The Ecological Risks of Heavy Metals in the Estuarine Wetland Ecosystem and Their Impacts on Human Health: A Case from Yellow River Delta National Nature Reserve, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Research Location
2.2. Soil Sample Collection and Analysis
2.3. Data Analysis
2.4. Methods
2.4.1. The Enrichment Factor (EF)
2.4.2. Potential Ecological Risk Index (RI)
2.4.3. Sediment Quality Guidelines (SQGs)
2.4.4. Health Risk Assessment (HRA)
3. Results and Discussion
3.1. The Heavy Metal Concentrations in YRDNNR
3.2. The Degree of Heavy Metal Contamination in YRDNNR
3.2.1. The EF
3.2.2. RIs
3.2.3. SQGs
3.2.4. The HRA
3.3. The Relationship Between Heavy Metals and the Measured Environmental Parameters
3.4. The Traceability Analysis of the Heavy Metals
3.4.1. Multivariate Statistical Analysis
3.4.2. The Apportionment of Ecological and Health Hazards Based on Metal Sources
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jokinen, S.A.; Jilbert, T.; Tiihonen-Filppula, R.; Koho, K. Terrestrial organic matter input drives sedimentary trace metal sequestration in a human-impacted boreal estuary. Sci. Total Environ. 2020, 717, 137047. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wang, H.; Liao, X.; Xiao, R.; Liu, K.; Bai, J.; Li, B.; He, Q. Heavy metal pollution in coastal wetlands: A systematic review of studies globally over the past three decades. J. Hazard. Mater. 2022, 424, 127312. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, W.; Xu, Y.H.; Xu, J.Y.; Su, K.M.; Liu, H.; Dou, L.X. Transport and deposition of terrestrial organic matter in marine littoral deltas: New evidence from flume experiments and 3D laser scanning. Sediment Geol. 2025, 475, 106784. [Google Scholar] [CrossRef]
- Grand, J.; Meehan, T.D.; DeLuca, W.V.; Morton, J.; Pitt, J.; Calvo-Fonseca, A.; Dodge, C.; Gómez-Sapiens, M.; González-Sargas, E.; Hinojosa-Huerta, O.; et al. Strategic restoration planning for land birds in the Colorado River Delta, Mexico. J. Environ. Manag. 2024, 351, 119755. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.X.; Cong, P.F.; Qu, L.M.; Liang, S.X.; Sun, Z.C.; Han, J.B. Biological connectivity and its driving mechanisms in the Liaohe Delta wetland, China. Ecol. Inform. 2023, 76, 102028. [Google Scholar] [CrossRef]
- Huang, Y.T.; Wu, J.Y. Spatial and temporal driving mechanisms of ecosystem service trade-off/synergy in national key urban agglomerations: A case study of the Yangtze River Delta urban agglomeration in China. Ecol. Indic. 2023, 154, 110800. [Google Scholar] [CrossRef]
- Li, J.; Wang, W.; Li, X.; Liu, S.; Xu, X.; Ren, S. Heavy metals in the continuous river−estuary−sea system of the Yellow River Delta, China: Spatial patterns, potential sources, and influencing factors. Mar. Pollut. Bull. 2024, 209, 117247. [Google Scholar] [CrossRef]
- Tran, D.D.; Halsema, G.; Hellegers, P.J.G.J.; Ludwig, F.; Wyatt, A. Questioning triple rice intensification on the Vietnamese mekong delta floodplains: An environmental and economic analysis of current land-use trends and alternatives. J. Environ. Manag. 2018, 217, 429–441. [Google Scholar] [CrossRef]
- Berg, H.; Lan, T.H.P.; Da, C.T.; Tam, N.T. Stakeholders assessment of status and trends of ecosystem services in the Mekong Delta for improved management of multifunctional wetlands. J. Environ. Manag. 2023, 338, 117807. [Google Scholar] [CrossRef]
- Abotalib, A.Z.; Abdelhady, A.A.; Heggy, E.; Salem, S.G.; Ismail, E.; Ali, A.; Khalil, M.M. Irreversible and large-scale heavy metal pollution arising from increased damming and untreated water reuse in the nile delta. Earths Future 2023, 11, e2022EF002987. [Google Scholar] [CrossRef]
- El-Said, G.F.; Abdel-Mohsen, H.A.; El-Sadaawy, M.M.; Khedawy, M.; Shobier, A.H. Ecotoxicological, ecological, and human health risks of total carbohydrates and some inorganic pollutants on the Nile Delta region along the Egyptian Mediterranean Coast. Mar. Pollut. Bull. 2024, 207, 116816. [Google Scholar] [CrossRef] [PubMed]
- Truchet, D.M.; Buzzi, N.S.; Negro, C.L.; Mora, M.C.; Marcovecchio, J.E. Integrative assessment of the ecological risk of heavy metals in a South American estuary under human pressures. Ecotoxicol. Environ. Saf. 2021, 208, 111498. [Google Scholar] [CrossRef]
- Biswas, T.; Pal, S.C.; Saha, A.; Ruidas, D.; Islam, A.R.M.; Shit, M. Hydro-chemical assessment of groundwater pollutant and corresponding health risk in the Ganges delta, Indo-Bangladesh region. J. Clean. Prod. 2023, 382, 135229. [Google Scholar] [CrossRef]
- Tao, H.; Al-Hilali, A.A.; Ahmed, A.M.; Mussa, Z.H.; Falah, M.W.; Abed, S.A.; Deo, R.; Jawad, A.H.; Maulud, K.N.A.; Latif, M.T.; et al. Statistical and spatial analysis for soil heavy metals over the Murray-Darling river basin in Australia. Chemosphere 2023, 317, 137914. [Google Scholar] [CrossRef]
- Simionov, I.A.; Cristea, D.S.; Petrea, S.M.; Mogodan, A.; Nicoara, M.; Plavan, G.; Baltag, E.S.; Jijie, R.; Strungaru, S.A. Preliminary investigation of lower Danube pollution caused by potentially toxic metals. Chemosphere 2021, 264, 128496. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, R.H.E.; Wallner-Kersanach, M.; Correa, J.A.M. Assessment of anthropogenic metals in shipyard sediment in the Amazon delta estuary in northern Brazil. Environ. Sci. Pollut. Res. 2022, 29, 77007–77025. [Google Scholar] [CrossRef]
- Vahidipour, M.; Raeisi, E.; van der Zee, S.E.A.T.M. Potentially toxic metals in sediments, lake water and groundwater of the Ramsar wetlands Bakhtegan–Tashk, south Iran: Distribution and source assessment. Environ. Technol. Innov. 2022, 28, 102789. [Google Scholar] [CrossRef]
- Triassi, M.; Montuori, P.; Provvisiero, D.P.; Rosa, E.D.; Duca, F.D.; Sarnacchiaro, P.; Diez, S. Occurrence and spatial-temporal distribution of atrazine and its metabolites in the aquatic environment of the Volturno River estuary, southern Italy. Sci. Total Environ. 2022, 803, 149972. [Google Scholar] [CrossRef]
- Jaskuła, J.; Sojka, M. Assessment of spatial distribution of sediment contamination with heavy metals in the two biggest rivers in Poland. Catena 2022, 211, 105959. [Google Scholar] [CrossRef]
- Zhang, K.; Song, S.X.; Li, S.S.; Bai, L.Y.; Liu, H.; Sun, M.; Yu, X.J.; Dai, J.L. Evaluation of cadmium phytoextraction potential of peanut and the rhizospheric properties of specific cultivars. J. Clean. Prod. 2024, 452, 142228. [Google Scholar] [CrossRef]
- Su, J.H.; Zhang, Q.; Peng, H.J.; Feng, J.P.; He, J.; Zhang, Y.J.; Lin, B.; Wu, N.P.; Xiang, Y.T. Exploring the impact of intensity and duration of Cu (II) depression on aniline-degrading biosystem: Performance, sludge activity and microbial diversity. Bioresour. Technol. 2022, 360, 127548. [Google Scholar] [CrossRef] [PubMed]
- Li, S.Z.; Zhao, B.; Jin, M.; Hu, L.; Zhong, H.; He, Z.G. A comprehensive survey on the horizontal and vertical distribution of heavy metals and microorganisms in soils of a Pb/Zn smelter. J. Hazard. Mater. 2020, 400, 123255. [Google Scholar] [CrossRef]
- Mushtaq, Z.; Liaquat, M.; Nazir, A.; Liaquat, R.; Iftikhai, H.; Anwar, W.; Itrat, N. Potential of plant growth promoting rhizobacteria to mitigate chromium contamination. Environ. Technol. Innov. 2022, 28, 102826. [Google Scholar] [CrossRef]
- Manzoor, N.; Ali, L.; Al-Huqail, A.A.; Alghanem, S.M.S.; Al-Haithloul, H.A.S.; Abbas, T.; Chen, G.W.; Huan, L.Y.; Liu, Y.; Wang, G. Comparative efficacy of silicon and iron oxide nanoparticles towards improving the plant growth and mitigating arsenic toxicity in wheat (Triticum aestivum L.). Ecotox. Environ. Saf. 2023, 264, 115382. [Google Scholar] [CrossRef]
- Gogoi, B.; Acharjee, S.A.; Bharali, B.; Sorhie, V.; Walling, B. Alemtoshi. A critical review on the ecotoxicity of heavy metal on multispecies in global context: A bibliometric analysis. Environ. Res. 2024, 248, 118280. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhou, M.X.; Wang, J.Z.; Zhang, Z.Q.; Duan, C.J.; Wang, X.X.; Zhao, S.L.; Bai, X.H.; Li, Z.J.; Li, Z.M.; et al. A global meta-analysis of heavy metal (loid)s pollution in soil near copper mines: Evaluation of pollution level and probabilistic health risks. Sci. Total Environ. 2022, 835, 155441. [Google Scholar] [CrossRef]
- Raturi, G.; Chaudhary, A.; Rana, V.; Mandlik, R.; Sharma, Y.; Barvkar, V.; Salvi, P.; Tripathi, D.K.; Kaur, J.; Deshmukh, R.; et al. Microbial remediation and plant-microbe interaction under arsenic pollution. Sci. Total Environ. 2023, 864, 160972. [Google Scholar] [CrossRef]
- Sevak, P.; Pushkar, B. Arsenic pollution cycle, toxicity and sustainable remediation technologies: A comprehensive review and bibliometric analysis. J. Environ. Manag. 2024, 349, 119504. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.Y.; Sang, P.T.; Guo, Y.H.; Jin, P.; Cheng, Y.L.; Yu, H.; Xie, Y.F.; Yao, W.R.; Qian, H. Cadmium in food: Source, distribution and removal. Food Chem. 2022, 405, 134666. [Google Scholar] [CrossRef]
- Yu, M.; Li, Y.Z.; Zhang, K.; Yu, J.B.; Guo, X.L.; Guan, B.; Yang, J.S.; Zhou, D.; Wang, X.H.; Li, X.; et al. Studies on the dynamic boundary of the fresh-salt water interaction zone of estuary wetland in the Yellow River Delta. Ecol. Eng. 2023, 188, 106893. [Google Scholar] [CrossRef]
- Mitsch, W.J.; Gosselink, J.G. Wetlands, 5th ed.; John Wiley & Sons, Inc.: New York, NY, USA, 2015. [Google Scholar]
- Bai, J.H.; Xiao, R.; Zhang, K.J.; Gao, H.F. Arsenic and heavy metal pollution in wetland soils from tidal freshwater and salt marshes before and after the flow-sediment regulation regime in the Yellow River Delta, China. J. Hydrol. 2012, 450, 244–253. [Google Scholar] [CrossRef]
- Li, D.; Li, B.; Hou, X.Y.; Wang, X.L.; Li, X.W.; Zhang, Y.X. Habitat suitability assessment for Saunders’s Gull (Saundersilarus saundersi) in the Yellow River Delta, China. Ecol. Inform. 2024, 79, 102393. [Google Scholar] [CrossRef]
- Ran, Y.C.; Xie, J.X.; Li, X.L. Socio-Economic Development and Its Effects on the Ecological Environment of the Yellow River Source Zone. In Landscape and Ecosystem Diversity, Dynamics and Management in the Yellow River Source Zone, 14th ed.; Brierley, G., Li, X., Cullum, C., Gao, J., Eds.; Springer: Cham, Switzerland, 2016; pp. 331–353. [Google Scholar]
- Gan, Y.D.; Huang, X.M.; Li, S.S.; Liu, N.; Li, Y.C.; Freidenreich, A.; Wang, W.X.; Wang, R.Q.; Dai, J.L. Source quantification and potential risk of mercury, cadmium, arsenic, lead, and chromium in farmland soils of Yellow River Delta. J. Clean. Prod. 2019, 221, 98–107. [Google Scholar] [CrossRef]
- Yu, Y.; Ling, Y.; Li, Y.Z.; Lv, Z.B.; Du, Z.H.; Guan, B.; Wang, Z.K.; Wang, X.H.; Yang, J.S.; Yu, J.B. Distribution and influencing factors of metals in surface soil from the Yellow River Delta, China. Land 2022, 11, 523. [Google Scholar] [CrossRef]
- Yang, Z.K.; Sui, H.L.; Song, Y.Q.; Li, Y.Q.; Shao, H.J.; Wang, J. Spatial distribution, sources and risk assessment of potentially toxic elements contamination in surface soils of Yellow River Delta, China. Mar. Pollut. Bull. 2022, 184, 114213. [Google Scholar] [CrossRef]
- Zhou, J.G.; Zhang, L.L.; Zhang, J.F.; Gan, S.C.; Lu, Z.; Qin, G.M.; Huang, X.Y.; Chen, H.; He, H.; Li, Y.X.; et al. Blue carbon storage of tidal flats and salt marshes: A comparative assessment in two Chinese coastal areas. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2024, 655, 112509. [Google Scholar] [CrossRef]
- Cheng, G.D.; Xue, C.T. Sedimentary Geology of Yellow River Delta; Geology Publishing House: Beijing, China, 1997. [Google Scholar]
- Saha, A.; Gupta, B.S.; Patidar, S.; Hernandez-Martinez, J.L.; Martín-Romero, F.; Meza-Figueroa, D.; Martínez-Villegas, N. A comprehensive study of source apportionment, spatial distribution, and health risks assessment of heavy metal(loid)s in the surface soils of a semi-arid mining region in Matehuala, Mexico. Environ. Res. 2024, 260, 119619. [Google Scholar] [CrossRef]
- Zhao, Y.Y.; Yan, M.C. Comparison of sediment chemical elements abundances in the Yellow River, Yangtze River, and Chinese shallow seas. Chin. Sci. Bull. 1992, 13, 1202–1204. [Google Scholar]
- Hakanson, L. An ecological risk index for aquatic pollution control a sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Zhao, Y.T.; Dong, X.X.; Wang, L.M.; Qi, Y.M.; You, L.P.; Sun, S.; Ma, Y.Q. Selection and comparison of different methods for ecological risk assessment of heavy metals in marine sediments of Laizhou Bay. Bull. Mar. Sci. 2019, 38, 353–360. [Google Scholar]
- Sun, P.; Zhang, L.B.; Luo, S.N. Speciation and risk characteristics of Heavy metals in the sediments of the Songhua River estuary. J. Environ. Sci. Manag. 2020, 45, 142–145. [Google Scholar]
- Wang, P.; Zhang, L.J.; Lin, X.; Yan, J.S.; Zhang, P.; Zhao, B.; Zhang, C.; Yu, Y.H. Spatial distribution, control factors and sources of heavy metal in the surface sediments of Fudu Estuary waters, East Liaodong Bay, China. Mar. Pollut. Bull. 2020, 156, 111279. [Google Scholar] [CrossRef] [PubMed]
- Birch, G.F.; Taylor, S.E. Application of sediment quality guidelines in the assessment and management of contaminated surficial sediments in Port Jackson (Sydney Harbour), Australia. J. Environ. Manag. 2002, 29, 860–870. [Google Scholar] [CrossRef]
- Long, E.R.; Macdonald, D.D.; Smith, S.L.; Calder, F.D. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. J. Environ. Manag. 1995, 19, 81–97. [Google Scholar] [CrossRef]
- Long, E.R.; Morgan, L.G. The Potential for Biological Effects of Sediment-Sorbed Contaminants Tested in the National Status and Trends Program; National Oceanic & Atmospheric Administration (NOAA): Silver Spring, MD, USA, 1990. [Google Scholar]
- MacDonald, D.D.; Carr, R.S.; Calder, F.D.; Long, E.R.; Ingrtsoll, C.G. Development and evaluation of sediment quality guidelines for Florida coastal waters. Ecotoxicology 1996, 5, 253–278. [Google Scholar] [CrossRef]
- Chen, H.Y.; Teng, Y.G.; Lu, S.J.; Wang, Y.Y.; Wu, J.; Wang, J.S. Source apportionment and health risk assessment of trace metals in surface soils of Beijing metropolitan, China. Chemosphere 2016, 144, 1002–1011. [Google Scholar] [CrossRef]
- Shi, W.; Li, T.; Feng, Y.; Su, H.; Yang, Q. Source apportionment and risk assessment for available occurrence forms of heavy metals in Dongdahe Wetland sediments, southwest of China. Sci. Total Environ. 2022, 815, 152837. [Google Scholar] [CrossRef]
- Liu, Z.; Du, Q.; Guan, Q.; Luo, H.; Shan, Y.; Shao, W. A Monte Carlo simulation-based health risk assessment of heavy metals in soils of an oasis agricultural region in northwest China. Sci. Total Environ. 2023, 857, 159543. [Google Scholar] [CrossRef] [PubMed]
- Hošek, M.; Pavlíková, P.; Šoltýs, M.; Tůmová, Š.; Matys Grygar, T. Distinguishing Geogenic Load and Anthropogenic Contribution to Soil Contamination in Mineralised Mountain Landscape of Ore Mountains (Czech Republic) Using Cumulative Distribution Functions. Land 2024, 13, 218. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Gao, S. Treatise on Geochemistry: Composition of the continental crust. In The Crust: Treatise on Geochemistry; Rudnick, R.L., Holland, H.D., Turekian, K.K., Eds.; Elsevier-Pergamon: Oxford, UK, 2003; Volume 3, pp. 1–64. [Google Scholar]
- Wei, F.S.; Chen, J.S.; Wu, Y.Y.; Zheng, C.J. Study on the background contents on 61 elements of soils in China. Chin. J. Environ. Sci. 1994, 12, 12–19. [Google Scholar]
- Xia, P.; Meng, X.W.; Yin, P.; Cao, Z.M.; Wang, X.Q. Eighty-year sedimentary record of heavy metal inputs in the intertidal sediments from the Nanliu River estuary, Beibu gulf of South China Sea. Environ. Pollut. 2011, 159, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Rousseau, T.C.C.; Sonke, J.E.; Chmeleff, J.; van Beek, P.; Souhaut, M.; Boaventura, G.; Seyler, P.; Jeandel, C. Rapid neodymium release to marine waters from lithogenic sediments in the Amazon estuary. Nat. Commun. 2015, 6, 7592. [Google Scholar] [CrossRef]
- GB 18668-2002; Marine Sediment Quality. General Administration of Quality Supervision, Inspection and Quarantine: Beijing, China, 2002.
- Tian, L.P.; Sun, Z.G.; Wang, C.Y.; Sun, W.L.; Li, J.; Chen, B.B. Spatial distribution of heavy metals and As concentrations and assessment of their ecological risk in inshore sediments, affected by the Flow-sediment Regulation Scheme in the Yellow River estuary. Acta Ecol. Sin. 2018, 38, 5529–5540. [Google Scholar]
- Hu, X.F.; Du, Y.; Feng, J.W.; Fang, S.Q.; Gao, X.J.; Xu, S.Y. Spatial and seasonal variations of heavy metals in wetland soils of the tidal flats in the Yangtze Estuary, China: Environmental implications. Pedosphere 2013, 23, 511–522. [Google Scholar] [CrossRef]
- Wu, H. Evaluation on International Importance Wetlands Ecosystem—A Case Study of Shuangtai Hekou Nature Reserve, Liaoning Province; Zhejiang A&F University: Lin’an, China, 2014. [Google Scholar]
- Xie, Z.L.; Zhu, G.R.; Xu, M.; Zhang, H.; Yi, W.B.; Jiang, Y.H.; Liang, M.X.; Wang, Z.F. Risk assessment of heavy metals in a typical mangrove ecosystem—A case study of Shankou Mangrove National Natural Reserve, southern China. Mar. Pollut. Bull. 2022, 178, 113642. [Google Scholar] [CrossRef] [PubMed]
- Zheng, R.Y.; Liu, Y.R.; Zhang, Z.H. Trophic transfer of heavy metals through aquatic food web in the largest mangrove reserve of China. Sci. Total Environ. 2023, 899, 165655. [Google Scholar] [CrossRef]
- Wang, J.; Du, H.H.; Xu, Y.; Chen, K.; Liang, J.H.; Ke, H.W.; Cheng, S.Y.; Liu, M.Y.; Deng, H.X.; He, T.; et al. Environmental and ecological risk assessment of trace metal contamination in mangrove ecosystems: A case from Zhangjiangkou Mangrove National Nature Reserve, China. Biomed Res. Int. 2016, 2016, 2167053. [Google Scholar] [CrossRef]
- Yang, Q.; Shen, X.Y.; Jiang, H.J.; Luan, T.G.; Yang, Q.; Yang, L.H. Key factors influencing pollution of heavy metals and phenolic compounds in mangrove sediments, South China. Mar. Pollut. Bull. 2023, 194, 115283. [Google Scholar] [CrossRef]
- Ji, Y.N.; Zhao, Z.Z.; Wu, D. Accumulation and distribution of heavy metals in sediments of mangrove wetland and kandelia candel in dongzhai harbor. Saf. Environ. Eng. 2015, 22, 1556–1671. [Google Scholar]
- Fang, Y.; Sun, X.Y.; Yang, W.J.; Ma, N.; Xin, Z.H.; Fu, J.; Liu, X.C.; Liu, M.; Mariga, A.M.; Zhu, X.F.; et al. Concentrations and health risks of lead, cadmium, arsenic, and mercury in rice and edible mushrooms in China. Food Chem. 2014, 147, 147–151. [Google Scholar] [CrossRef]
- Irshad, M.K.; Noman, A.; Alhaithloul, H.A.S.; Adeel, M.; Rui, Y.; Shah, T.; Zhu, S.; Shang, J. Goethite-modified biochar ameliorates the growth of rice (Oryza sativa L.) plants by suppressing Cd and As-induced oxidative stress in Cd and As co-contaminated paddy soil. Sci. Total Environ. 2020, 717, 137086. [Google Scholar] [CrossRef]
- Rahman, M.A.; Hasegawa, H.; Lim, R.P. Bioaccumulation, biotransformation and trophic transfer of arsenic in the aquatic food chain. Environ. Res. 2012, 116, 118–135. [Google Scholar] [CrossRef] [PubMed]
- Vaezi, A.; Lak, R. Contamination and environmental risk assessment of potentially toxic elements in the surface sediments of Northwest Persian Gulf. Reg. Stud. Mar. Sci. 2023, 67, 103235. [Google Scholar] [CrossRef]
- Zhao, F.J.; Ma, Y.; Zhu, Y.G.; Tang, Z.; McGrath, S.P. Soil contamination in China: Current status and mitigation strategies. Environ. Sci. Technol. 2015, 49, 750–759. [Google Scholar] [CrossRef] [PubMed]
- Long, E.R.; Field, L.J.; MacDonald, D.D. Predicting toxicity in marine sediments with numerical sediment quality guidelines. Environ. Toxicol. Chem. 1998, 17, 714–727. [Google Scholar] [CrossRef]
- Clarkson, T.W.; Magos, L. The toxicology of mercury and its chemical compounds. Crit. Rev. Toxicol. 2006, 36, 609–662. [Google Scholar] [CrossRef]
- Smith, A.H.; Marshall, G.; Yuan, Y.; Ferreccio, C.; Liaw, J.; von Ehrenstein, O.; Steinmaus, C.; Bates, M.N.; Selvin, S. Increased mortality from lung cancer and bronchiectasis in young adults after exposure to Arsenic in utero and in early childhood. Environ. Health Perspect. 2006, 114, 1293–1296. [Google Scholar] [CrossRef]
- USEPA. Exposure Factors Handbook: 2011 Edition; EPA/600/R-09/052F; USEPA: Washington, DC, USA, 2011.
- Sun, L.; Guo, D.K.; Liu, K.; Meng, H.; Zheng, Y.J.; Yuan, F.Q.; Zhu, G.H. Levels, sources, and spatial distribution of heavy metals in soils from a typical coal industrial city of Tangshan, China. Catena 2019, 175, 101–109. [Google Scholar] [CrossRef]
- Pan, S.X.; Lin, L.F.; Zeng, F.; Zhang, J.P.; Dong, G.H.; Yang, B.Y.; Jing, Y.; Chen, S.J.; Zhang, G.; Yu, Z.Q.; et al. Effects of lead, cadmium, arsenic, and mercury co-exposure on children’s intelligence quotient in an industrialized area of southern China. Environ. Pollut. 2018, 235, 47–54. [Google Scholar] [CrossRef]
- Horowitz, A.J.; Elrick, K.A. The relation of stream sediment surface area, grain size and composition to trace element chemistry. Appl. Geochem. 1987, 2, 437–451. [Google Scholar] [CrossRef]
- Varol, M.; Ustaoğlu, F.; Tokatl, C. Ecological risks and controlling factors of trace elements in sediments of dam lakes in the Black Sea Region (Turkey). Environ. Res. 2022, 205, 112478. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Z.; Duan, X.J.; Wang, L. Spatial distribution and source analysis of heavy metals in soils influenced by industrial enterprise distribution: Case study in Jiangsu Province. Sci. Total Environ. 2020, 710, 134953. [Google Scholar] [CrossRef]
- Que, W.P.; Yi, L.W.; Wu, Y.T.; Li, Q.P. Analysis of heavy metals in sediments with different particle sizes and influencing factors in a mining area in Hunan Province. Sci. Rep. 2024, 14, 20318. [Google Scholar] [CrossRef] [PubMed]
- Saha, N.; Rahman, M.S. Multivariate statistical analysis of metal contamination in surface water around Dhaka export processing industrial zone, Bangladesh. Environ. Nanotechnol. Monit. Manag. 2018, 10, 206–211. [Google Scholar] [CrossRef]
- Ustaoğlu, F.; Tepe, Y. Water quality and sediment contamination assessment of Pazarsuyu stream, Turkey using multivariate statistical methods and pollution indicators. Int. Soil Water Conserv. Res. 2019, 7, 47–56. [Google Scholar] [CrossRef]
- Chen, X.; Fu, X.Y.; Li, G.L.; Zhang, J.M.; Li, H.B.; Xie, F.Z. Source-specific probabilistic health risk assessment of heavy metals in surface water of the Yangtze River Basin. Sci. Total Environ. 2024, 926, 171923. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Chen, X.; Tu, C.; Luo, Y.; Christie, P. Distribution of heavy metals in soils of the Yellow River Delta: Concentrations in different soil horizons and source identification. J. Soil. Sediments 2014, 14, 1158–1168. [Google Scholar] [CrossRef]
- Fan, S.X.; Wang, X.D.; Lei, J.; Ran, Q.Q.; Ren, Y.X.; Zhou, J.H. Spatial distribution and source identification of heavy metals in a typical Pb/Zn smelter in an arid area of northwest China. Hum. Ecol. Risk Assess. Int. J. 2019, 25, 1661–1687. [Google Scholar] [CrossRef]
- He, H.; Miao, Y.J.; Zhang, Q.; Chen, Y.; Gan, Y.D.; Liu, N.; Dong, L.F.; Dai, J.L.; Chen, W.F. The structure and diversity of nitrogen functional groups from different cropping systems in Yellow River Delta. Microorganisms 2020, 8, 424. [Google Scholar] [CrossRef]
- Cai, L.M.; Xu, Z.C.; Ren, M.Z.; Guo, Q.W.; Hu, X.B.; Hu, G.C.; Wan, H.F.; Peng, P.G. Source identification of eight hazardous heavy metals in agricultural soils of Huizhou, Guangdong Province, China. Ecotoxicol. Environ. Saf. 2012, 78, 2–8. [Google Scholar] [CrossRef]
- Wang, S.; Cai, L.M.; Wen, H.H.; Luo, J.; Wang, Q.S.; Liu, X. Spatial distribution and source apportionment of heavy metals in soil from a typical county-level city of Guangdong Province, China. Sci. Total Environ. 2019, 655, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.M.; Huang, L.C.; Zhou, Y.Z.; Xu, Z.C.; Peng, X.C.; Yao, L.A.; Zhou, Y.; Peng, P.A. Heavy metal concentrations of agricultural soils and vegetables from Dongguan, Guangdong. J. Geogr. Sci. 2010, 20, 121–134. [Google Scholar] [CrossRef]
- Cai, Z.Q.; Ren, B.Z.; Xie, Q.; Deng, X.P.; Yin, W.; Chen, L.Y. Toxic element characterization against a typical high geology background: Pollution enrichment, source tracking, spatial distribution, and ecological risk assessment. Environ. Res. 2024, 255, 119146. [Google Scholar] [CrossRef] [PubMed]
- Gong, S.Y.; Xiong, G.S. The origin and transport of sediment of the Yellow River. In Proceedings of the International Symposium on Sedimentation on the Continental Shelf with Special Reference to the East China Sea, Hangzhou, China, 12–16 April 1983; Guang Hua Press: Beijing, China, 1983. [Google Scholar]
- Bispo, F.H.A.; de Menezes, M.D.; Fontana, A.; Sarkis, J.E.d.S.; Gonçalves, C.M.; de Carvalho, T.S.; Curi, N.; Guilherme, L.R.G. Rare earth elements (REEs): Geochemical patterns and contamination aspects in Brazilian benchmark soils. Environ. Pollut. 2021, 289, 117972. [Google Scholar] [CrossRef] [PubMed]
- USEPA. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites, OSWER 9355; Office of Emergency and Remedial Response: Washington, DC, USA, 2002.
- USEPA. Region IX, regional screening levels (formerly PRGs). San Francisco, CA 94105. 2013. Available online: http://www.epa.gov/region9/superfund/prg/ (accessed on 23 March 2025).
- Huang, J.H.; Guo, S.T.; Zeng, G.M.; Li, F.; Gu, Y.L.; Shi, Y.H. A new exploration of health risk assessment quantification from sources of soil heavy metals under different land use. Environ. Pollut. 2018, 243, 49–58. [Google Scholar] [CrossRef]
YRDNNR | Laizhou Bay | |||
---|---|---|---|---|
Total of YRDNNR | YRDNNR-N | YRDNNR-S | ||
Mn | 501.47 ± 136.83 | 538.88 ± 71.30 | 482.07 ± 157.13 | 602.48 ± 166.28 |
Cu | 14.08 ± 7.64 | 14.53 ± 4.90 | 13.85 ± 8.72 | 16.10 ± 11.10 |
Zn | 51.33 ± 20.55 | 51.33 ± 10.41 | 49.53 ± 23.99 | 55.02 ± 13.98 |
Cr | 42.99 ± 11.52 | 42.88 ± 6.15 | 43.05 ± 13.49 | 35.36 ± 7.90 |
As | 13.48 ± 5.07 | 13.85 ± 2.54 | 13.28 ± 5.97 | 13.39 ± 4.38 |
Cd | 0.10 ± 0.05 | 0.10 ± 0.02 | 0.11 ± 0.06 | 0.10 ± 0.03 |
Pb | 17.19 ± 6.02 | 16.14 ± 3.22 | 17.73 ± 6.99 | 18.46 ± 4.49 |
Study Area | Concentrations of Heavy Metals (mg/kg, Dry Weight) | References | ||||||
---|---|---|---|---|---|---|---|---|
Mn | Cu | Zn | Cr | As | Cd | Pb | ||
YRDNNR | 501.47 | 14.08 | 51.33 | 42.99 | 13.48 | 0.10 | 17.19 | This study |
CMDTNNR | 649 | 29.1 | 87.2 | 53.9 | — | 0.10 | 73.0 | [60] |
STENNR | — | 24.29 | 74.89 | 66.85 | — | 0.14 | 24.88 | [61] |
SKMNNR | — | 15.30 | 64.82 | 61.72 | 9.70 | 0.12 | 33.34 | [62] |
ZJMNNR | — | 27.38 | 71.28 | 63.30 | — | 0.63 | 40.88 | [63] |
ZJKMNNR | — | 21.20 | 137.63 | 30.43 | 25.07 | 0.07 | 44.02 | [64] |
NFMNNR | — | 65.3 | 238.2 | 52.1 | — | — | 70.8 | [65] |
DZGNNR | — | 14.81 | 57.64 | 71.68 | 7.79 | 0.25 | 17.75 | [66] |
Heavy Metals | PC1 | PC2 |
---|---|---|
Mn | 0.492 | 0.828 |
Cu | 0.802 | 0.419 |
Zn | 0.576 | 0.732 |
Cr | 0.817 | 0.406 |
As | 0.323 | 0.911 |
Cd | 0.653 | 0.662 |
Pb | 0.861 | 0.370 |
Variance % | 45.084 | 42.384 |
Cumulative variance % | 45.084 | 87.468 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, K.; Qiao, Y.; Chen, S.; Cui, Z.; Liu, Q. The Ecological Risks of Heavy Metals in the Estuarine Wetland Ecosystem and Their Impacts on Human Health: A Case from Yellow River Delta National Nature Reserve, China. Land 2025, 14, 845. https://doi.org/10.3390/land14040845
Zhao K, Qiao Y, Chen S, Cui Z, Liu Q. The Ecological Risks of Heavy Metals in the Estuarine Wetland Ecosystem and Their Impacts on Human Health: A Case from Yellow River Delta National Nature Reserve, China. Land. 2025; 14(4):845. https://doi.org/10.3390/land14040845
Chicago/Turabian StyleZhao, Kezi, Yuying Qiao, Shenliang Chen, Zhen Cui, and Qinglan Liu. 2025. "The Ecological Risks of Heavy Metals in the Estuarine Wetland Ecosystem and Their Impacts on Human Health: A Case from Yellow River Delta National Nature Reserve, China" Land 14, no. 4: 845. https://doi.org/10.3390/land14040845
APA StyleZhao, K., Qiao, Y., Chen, S., Cui, Z., & Liu, Q. (2025). The Ecological Risks of Heavy Metals in the Estuarine Wetland Ecosystem and Their Impacts on Human Health: A Case from Yellow River Delta National Nature Reserve, China. Land, 14(4), 845. https://doi.org/10.3390/land14040845