Runoff and Evapotranspiration–Precipitation Ratios as Indicators of Water Regulation Ecosystem Services in Urban Forests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site and Stand Description
2.1.1. The Mixed Forest
2.1.2. The Riparian Forest
- (a)
- The Pine Forest
- (b)
- The Deciduous Forest
- (c)
- The Forest Regeneration
2.2. Indicators of Water Regulation Ecosystem Services (ES)
2.3. Meteorological Data and Soil Hydrological Measurements
2.4. The Brook90 Hydrological Model
2.5. Model Fitting and Testing
2.6. Data Analysis and Statistical Methods
3. Results
3.1. Model Fitting and Testing
3.2. Simulated Hydrological Fluxes
3.3. Indicators of Water Regulation Ecosystem Services (ES)
4. Discussion
4.1. Hydrological Fluxes in Urban Forests
4.2. Indicators of Water Regulation Ecosystem Services (ES)
5. Conclusions
- Including a wider range of cities and climate types to test the generalisability of the results presented in this study;
- Perform a cross-validation of the model;
- Perform a similar analysis for other physically based models;
- Develop specific urban forest management plans tailored to different forest types and urban hydrological characteristics.
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- MEA. Ecosystems and Human Well-Being: Synthesis; MEA: Washington, DC, USA, 2005; p. 281. [Google Scholar]
- de Groot, R.S.; Alkemade, R.; Braat, L.; Hein, L.; Willemen, L. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol. Complex. 2010, 7, 260–272. [Google Scholar] [CrossRef]
- Brauman, K.A.; Daily, G.C.; Duarte, T.K.e.; Mooney, H.A. The Nature and Value of Ecosystem Services: An Overview Highlighting Hydrologic Services. Annu. Rev. Environ. Resour. 2007, 32, 67–98. [Google Scholar] [CrossRef]
- Wallace, K.J. Classification of ecosystem services: Problems and solutions. Biol. Conserv. 2007, 139, 235–246. [Google Scholar] [CrossRef]
- Keeler, B.L.; Polasky, S.; Brauman, K.A.; Johnson, K.A.; Finlay, J.C.; O’Neill, A.; Kovacs, K.; Dalzell, B. Linking water quality and well-being for improved assessment and valuation of ecosystem services. Proc. Natl. Acad. Sci. USA 2012, 109, 18619–18624. [Google Scholar] [CrossRef] [PubMed]
- Nedkov, S.; Campagne, S.; Borisova, B.; Krpec, P.; Prodanova, H.; Kokkoris, I.P.; Hristova, D.; Le Clec’h, S.; Santos-Martin, F.; Burkhard, B.; et al. Modeling water regulation ecosystem services: A review in the context of ecosystem accounting. Ecosyst. Serv. 2022, 56, 101458. [Google Scholar] [CrossRef]
- Sun, G.; Hallema, D.; Asbjornsen, H. Ecohydrological processes and ecosystem services in the Anthropocene: A review. Ecol. Process. 2017, 6, 35. [Google Scholar] [CrossRef]
- Vörösmarty, C.J. Global water assessment and potential contributions from Earth Systems Science. Aquat. Sci. 2002, 64, 328–351. [Google Scholar] [CrossRef]
- Vose, J.M.; Sun, G.; Ford, C.R.; Bredemeier, M.; Otsuki, K.; Wei, X.; Zhang, Z.; Zhang, L. Forest ecohydrological research in the 21st century: What are the critical needs? Ecohydrology 2011, 4, 146–158. [Google Scholar] [CrossRef]
- Dobbs, C.; Hernández-Moreno, Á.; Reyes-Paecke, S.; Miranda, M.D. Exploring temporal dynamics of urban ecosystem services in Latin America: The case of Bogota (Colombia) and Santiago (Chile). Ecol. Indic. 2018, 85, 1068–1080. [Google Scholar] [CrossRef]
- Du, J.; Shi, C.-x. Effects of climatic factors and human activities on runoff of the Weihe River in recent decades. Quat. Int. 2012, 282, 58–65. [Google Scholar] [CrossRef]
- Norman, L.M.; Villarreal, M.L.; Niraula, R.; Haberstich, M.; Wilson, N.R. Modelling Development of Riparian Ranchlands Using Ecosystem Services at the Aravaipa Watershed, SE Arizona. Land 2019, 8, 64. [Google Scholar] [CrossRef]
- Zhang, B.; Xie, G.-d.; Li, N.; Wang, S. Effect of urban green space changes on the role of rainwater runoff reduction in Beijing, China. Landscape Urban Plann. 2015, 140, 8–16. [Google Scholar] [CrossRef]
- Gong, Y.; Geng, X.; Wang, P.; Hu, S.; Wang, X. Impact of Urbanization-Driven Land Use Changes on Runoff in the Upstream Mountainous Basin of Baiyangdian, China: A Multi-Scenario Simulation Study. Land 2024, 13, 1374. [Google Scholar] [CrossRef]
- Vigerstol, K.L.; Aukema, J.E. A comparison of tools for modeling freshwater ecosystem services. J. Environ. Manag. 2011, 92, 2403–2409. [Google Scholar] [CrossRef] [PubMed]
- Bolund, P.; Hunhammar, S. Ecosystem services in urban areas. Ecol. Econ. 1999, 29, 293–301. [Google Scholar] [CrossRef]
- Dobbs, C.; Kendal, D.; Nitschke, C.R. Multiple ecosystem services and disservices of the urban forest establishing their connections with landscape structure and sociodemographics. Ecol. Indic. 2014, 43, 44–55. [Google Scholar] [CrossRef]
- Zabret, K.; Šraj, M. Rainfall Interception by Urban Trees and Their Impact on Potential Surface Runoff. CLEAN Soil Air Water 2019, 47, 1800327. [Google Scholar] [CrossRef]
- Barth, N.-C.; Döll, P. Assessing the ecosystem service flood protection of a riparian forest by applying a cascade approach. Ecosyst. Serv. 2016, 21, 39–52. [Google Scholar] [CrossRef]
- Paul, M.J.; Meyer, J.L. Streams in the Urban Landscape. Annu. Rev. Ecol. Evol. System. 2001, 32, 333–365. [Google Scholar] [CrossRef]
- Livesley, S.J.; Baudinette, B.; Glover, D. Rainfall interception and stem flow by eucalypt street trees—The impacts of canopy density and bark type. Urban For. Urban Green. 2014, 13, 192–197. [Google Scholar] [CrossRef]
- Ponte, S.; Oishi, A.C.; Sonti, N.F.; Locke, D.H.; Phillips, T.H.; Pavao-Zuckerman, M.A. Interactions between management context and tree water use influence stormwater management potential of urban forests. Urban For. Urban Green. 2024, 95, 128321. [Google Scholar] [CrossRef]
- Inkiläinen, E.N.M.; McHale, M.R.; Blank, G.B.; James, A.L.; Nikinmaa, E. The role of the residential urban forest in regulating throughfall: A case study in Raleigh, North Carolina, USA. Landscape Urban Plann. 2013, 119, 91–103. [Google Scholar] [CrossRef]
- Kermavnar, J.; Vilhar, U. Canopy precipitation interception in urban forests in relation to stand structure. Urban Ecosyst. 2017, 20, 1373–1387. [Google Scholar] [CrossRef]
- Nytch, C.J.; Meléndez-Ackerman, E.J.; Pérez, M.-E.; Ortiz-Zayas, J.R. Rainfall interception by six urban trees in San Juan, Puerto Rico. Urban Ecosyst. 2019, 22, 103–115. [Google Scholar] [CrossRef]
- Xiao, Q.; McPherson, E.G. Rainfall interception by Santa Monica’s municipal urban forest. Urban Ecosyst. 2002, 6, 291–302. [Google Scholar] [CrossRef]
- Asadian, Y.; Weiler, M. A New Approach in Measuring Rainfall Interception by Urban Trees in Coastal British Columbia. Water Qual. Res. J. Can. 2009, 1, 16–25. [Google Scholar]
- Amini Parsa, V.; Istanbuly, M.N.; Kronenberg, J.; Russo, A.; Jabbarian Amiri, B. Urban Trees and Hydrological Ecosystem Service: A Novel Approach to Analyzing the Relationship Between Landscape Structure and Runoff Reduction. Environ. Manag. 2023, 73, 243–258. [Google Scholar] [CrossRef]
- Jin, M.; Shepherd, J.M. Inclusion of Urban Landscape in a Climate Model: How Can Satellite Data Help? Bull. Am. Meteorol. Soc. 2005, 86, 681–690. [Google Scholar] [CrossRef]
- Trusilova, K.; Jung, M.; Churkina, G.; Karstens, U.; Heimann, M.; Claussen, M. Urbanization Impacts on the Climate in Europe: Numerical Experiments by the PSU–NCAR Mesoscale Model (MM5). J. Appl. Meteorol. Clim. 2008, 47, 1442–1455. [Google Scholar] [CrossRef]
- Machado, R.E.; Cardoso, T.O.; Mortene, M.H. Determination of runoff coefficient (C) in catchments based on analysis of precipitation and flow events. Int. Soil Water Conserv. Res. 2022, 10, 208–216. [Google Scholar] [CrossRef]
- McGrane, S.J. Impacts of urbanisation on hydrological and water quality dynamics, and urban water management: A review. Hydrol. Sci. J. 2016, 61, 2295–2311. [Google Scholar] [CrossRef]
- Wu, D.; Zheng, L.; Wang, Y.; Gong, J.; Li, J.; Chen, Q. Dynamics in construction land patterns and its impact on water-related ecosystem services in Chengdu-Chongqing urban agglomeration, China: A multi-scale study. J. Clean. Prod. 2024, 469, 143022. [Google Scholar] [CrossRef]
- Zabret, K.; Rakovec, J.; Šraj, M. Influence of meteorological variables on rainfall partitioning for deciduous and coniferous tree species in urban area. J. Hydrol. 2018, 558, 29–41. [Google Scholar] [CrossRef]
- Vilhar, U. The Urban Forest. Water Regulation and Purification. In The Urban Forest. Cultivating Green Infrastructure for People and the Environment; Pearlmutter, D., Calfapietra, C., Samson, R., O’Brien, L., Krajter Ostoić, S., Sanesi, G., Alonso del Amo, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 41–47. [Google Scholar]
- O’Driscoll, M.; Clinton, S.; Jefferson, A.; Manda, A.; McMillan, S. Urbanization effects on watershed hydrology and in-stream processes in the southern United States. Water 2010, 2, 605–648. [Google Scholar] [CrossRef]
- Beck, S.M.; McHale, M.R.; Hess, G.R. Beyond Impervious: Urban Land-Cover Pattern Variation and Implications for Watershed Management. Environ. Manag. 2016, 58, 15–30. [Google Scholar] [CrossRef] [PubMed]
- Hutt-Taylor, K.; Ziter, C.D. Private trees contribute uniquely to urban forest diversity, structure and service-based traits. Urban. For. Urban Green. 2022, 78, 127760. [Google Scholar] [CrossRef]
- Schüler, G. Identification of flood-generating forest areas and forestry measures for water retention. For. Snow Landsc. Res. 2006, 80, 99–114. [Google Scholar]
- Semeraro, T.; Scarano, A.; Buccolieri, R.; Santino, A.; Aarrevaara, E. Planning of Urban Green Spaces: An Ecological Perspective on Human Benefits. Land 2021, 10, 105. [Google Scholar] [CrossRef]
- OIEAU. Natural Water Retention Measures. Available online: https://www.nwrm.eu/sites/default/files/documents-docs/53-nwrm-illustrated.pdf/ (accessed on 20 January 2025).
- EEA. Water-Retention Potential of Europe’s Forests. A European overview to Support Natural Water-Retention Measures. Available online: https://www.eea.europa.eu/en/analysis/publications/water-retention-potential-of-forests (accessed on 20 January 2025).
- Stefanakis, A.I.; Calheiros, C.S.C.; Nikolaou, I. Nature-Based Solutions as a Tool in the New Circular Economic Model for Climate Change Adaptation. Circ. Econ. Sustain. 2021, 1, 303–318. [Google Scholar] [CrossRef]
- Loose, A.; Jazbinšek Sršen, N.; Jankovič, M. Ready for Tomorrow. The Ljubljana Environmental Protection Program to 2013; City of Ljubljana, Department of Environmental Protection: Ljubljana, Slovenia, 2010; p. 18. [Google Scholar]
- Zupančič, B. Klimatografija Slovenije. Količina Padavin: Obdobje 1961–1990; Hidrometeorološki Zavod Republike Slovenije: Ljubljana, Slovenia, 1995; p. 366. [Google Scholar]
- Cools, N.; De Vos, B. Part X: Sampling and Analysis of Soil. Version 2020-1. In Manual on Methods and Criteria for Harmonized Sampling, Assessment, Monitoring and Analysis of the effects of Air Pollution on Forests; United Nations Economic Commission for Europe Convention on Long-range Transboundary Air Pollution, ICP Forests Programme Co-ordinating Centre, Thünen Institute of Forest Ecosystems: Eberswalde, Germany, 2020; p. 29. [Google Scholar]
- Dobbertin, M.; Neumann, M.; Levanič, T.; Sanders, T.G.M.; Skudnik, M.; Krüger, I. Part V: Tree Growth Level II. Version 2020-1. In Manual on Methods and Criteria for Harmonized Sampling, Assessment, Monitoring and Analysis of the Effects of Air Pollution on Forests; United Nations Economic Commission for Europe Convention on Long-range Transboundary Air Pollution, ICP Forests Programme Co-ordinating Centre, Thünen Institute of Forest Ecosystems: Eberswalde, Germany, 2020; p. 19. [Google Scholar]
- Vilhar, U.; Čarni, A.; Božič, G. Growth and vegetation characteristics of European black poplar (Populus nigra L.) in a floodplain forest along river Sava and temperature differencies among selected sites. Folia Biol. Geol. 2013, 45, 193–214. [Google Scholar]
- Verlič, A.; Eler, K.; Ferlan, M.; Flajšman, K.; de Groot, M.; Hauptman, T.; Jurc, D.; Kobal, M.; Kutnar, L.; Levanič, T.; et al. EMoNFUr–Establishing a Monitoring network To Assess Lowland Forest and Urban Plantation in Lombardy and Urban Forest in Slovenia: Final Project Report; Gozdarski Inštitut Slovenije, Slovenian Forestry Institute: Ljubljana, Slovenia, 2014; p. 156. [Google Scholar]
- WRB. World Reference Base for Soil Resources 2006, First Update 2007; IUSS, ISRIC, FAO: Rome, Italy, 2007; p. 115. [Google Scholar]
- Guo, Z.; Xiao, X.; Li, D. An Assessment of Ecosystem Services: Water Flow Regulation and Hydroelectric Power Production. Ecol. Appl. 2000, 10, 925–936. [Google Scholar] [CrossRef]
- Guo, Z.; Gan, Y. Ecosystem function for water retention and forest ecosystem conservation in a watershed of the Yangtze River. Biodivers. Conserv. 2002, 11, 599–614. [Google Scholar] [CrossRef]
- Aghakouchak, A.; Habib, E. Application of a Conceptual Hydrologic Model in Teaching Hydrologic Processes. Int. J. Eng. Educ. 2010, 26, 963–973. [Google Scholar]
- Staudt, K.; Serafimovich, A.; Siebicke, L.; Pyles, R.D.; Falge, E. Vertical structure of evapotranspiration at a forest site (a case study). Agric. For. Meteorol. 2011, 151, 709–729. [Google Scholar] [CrossRef]
- Federer, C.A. BROOK90 Manual: A Simulation Model for Evaporation, Soil Water and Streamflow, version 3.1; USDA Forest Service: Durham, NH, USA, 1995; p. 40. [Google Scholar]
- McDonald, J.E. On the Ratio of Evaporation to Precipitation. Bull. Am. Meteorol. Soc. 1961, 42, 185–189. [Google Scholar] [CrossRef]
- Budyko, M.I. The heat balance of the Earth’s surface. Sov. Geogr. 1961, 2, 3–13. [Google Scholar] [CrossRef]
- Liu, M.; Adam, J.C.; Hamlet, A.F. Spatial-temporal variations of evapotranspiration and runoff/precipitation ratios responding to the changing climate in the Pacific Northwest during 1921–2006. J. Geophys. Res. Atmos. 2013, 118, 380–394. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration. Guidelines for Computing Crop Water Requirements; FAO: Rome, Italy, 1998; p. 300. [Google Scholar]
- Vilhar, U.; Žlindra, D. 30 Years of Forest Monitoring in Slovenia, 2nd ed.; Založba Silva Slovenica, Gozdarski Inštitut Slovenije: Ljubljana, Slovenia, 2017; Volume 156, p. 64. [Google Scholar]
- Ferretti, M.; Fischer, R. Forest Monitoring. Terrestrial Methods in Europe with Outlook to North America and Asia, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2013; Volume 12, p. 507. [Google Scholar]
- Sinjur, I.; Ferlan, M.; Simončič, P.; Vilhar, U. The Meteorological Stations Net of the Forestry Institute of Slovenia. Gozdarski Vestnik 2010, 68, 41–46. [Google Scholar]
- Ribnikar, M. Use of Brook90 Model for Estimation of Water Balance in Urban Forests; Univerza v Ljubljani: Ljubljana, Slovenia, 2018. [Google Scholar]
- Clarke, N.; Žlindra, D.; Ulrich, E.; Mosello, R.; Derome, J.; Derome, K.; König, N.; Lövblad, G.; Geppert, F.; Draaijers, G.P.J.; et al. Part XIV: Sampling and Analysis of Deposition. Version 2022-1. In Manual on Methods and Criteria for Harmonized Sampling, Assessment, Monitoring and Analysis of the Effects of Air Pollution on Forests, Eds.), Part XIV, United Nations Economic Commission for Europe Convention on Long-range Transboundary Air Pollution; ICP Forests Programme Co-ordinating Centre, Thünen Institute of Forest Ecosystems: Eberswalde, Germany, 2022; p. 34. [Google Scholar]
- Siegert, C.M.; Levia, D.F.; Hudson, S.A.; Dowtin, A.L.; Zhang, F.; Mitchell, M.J. Small-scale topographic variability influences tree species distribution and canopy throughfall partitioning in a temperate deciduous forest. For. Ecol. Manag. 2016, 359, 109–117. [Google Scholar] [CrossRef]
- Kermavnar, J. Stand Precipitation in Selected Urban Forests in the City of Ljubljana. Master’s Thesis, Univerza v Ljubljani, Ljubljana, Slovenia, 2015. [Google Scholar]
- Dirksen, C. Soil Physics Measurements; Catena Verl.: Reiskirchen, Germany, 1999; p. 154. [Google Scholar]
- Vilhar, U.; Starr, M.; Katzensteiner, K.; Simončič, P.; Kajfež-Bogataj, L.; Diaci, J. Modelling drainage fluxes in managed and natural forests in the Dinaric karst: A model comparison study. Eur. J. For. Res. 2010, 129, 729–740. [Google Scholar] [CrossRef]
- Vorobevskii, I.; Luong, T.T.; Kronenberg, R.; Grünwald, T.; Bernhofer, C. Modelling evaporation with local, regional and global BROOK90 frameworks: Importance of parameterization and forcing. Hydrol. Earth Syst. Sci. 2022, 26, 3177–3239. [Google Scholar] [CrossRef]
- Meusburger, K.; Trotsiuk, V.; Schmidt-Walter, P.; Baltensweiler, A.; Brun, P.; Bernhard, F.; Gharun, M.; Habel, R.; Hagedorn, F.; Köchli, R.; et al. Soil–plant interactions modulated water availability of Swiss forests during the 2015 and 2018 droughts. Glob. Change Biol. 2022, 28, 5928–5944. [Google Scholar] [CrossRef] [PubMed]
- Vilhar, U. Water Regulation Ecosystem Services Following Gap Formation in Fir-Beech Forests in the Dinaric Karst. Forests 2021, 12, 224. [Google Scholar] [CrossRef]
- Shuttleworth, W.J.; Wallace, J.S. Evaporation from sparse crops-an energy combination theory. Quart. J. Royal Meteorol. Soc. 1985, 111, 839–855. [Google Scholar] [CrossRef]
- Federer, C.A.; Vorosmarthy, C.; Fekete, B. Sensitivity of Annual Evaporation to Soil and Root Properties in Two Models of Contrasting Complexity. J. Hydrometeorol. 2003, 4, 1276–1290. [Google Scholar] [CrossRef]
- Thompson, S.A. Hydrology for Water Management; Balkema: Rotterdam, The Netherlands, 1999; p. 476. [Google Scholar]
- GraphPad Prism 10; Version 10.4.0 (621); GraphPad Software, LLC.; Dotmatics: Boston, MA, USA, 2024.
- Xiao, Q.F.; McPherson, E.G.; Simpson, J.R.; Ustin, S.L. Rainfall interception by Sacramento’s urban forest. J. Arboric. 1998, 24, 235–244. [Google Scholar] [CrossRef]
- Aalbers, E.E.; van Meijgaard, E.; Lenderink, G.; de Vries, H.; van den Hurk, B.J.J.M. The 2018 west-central European drought projected in a warmer climate: How much drier can it get? Nat. Hazards Earth Syst. Sci. 2023, 23, 1921–1946. [Google Scholar] [CrossRef]
- Gessner, C.; Fischer, E.M.; Beyerle, U.; Knutti, R. Multi-year drought storylines for Europe and North America from an iteratively perturbed global climate model. Weather Clim. Extrem. 2022, 38, 100512. [Google Scholar] [CrossRef]
- Moravec, V.; Markonis, Y.; Rakovec, O.; Svoboda, M.; Trnka, M.; Kumar, R.; Hanel, M. Europe under multi-year droughts: How severe was the 2014–2018 drought period? Environ. Res. Lett. 2021, 16, 034062. [Google Scholar] [CrossRef]
- Carlyle-Moses, D.E.; Livesley, S.J.; Baptista, M.D.; Thom, J.K.; Szota, C. Urban Trees as Green Infrastructure for Stormwater Mitigation and Use. Ecol. Stud. 2020, 240, 397–432. [Google Scholar]
- Wang, J.; Endreny, T.A.; Nowak, D.J. Mechanistic Simulation of Tree Effects in an Urban Water Balance Model. JAWRA J. Am. Water Resour. Assoc. 2008, 44, 75–85. [Google Scholar] [CrossRef]
- Hamel, P.; Tan, L. Blue–Green Infrastructure for Flood and Water Quality Management in Southeast Asia: Evidence and Knowledge Gaps. Environ. Manag. 2022, 69, 699–718. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xiao, Q.; Niu, J.; Dymond, S.; van Doorn, N.S.; Yu, X.; Xie, B.; Lv, X.; Zhang, K.; Li, J. Process-based rainfall interception by small trees in Northern China: The effect of rainfall traits and crown structure characteristics. Agric. For. Meteorol. 2016, 218–219, 65–73. [Google Scholar] [CrossRef]
- Li, K.; Wang, G.; Gao, J.; Guo, L.; Li, J.; Guan, M. The rainfall threshold of forest cover for regulating extreme floods in mountainous catchments. Catena 2024, 236, 107707. [Google Scholar] [CrossRef]
- Zimmermann, A.; Wilcke, W.; Elsenbeer, H. Spatial and temporal patterns of throughfall quantity and quality in a tropical montane forest in Ecuador. J. Hydrol. 2007, 343, 80–96. [Google Scholar] [CrossRef]
- Bryant, M.L.; Bhat, S.; Jacobs, J.M. Measurements and modeling of throughfall variability for five forest communities in the southeastern US. J. Hydrol. 2005, 312, 95–108. [Google Scholar] [CrossRef]
- Šraj, M.; Brilly, M.; Mikoš, M. Rainfall interception by two deciduous Mediterranean forests of contrasting stature in Slovenia. Agric. For. Meteorol. 2008, 148, 121–134. [Google Scholar] [CrossRef]
- Deguchi, A.; Hattori, S.; Park, H.-T. The influence of seasonal changes in canopy structure on interception loss: Application of the revised Gash model. J. Hydrol. 2006, 318, 80–102. [Google Scholar] [CrossRef]
- Wang, F.; Wang, G.; Cui, J.; Guo, L.; Tang, X.; Yang, R.; Du, J.; Sadegh Askari, M. The nonlinear rainfall–quick flow relationships in a humid mountainous area: Roles of soil thickness and forest types. J. Hydrol. 2024, 648, 131854. [Google Scholar] [CrossRef]
- Zirlewagen, D.; von Wilpert, K. Modeling water and ion fluxes in a highly structured, mixed-species stand. For. Ecol. Manag. 2001, 143, 27–37. [Google Scholar] [CrossRef]
- Cognard-Plancq, A.-L.; Marc, V.; Didon-Lescot, J.-F.; Norman, M. The role of forest cover on streamflow down sub-Mediterranean mountain watersheds: A modelling approach. J. Hydrol. 2001, 254, 229–243. [Google Scholar] [CrossRef]
- Ritter, E.; Dalsgaard, L.; Einhorn, K.S. Light, temperature and soil moisture regimes following gap formation in a semi-natural beech-dominated forest in Denmark. For. Ecol. Manag. 2005, 206, 15–33. [Google Scholar] [CrossRef]
- Ritter, E.; Starr, M.; Vesterdal, L. Losses of nitrate from gaps of different sizes in a managed beech (Fagus sylvatica) forest. Can. J. For. Res. 2005, 35, 308–319. [Google Scholar] [CrossRef]
- Tobón Marin, C.; Bouten, W.; Sevink, J. Gross rainfall and its partitioning into throughfall, stemflow and evaporation of intercepted water in four forest ecosystems in western Amazonia. J. Hydrol. 2000, 237, 40–57. [Google Scholar] [CrossRef]
- Cleophas, F.; Mahali, M.; Musta, B.; Zahari, N.Z.; Lee, L.E.; Bidin, K. Canopy precipitation interception in a lowland tropical forest in relation to stand structure. IOP Conf. Ser. Earth Environ. Sci. 2022, 1053, 012005. [Google Scholar] [CrossRef]
- Fang, Q.; Xin, X.; Guan, T.; Wang, G.; Zhang, S.; Ma, M. Vegetation patterns governing the competitive relationship between runoff and evapotranspiration using a novel water balance model at a semi-arid watershed. Environ. Res. 2022, 214, 113976. [Google Scholar] [CrossRef]
- Rötzer, T.; Häberle, K.H.; Kallenbach, C.; Matyssek, R.; Schütze, G.; Pretzsch, H. Tree species and size drive water consumption of beech/spruce forests—A simulation study highlighting growth under water limitation. Plant Soil 2017, 418, 337–356. [Google Scholar] [CrossRef]
- Peng, L.; Zeng, Z.; Wei, Z.; Chen, A.; Wood, E.F.; Sheffield, J. Determinants of the ratio of actual to potential evapotranspiration. Glob. Change Biol. 2019, 25, 1326–1343. [Google Scholar] [CrossRef]
- Lane, P.N.J.; Morris, J.; Ningnan, Z.; Guangyi, Z.; Guoyi, Z.; Daping, X. Water balance of tropical eucalypt plantations in south-eastern China. Agric. For. Meteorol. 2004, 124, 253–267. [Google Scholar] [CrossRef]
- Nakai, T.; Kim, Y.; Busey, R.C.; Suzuki, R.; Nagai, S.; Kobayashi, H.; Park, H.; Sugiura, K.; Ito, A. Characteristics of evapotranspiration from a permafrost black spruce forest in interior Alaska. Polar Sci. 2013, 7, 136–148. [Google Scholar] [CrossRef]
- Ouyang, L.; Wu, J.; Zhao, P.; Li, Y.; Zhu, L.; Ni, G.; Rao, X. Consumption of precipitation by evapotranspiration indicates potential drought for broadleaved and coniferous plantations in hilly lands of South China. Agric. Water Manag. 2021, 252, 106927. [Google Scholar] [CrossRef]
- Jiao, L.; Lu, N.; Fu, B.; Wang, J.; Li, Z.; Fang, W.; Liu, J.; Wang, C.; Zhang, L. Evapotranspiration partitioning and its implications for plant water use strategy: Evidence from a black locust plantation in the semi-arid Loess Plateau, China. For. Ecol. Manag. 2018, 424, 428–438. [Google Scholar] [CrossRef]
- Raz-Yaseef, N.; Yakir, D.; Schiller, G.; Cohen, S. Dynamics of evapotranspiration partitioning in a semi-arid forest as affected by temporal rainfall patterns. Agric. For. Meteorol. 2012, 157, 77–85. [Google Scholar] [CrossRef]
- Nooraei Beidokhti, A.; Moore, T.L. The effects of precipitation, tree phenology, leaf area index, and bark characteristics on throughfall rates by urban trees: A meta-data analysis. Urban For. Urban Green. 2021, 60, 127052. [Google Scholar] [CrossRef]
- Asadian, Y. Rainfall Interception in an Urban Environment. Master’s Thesis, The University of British Columbia, Vancouver, BC, Canada, 2010. [Google Scholar]
- Xiao, Q.; McPherson, E.G. Rainfall interception of three trees in Oakland, California. Urban Ecosyst. 2011, 14, 755–769. [Google Scholar] [CrossRef]
- Guillén, L.A.; Brzostek, E.; McNeil, B.; Raczka, N.; Casey, B.; Zegre, N. Sap flow velocities of Acer saccharum and Quercus velutina during drought: Insights and implications from a throughfall exclusion experiment in West Virginia, USA. Sci. Total Environ. 2022, 850, 158029. [Google Scholar] [CrossRef]
- Vilhar, U.; Simončič, P. Water status and drought stress after gap formation in managed and semi-natural silver fir-beech forests. Eur. J. For. Res. 2012, 131, 1381–1397. [Google Scholar] [CrossRef]
- Church, M.R.; Bishop, G.D.; Cassell, D.L. Maps of regional evapotranspiration and runoff/precipitation ratios in the northeast United States. J. Hydrol. 1995, 168, 283–298. [Google Scholar] [CrossRef]
- Creed, I.F.; Spargo, A.T.; Jones, J.A.; Buttle, J.M.; Adams, M.B.; Beall, F.D.; Booth, E.; Campbell, J.; Clow, D.; Elder, K.; et al. Changing forest water yields in response to climate warming: Results from long-term experimental watershed sites across North America. Glob. Change Biol. 2014, 20, 3191–3208. [Google Scholar] [CrossRef]
- Song, P.; Guo, J.; Xu, E.; Mayer, A.L.; Liu, C.; Huang, J.; Tian, G.; Kim, G. Hydrological Effects of Urban Green Space on Stormwater Runoff Reduction in Luohe, China. Sustainability 2020, 12, 6599. [Google Scholar] [CrossRef]
- Pace, R.; Endreny, T.A.; Ciolfi, M.; Gangwisch, M.; Saha, S.; Ruehr, N.K.; Grote, R. Mitigation potential of urban greening during heatwaves and stormwater events: A modeling study for Karlsruhe, Germany. Sci. Rep. 2025, 15, 5308. [Google Scholar] [CrossRef] [PubMed]
- Ye, S.; Liu, L.; Li, J.; Pan, H.; Li, W.; Ran, Q. From rainfall to runoff: The role of soil moisture in a mountainous catchment. J. Hydrol. 2023, 625, 130060. [Google Scholar] [CrossRef]
- Oishi, A.C.; Oren, R.; Novick, K.A.; Palmroth, S.; Katul, G.G. Interannual Invariability of Forest Evapotranspiration and Its Consequence to Water Flow Downstream. Ecosystems 2010, 13, 421–436. [Google Scholar] [CrossRef]
- Likens, G.E.; Bormann, F.E.; Pierce, R.S.; Eaton, J.S.; Johnson, N.M. Biogeochemistry of a Forested Ecosystem; Springer: New York, NY, USA, 1977. [Google Scholar]
- Gerten, D.; Lucht, W.; Schaphoff, S.; Cramer, W.; Hickler, T.; Wagner, W. Hydrologic resilience of the terrestrial biosphere. Geophys. Res. Lett. 2005, 32, L21408. [Google Scholar] [CrossRef]
Urban Forest Site | Plot | Slope (%) | Aspect | Tree Height (m) | Stem Volume (m3 ha−1) | Canopy Cover (%) | Ground Vegetation Cover (%) |
---|---|---|---|---|---|---|---|
Riparian forest | Pine forest | 2 * | south-east * | 11.7 * | 151.1 * | 50 * | 100 * |
Deciduous forest | 2 * | south-east * | 15.8 * | 246.9 * | 30–50 * | 80–100 * | |
Regeneration | 1 * | / | 17.5 * | / | 80–100 * | / | |
Mixed (upland) forest | Forest | 3 ** | south-east ** | 21.9 ** | 589.1 ** | 90–100 ** | / |
Canopy gap | 3 ** | south-east ** | / | / | / | 100 ** |
Urban Forest Site | Plot | Soil Type (WRB, 2007) | Soil Depth ** (cm) | Stoniness ** (% vol) | Soil Organic Matter ** (%) | Soil Texture Class ** | Bulk Density ** (g cm−3) | Field Capacity ** (−33 kPa) (m3 m−3) | Permanent Wilting Point ** (−1500 kPa) (m3 m−3) |
---|---|---|---|---|---|---|---|---|---|
Riparian forest Gameljne | Pine forest | Fluvisols * | 0–5 | 39.9 | 7.2 | Sandy loam | 1.0 | 0.2 | 0.1 |
5–10 | 28.0 | 4.3 | Sandy loam | 1.1 | 0.2 | 0.1 | |||
10–15 | 2.1 | 2.6 | Sandy loam | 1.6 | 0.2 | 0.0 | |||
Deciduous forest | Fluvisols * | 0–5 | 0.0 | 8.6 | Silty loam | 0.7 | 0.4 | 0.2 | |
5–10 | 0.0 | 3.9 | Silty loam | 0.9 | 0.4 | 0.1 | |||
10–20 | 0.0 | 2.2 | Silty loam | 1.1 | 0.4 | 0.1 | |||
20–40 | 0.1 | 1.5 | Silty loam | 1.1 | 0.3 | 0.1 | |||
40–60 | 8.6 | 0.9 | Sandy loam | 1.3 | 0.3 | 0.0 | |||
60–80 | 28.1 | 0.8 | Sandy loam | 1.6 | 0.1 | 0.0 | |||
Regeneration | Fluvisols * | 0–5 | 44.7 | 4.3 | Loamy sand | 1.1 | 0.3 | 0.1 | |
5–10 | 7.7 | 1.0 | Loamy sand | 1.0 | 0.3 | 0.1 | |||
10–20 | 42.2 | 0.9 | Sandy loam | 1.0 | 0.2 | 0.1 | |||
20–40 | 3.3 | 0.8 | Sandy loam | 1.5 | 0.1 | / | |||
40–50 | 4.6 | 0.9 | Sandy loam | 1.3 | 0.2 | 0.1 | |||
Mixed forest Rožnik | Forest and Canopy gap | Dystric cambisols ** | 0–5 | 11.0 | 7.7 | Silty clay loam | 0.6 | 0.5 | 0.1 |
5–10 | 16.6 | 3.7 | Silty loam | 0.8 | 0.4 | 0.1 | |||
10–20 | 22.8 | 2.6 | Silty clay loam | 1.0 | 0.4 | 0.2 | |||
20–40 | 17.2 | 1.5 | Silty clay loam | 0.9 | 0.3 | 0.2 | |||
40–60 | 18.4 | 0.8 | Silty clay loam | 1.1 | 0.3 | 0.2 | |||
60–80 | 22.1 | 0.5 | Silty clay loam | 1.3 | 0.4 | 0.2 |
Mixed (Upland) Forest | Riparian Forest | ||||||
---|---|---|---|---|---|---|---|
Years | Hydrological Fluxes (% of P) | Forest | Canopy Gap | Pine Forest | Deciduous Forest | Regeneration | |
2007–2022 | Q | 41 | 62 | 74 | 75 | 74 | |
SE | 1 | 19 | 5 | 9 | 1 | ||
TRAN | 42 | 19 | 20 | 16 | 19 | ||
I | 16 | 1 | 5 | 9 | 6 | ||
ETP = SE + TRAN + I | 59 | 39 | 26 | 25 | 27 | ||
Growing season (2007–2022) | Q | 22 | 41 | 61 | 64 | 61 | |
SE | 2 | 27 | 2 | 1 | 2 | ||
TRAN | 56 | 28 | 28 | 19 | 26 | ||
I | 19 | 1 | 8 | 13 | 8 | ||
ETP = SE + TRAN + I | 76 | 56 | 38 | 33 | 36 | ||
Winter season (2007–2022) | Q | 53 | 71 | 71 | 70 | 71 | |
SE | 1 | 5 | 0 | 0 | 0 | ||
TRAN | 16 | 5 | 6 | 8 | 8 | ||
I | 9 | 0 | 1 | 3 | 2 | ||
ETP = SE + TRAN + I | 27 | 10 | 7 | 12 | 10 |
Mixed (Upland) Forest | Riparian Forest | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Years | Ratio | Forest | Canopy Gap | Pine Forest | Deciduous Forest | Regeneration | ||||||||||
Mean | Min | Max | Mean | Min | Max | Mean | Min | Max | Mean | Min | Max | Mean | Min | Max | ||
2007–2022 | Q/P | 0.41 | 0.26 | 0.57 | 0.62 | 0.46 | 0.75 | 0.75 | 0.71 | 0.79 | 0.75 | 0.69 | 0.81 | 0.74 | 0.67 | 0.80 |
ETP/P | 0.59 | 0.43 | 0.77 | 0.39 | 0.25 | 0.55 | 0.26 | 0.19 | 0.32 | 0.25 | 0.20 | 0.32 | 0.26 | 0.20 | 0.34 | |
Growing season (2007–2022) | Q/P | 0.21 | 0.10 | 0.40 | 0.40 | 0.20 | 0.60 | 0.60 | 0.50 | 0.70 | 0.63 | 0.60 | 0.70 | 0.60 | 0.50 | 0.70 |
ETP/P | 0.77 | 0.60 | 1.00 | 0.58 | 0.40 | 0.70 | 0.39 | 0.30 | 0.50 | 0.33 | 0.20 | 0.40 | 0.36 | 0.20 | 0.50 | |
Winter season (2007–2022) | Q/P | 0.69 | 0.50 | 0.90 | 0.91 | 0.80 | 1.20 | 0.92 | 0.80 | 1.10 | 0.91 | 0.80 | 1.10 | 0.91 | 0.80 | 1.10 |
ETP/P | 0.39 | 0.20 | 0.70 | 0.16 | 0.10 | 0.30 | 0.11 | 0.10 | 0.20 | 0.16 | 0.10 | 0.30 | 0.13 | 0.10 | 0.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vilhar, U. Runoff and Evapotranspiration–Precipitation Ratios as Indicators of Water Regulation Ecosystem Services in Urban Forests. Land 2025, 14, 809. https://doi.org/10.3390/land14040809
Vilhar U. Runoff and Evapotranspiration–Precipitation Ratios as Indicators of Water Regulation Ecosystem Services in Urban Forests. Land. 2025; 14(4):809. https://doi.org/10.3390/land14040809
Chicago/Turabian StyleVilhar, Urša. 2025. "Runoff and Evapotranspiration–Precipitation Ratios as Indicators of Water Regulation Ecosystem Services in Urban Forests" Land 14, no. 4: 809. https://doi.org/10.3390/land14040809
APA StyleVilhar, U. (2025). Runoff and Evapotranspiration–Precipitation Ratios as Indicators of Water Regulation Ecosystem Services in Urban Forests. Land, 14(4), 809. https://doi.org/10.3390/land14040809