ||||
High income | 28 | High income | 33 |
Pathway | SSP1 | SSP2 | SSP3 | SSP4 | SSP5 |
---|---|---|---|---|---|
Convergence level (numeric value) | 0.65 | 0.65 | 0.55 | 0.60 | 0.75 |
Convergence time (years) | 100 | 150 | 150 | 100 | 250 |
Pathway | SSP1 | SSP2 | SSP3 | SSP4 | SSP5 | ||
---|---|---|---|---|---|---|---|
Convergence level (%) | 0.90 | Low and middle income | 0.90 | 0.20 | Low income | 0.30 | 1.20 |
High and middle income | 1.00 | Middle income | 0.50 | ||||
High income | 1.10 | High income | 1.00 | ||||
Convergence time (years) | 50 | Low and middle income | 100 | 20 | Low income | 100 | 50 |
High and middle income | 100 | Middle income | 80 | ||||
High income | 100 | High income | 50 |
Classification | First-Level Indicator Layer | Second-Level Indicator Layer |
---|---|---|
Nature conservation | Climate change | Changes in average annual temperature, precipitation, and sunshine hours |
Water resource protection | Surface and groundwater resources | |
Soil and water conservation | Soil erosion intensity conservation | |
Ecosystem quality | Vegetation coverage, desertification, environmental quality, etc. | |
Economic development | Human activities | Changes in settlements, roads, and infrastructure |
Policies and measures | Policies and management measures |
Land Category | Indicators | 2017 | 2018 | 2019 | 2020 |
---|---|---|---|---|---|
Grassland | Grass height (cm) | 6.2 | 7.2 | 4.89 | 4.89 |
Average coverage of dominant species | 32.93% | 36.40% | 30.05% | 30.05% | |
Average grass yield (kg/hectare) | 2189.91 | 2389.91 | 2065.91 | 2065.91 | |
Forest | Cypress plot canopy closure | 0.41 | 0.43 | 0.43 | 0.44 |
Standard wood stock of cypress plots (m3) | 0.0365 | 0.04 | 0.0367 | 0.0394 | |
Annual average growth of shrub height (cm) | 3.68 | 3.7 | 3.71 | 0.22 | |
Desertified Land | Average vegetation coverage | 38% | 38% | 40% | 41% |
Biomass (g/m2) | 94 | 94 | 94 | 96.4 | |
Average height of indicator species (cm) | 19.79 | 19.79 | 20.06 | 20.26 | |
Wetland | Average vegetation coverage | 66% | 66% | 66% | 67% |
Biomass (g/m2) | 128 | 128 | 130 | 137 | |
Average height of indicator species (cm) | 13.68 | 13.68 | 13.68 | 13.7 |
Zone | Administrative Staffing | Public Service Staffing | Total Staff |
---|---|---|---|
Sanjiangyuan National Park | 99 | 203 | 302 |
Yellow River Zone | 12 | 39 | 51 |
Yangtze River Zone | 25 | 109 | 124 |
Lancang River Zone | 12 | 33 | 45 |
Year | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | Total |
---|---|---|---|---|---|---|---|---|
Funds | 0.18 | 0.96 | 1.25 | 1.04 | 1.20 | 1.03 | 0.81 | 6.45 |
Category | Education | Age | Gender | ||||||
---|---|---|---|---|---|---|---|---|---|
Primary School | Above | 18~30 | 31~40 | 41~50 | 51~60 | Above 60 | Male | Female | |
Number of people | 3142 | 0 | 564 | 1075 | 905 | 574 | 24 | 1943 | 1208 |
Percentage | 100 | 0 | 17.95 | 34.21 | 28.80 | 18.27 | 0.76 | 61.84 | 38.45 |
Ethnicity | 3142 (100%) |
Scenario | Corresponding SSPs Path | Scenario Threshold | Planning Content |
---|---|---|---|
Plan A | SSP1 | High requirements for vegetation protection; resident economic development | Development in accordance with local conditions and technological innovation |
Plan B | SSP2, SSP4 | Regional development; unbalanced resident economic development | Different regions develop separately |
Plan C | SSP5 | Low requirements for vegetation protection; rapidy resident economic development | Minimum ecological protection and attention paid to resident economic development; development fruits feedback |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, D.; Zhong, F.; Nie, Y.; Ma, Y.; Liu, Y.; Liu, Y. Synergistic Development Pathways for National Parks and Local Regions: Shared Socioeconomic Pathway Scenario Forecasting and Optimization. Land 2024, 13, 1409. https://doi.org/10.3390/land13091409
Sun D, Zhong F, Nie Y, Ma Y, Liu Y, Liu Y. Synergistic Development Pathways for National Parks and Local Regions: Shared Socioeconomic Pathway Scenario Forecasting and Optimization. Land. 2024; 13(9):1409. https://doi.org/10.3390/land13091409
Chicago/Turabian StyleSun, Danni, Fanglei Zhong, Ying Nie, Yulian Ma, Yusong Liu, and Yang Liu. 2024. "Synergistic Development Pathways for National Parks and Local Regions: Shared Socioeconomic Pathway Scenario Forecasting and Optimization" Land 13, no. 9: 1409. https://doi.org/10.3390/land13091409
APA StyleSun, D., Zhong, F., Nie, Y., Ma, Y., Liu, Y., & Liu, Y. (2024). Synergistic Development Pathways for National Parks and Local Regions: Shared Socioeconomic Pathway Scenario Forecasting and Optimization. Land, 13(9), 1409. https://doi.org/10.3390/land13091409