Measuring and Modeling Soil Carbon Changes on Dutch Dairy Farms
Abstract
:1. Introduction
2. Methods
2.1. Dairy Farms
2.2. Soil Data
2.3. Crop Management Data
2.4. Weather Data
2.5. Soil Carbon Model Simulations
3. Results and Discussion
3.1. Measured Changes in Soil Carbon Stocks
3.2. Simulated Changes in Soil Carbon Stocks
3.2.1. Comparing Simulations and Measurements
3.2.2. Annual Changes in Soil Carbon
3.2.3. Effect of Soil Carbon Measures
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bossio, D.A.; Cook-Patton, S.C.; Ellis, P.W.; Fargione, J.; Sanderman, J.; Smith, P.; Wood, S.; Zomer, R.J.; von Unger, M.; Emmer, I.M.; et al. The role of soil carbon in natural climate solutions. Nat. Sustain. 2020, 3, 391–398. [Google Scholar] [CrossRef]
- Adun, H.; Ampah, J.D.; Bamisile, O.; Hu, Y. The synergistic role of carbon dioxide removal and emission reductions in achieving the Paris Agreement goal. Sustain. Prod. Consum. 2024, 45, 386–407. [Google Scholar] [CrossRef]
- Panagos, P.; Borrelli, P.; Jones, A.; Robinson, D.A. A 1 billion euro mission: A Soil Deal for Europe. Eur. J. Soil Sci. 2024, 75, e13466. [Google Scholar] [CrossRef]
- Montanarella, L.; Panagos, P. The relevance of sustainable soil management within the European Green Deal. Land Use Policy 2021, 100, 104950. [Google Scholar] [CrossRef]
- Fetting, C. The European green deal. In ESDN Report; ESDN Office: Vienna, Austria, 2020; Volume 2. [Google Scholar]
- MEACP. Climate Agreement; Ministery of Economic Affairs and Climate Policy: The Hague, The Netherlands, 2019; p. 247. [Google Scholar]
- NZO. Klimaatverantwoorde Zuivelsector in Nederland; LTO Vakgroep Melkveehouderij, Nederlands Agrarisch Jongeren Kontakt, Nederlandse Melkveehouders Vakbond, Nederlandse Zuivel Organisatie: The Hague, The Netherlands, 2018; p. 31. [Google Scholar]
- Spijker, E. Navigating the complex policy landscape for carbon farming in The Netherlands and the EU [version 1; peer review: 1 approved with reservations, 1 not approved]. Open Res. Eur. 2024, 4, 228. [Google Scholar] [CrossRef]
- Freibauer, A.; Rounsevell, M.D.A.; Smith, P.; Verhagen, J. Carbon sequestration in the agricultural soils of Europe. Geoderma 2004, 122, 1–23. [Google Scholar] [CrossRef]
- Rodrigues, L.; Hardy, B.; Huyghebeart, B.; Fohrafellner, J.; Fornara, D.; Barančíková, G.; Bárcena, T.G.; De Boever, M.; Di Bene, C.; Feizienė, D.; et al. Achievable agricultural soil carbon sequestration across Europe from country-specific estimates. Glob. Change Biol. 2021, 27, 6363–6380. [Google Scholar] [CrossRef]
- Lesschen, J.P.; Hendriks, C.; Slier, T.; Porre, R.; Velthof, G.; Rietra, R. De Potentie voor Koolstofvastlegging in de Nederlandse Landbouw; Wageningen Environmental Research: Wageningen, The Netherlands, 2021. [Google Scholar]
- Coleman, K.; Jenkinson, D.; Crocker, G.; Grace, P.; Klir, J.; Körschens, M.; Poulton, P.; Richter, D. Simulating trends in soil organic carbon in long-term experiments using RothC-26.3. Geoderma 1997, 81, 29–44. [Google Scholar] [CrossRef]
- Oenema, J.; Koskamp, G.J.; Galama, P.J. Guiding commercial pilot farms to bridge the gap between experimental and commercial dairy farms; the project ‘Cows & Opportunities’. NJAS—Wagening. J. Life Sci. 2001, 49, 277–296. [Google Scholar] [CrossRef]
- Oenema, J.; van Keulen, H.; Schils, R.L.M.; Aarts, H.F.M. Participatory farm management adaptations to reduce environmental impact on commercial pilot dairy farms in the Netherlands. NJAS—Wagening. J. Life Sci. 2011, 58, 39–48. [Google Scholar] [CrossRef]
- Eurofins. Soil Sampling Protocol. 2023. Available online: https://www.eurofins-agro.com/uploads/downloads/IBL_Sampling_protocol/Sampling_protocol_SLM_FM_SCC_2023.pdf (accessed on 13 January 2024).
- Lesschen, J.P.; Vellinga, T.; Dekker, S.; van der Linden, A.; Schils, R. Mogelijkheden voor Monitoring van CO2-Vastlegging en Afbraak van Organische Stof in de Bodem op Melkveebedrijven; Wageningen Environmental Research: Wageningen, The Netherlands, 2020. [Google Scholar]
- Wösten, H.; Veerman, G.J.; de Groot, W.J.M.; Stolte, J. Waterretentie- en Doorlatendheidskarakteristieken van Boven- en Ondergronden in Nederland: De Staringreeks; Vernieuwde Uitgave 2001; Alterra-Rapport 153, 86 blz, 2001; Alterra: Wageningen, The Netherlands, 2001. [Google Scholar]
- Hoekstra, C.; Poelman, J.N.B. Dichtheid van Gronden Gemeten aan de Meest Voorkomende Bodemeenheden in Nederland; STIBOKA: Wageningen, The Netherlands, 1982. [Google Scholar]
- van Tol-Leender, D.; Knotters, M.; de Groot, W.; Gerritsen, P.; Reijneveld, A.; van Egmond, F.; Wösten, H.; Kuikman, P. Koolstofvoorraad in de Bodem van Nederland (1998–2018): CC-NL; Wageningen Environmental Research: Wageningen, The Netherlands, 2019. [Google Scholar]
- de Haan, J.; van Geel, W. Handboek Bodem en Bemesting. 2014. Available online: https://www.handboekbodemenbemesting.nl/nl/handboekbodemenbemesting.htm (accessed on 6 July 2023).
- Makkink, G. Examination of Penman’s revised formula [Esperanto]. Neth. J. Agric. Sci. 1957, 5, 290–305. [Google Scholar] [CrossRef]
- KNMI. KNMI Open Data Platform; Royal Netherlands Meteorological Institute: De Bilt, The Netherlands, 2025. [Google Scholar]
- Feddes, R.; Van Dam, J.; Witte, J. Soil Physics and Agrohydrology; Wageningen Universiteit: Wageningen, The Netherlands, 2003. [Google Scholar]
- Falloon, P.; Smith, P. Simulating SOC changes in long-term experiments with RothC and CENTURY: Model evaluation for a regional scale application. Soil Use Manag. 2002, 18, 101–111. [Google Scholar] [CrossRef]
- Zimmermann, M.; Leifeld, J.; Schmidt, M.W.I.; Smith, P.; Fuhrer, J. Measured soil organic matter fractions can be related to pools in the RothC model. Eur. J. Soil Sci. 2007, 58, 658–667. [Google Scholar] [CrossRef]
- Lesschen, J.P.; Hendriks, C.; van der Linden, A.; Timmermans, B.; Keuskamp, J.; Keuper, D.; Hanegraaf, M.; Conijn, S.; Slier, T. Development of Practical Tool for Soil C; Wageningen Environmental Research: Wageningen, The Netherlands, 2020. [Google Scholar]
- Six, J.; Doetterl, S.; Laub, M.; Müller, C.R.; Van de Broek, M. The six rights of how and when to test for soil C saturation. Soil 2024, 10, 275–279. [Google Scholar] [CrossRef]
- EC (European Commission). Council Directive 91/676/EEC of 12 December 1991 concerning the protection of waters against pollution caused by nitrates from agricultural sources. Off. J. 1991, L 375, 1–8. [Google Scholar]
- Reijneveld, A.; van Wensem, J.; Oenema, O. Soil organic carbon contents of agricultural land in the Netherlands between 1984 and 2004. Geoderma 2009, 152, 231–238. [Google Scholar] [CrossRef]
- Don, A.; Schumacher, J.; Scherer-Lorenzen, M.; Scholten, T.; Schulze, E.-D. Spatial and vertical variation of soil carbon at two grassland sites—Implications for measuring soil carbon stocks. Geoderma 2007, 141, 272–282. [Google Scholar] [CrossRef]
- Necpálová, M.; Anex, R.P.; Kravchenko, A.N.; Abendroth, L.J.; Del Grosso, S.J.; Dick, W.A.; Helmers, M.J.; Herzmann, D.; Lauer, J.G.; Nafziger, E.D.; et al. What does it take to detect a change in soil carbon stock? A regional comparison of minimum detectable difference and experiment duration in the north central United States. J. Soil Water Conserv. 2014, 69, 517–531. [Google Scholar] [CrossRef]
- Hoogsteen, M.J.J.; Breure, A.M.; van Ittersum, M.K. Monitoring soil organic matter on grassland farms: An exploratory analysis. Geoderma 2022, 405, 115456. [Google Scholar] [CrossRef]
- Nayak, A.K.; Rahman, M.M.; Naidu, R.; Dhal, B.; Swain, C.K.; Nayak, A.D.; Tripathi, R.; Shahid, M.; Islam, M.R.; Pathak, H. Current and emerging methodologies for estimating carbon sequestration in agricultural soils: A review. Sci. Total Environ. 2019, 665, 890–912. [Google Scholar] [CrossRef]
- Staps, S.; Rougoor, C.; Lesschen, J.P.; Cozijnsen, J. Methode Voor Vaststelling Van CO2-Vastlegging in de Bodem; Stichting Nationale Koolstofmarkt: The Hague, The Netherlands, 2021. [Google Scholar]
- Knotters, M.; Teuling, K.; Reijneveld, A.; Lesschen, J.P.; Kuikman, P. Changes in organic matter contents and carbon stocks in Dutch soils, 1998–2018. Geoderma 2022, 414, 115751. [Google Scholar] [CrossRef]
- Hanegraaf, M.C.; Hoffland, E.; Kuikman, P.J.; Brussaard, L. Trends in soil organic matter contents in Dutch grasslands and maize fields on sandy soils. Eur. J. Soil Sci. 2009, 60, 213–222. [Google Scholar] [CrossRef]
- Xu, H.; Ruysschaert, G.; D’Hose, T. Carbon Farming Towards EU Climate Neutrality: Insights from the MARVIC and Credible Projects. In Proceedings of the 9th International Symposium on Soil Organic Matter, Ben Guerir, Morocco, 26–31 May 2024. [Google Scholar]
- Shapley, H. Through Rugged Ways to the Stars; Scribner: New York, NY, USA, 1969; p. 180. [Google Scholar]
- Bolinder, M.A.; Kätterer, T.; Andrén, O.; Parent, L.E. Estimating carbon inputs to soil in forage-based crop rotations and modeling the effects on soil carbon dynamics in a Swedish long-term field experiment. Can. J. Soil Sci. 2012, 92, 821–833. [Google Scholar] [CrossRef]
- Poeplau, C. Estimating root: Shoot ratio and soil carbon inputs in temperate grasslands with the RothC model. Plant Soil 2016, 407, 293–305. [Google Scholar] [CrossRef]
- Deluz, C.; Nussbaum, M.; Sauzet, O.; Gondret, K.; Boivin, P. Evaluation of the Potential for Soil Organic Carbon Content Monitoring With Farmers. Front. Environ. Sci. 2020, 8, 113. [Google Scholar] [CrossRef]
- Conijn, J.; Lesschen, J. Soil Organic Matter in The Netherlands: Quantification of Stocks and Flows in the Top Soil; Plant Research International, Business Unit Agrosystems Research: Wageningen, The Netherlands, 2015. [Google Scholar]
- Poux, X.; Aubert, P.-M. An Agroecological Europe in 2050: Multifunctional Agriculture for Healthy Eating. Findings from the Ten Years for Agroecology (TYFA) Modelling Exercise; IDDRI: Paris, France, 2018. [Google Scholar]
- Schils, R.L.M.; Bufe, C.; Rhymer, C.M.; Francksen, R.M.; Klaus, V.H.; Abdalla, M.; Milazzo, F.; Lellei-Kovács, E.; Berge, H.T.; Bertora, C.; et al. Permanent grasslands in Europe: Land use change and intensification decrease their multifunctionality. Agric. Ecosyst. Environ. 2022, 330, 107891. [Google Scholar] [CrossRef]
- Erisman, J.W. Setting ambitious goals for agriculture to meet environmental targets. One Earth 2021, 4, 15–18. [Google Scholar] [CrossRef]
- Soussana, J.-F.; Loiseau, P.; Vuichard, N.; Ceschia, E.; Balesdent, J.; Chevallier, T.; Arrouays, D. Carbon cycling and sequestration opportunities in temperate grasslands. Soil Use Manag. 2004, 20, 219–230. [Google Scholar] [CrossRef]
- Vellinga, T.V.; van den Pol-van Dasselaar, A.; Kuikman, P.J. The impact of grassland ploughing on CO2 and N2O emissions in the Netherlands. Nutr. Cycl. Agroecosyst. 2004, 70, 33–45. [Google Scholar] [CrossRef]
- Reinsch, T.; Loges, R.; Kluß, C.; Taube, F. Effect of grassland ploughing and reseeding on CO2 emissions and soil carbon stocks. Agric. Ecosyst. Environ. 2018, 265, 374–383. [Google Scholar] [CrossRef]
- Necpálová, M.; Li, D.; Lanigan, G.; Casey, I.A.; Burchill, W.; Humphreys, J. Changes in soil organic carbon in a clay loam soil following ploughing and reseeding of permanent grassland under temperate moist climatic conditions. Grass Forage Sci. 2014, 69, 611–624. [Google Scholar] [CrossRef]
- Willems, A.B.; Augustenborg, C.A.; Hepp, S.; Lanigan, G.; Hochstrasser, T.; Kammann, C.; Müller, C. Carbon dioxide emissions from spring ploughing of grassland in Ireland. Agric. Ecosyst. Environ. 2011, 144, 347–351. [Google Scholar] [CrossRef]
- Verloop, J.; Hilhorst, G.J.; Pronk, A.A.; Šebek, L.B.; van Keulen, H.; Janssen, B.H.; Van Ittersum, M.K. Organic matter dynamics in an intensive dairy production system on a Dutch Spodosol. Geoderma 2015, 237–238, 159–167. [Google Scholar] [CrossRef]
- Mattila, T.J.; Hagelberg, E.; Söderlund, S.; Joona, J. How farmers approach soil carbon sequestration? Lessons learned from 105 carbon-farming plans. Soil Tillage Res. 2022, 215, 105204. [Google Scholar] [CrossRef]
- Dumbrell, N.P.; Kragt, M.E.; Gibson, F.L. What carbon farming activities are farmers likely to adopt? A best–worst scaling survey. Land Use Policy 2016, 54, 29–37. [Google Scholar] [CrossRef]
- Chabbi, A.; Rumpel, C.; Klumpp, K.; Franzluebbers, A. Managing Grasslands to Optimize Soil Carbon Sequestration; Burleigh Dodds Science Publishing: London, UK, 2023. [Google Scholar] [CrossRef]
Nr | Region | Soil Texture | Permanent Grass (n) | Grass-Arable Rotations (n) | Arable Crops |
---|---|---|---|---|---|
1 | Northwest | Clay | 1 | 15 | Forage maize, potato |
2 | Southwest | Clay/Sand | 5 | 9 | Forage maize, potato, barley, legumes, corn cob maize |
3 | Central | Clay | 1 | 10 | Forage maize, flower bulbs |
4 | Southeast | Sand | 2 | 6 | Forage maize, potato |
5 | Northeast | Clay/Sand | 6 | 6 | Forage maize, potato, corn cob maize |
6 | Northeast | Sand | 1 | 5 | Potato |
7 | East | Sand | 8 | - | - |
8 | Southwest | Clay | 6 | 3 | Forage maize |
9 | Southeast | Loam | 7 | 5 | Forage maize |
Indicator | All Data | Filtered Data |
---|---|---|
MAE | 12.3 (8.2) | 11.0 (6.3) |
RMSE | 13.7 (8.6) | 12.7 (7.0) |
Farm | Initial Carbon Stock (t/ha) | SOC_PG170 (t/ha) | SOC_PG170 Index |
---|---|---|---|
1 | 41 | 180 | 0.23 |
2 | 95 | 189 | 0.50 |
3 | 81 | 195 | 0.41 |
4 | 77 | 149 | 0.52 |
5 | 135 | 148 | 0.93 |
6 | 122 | 154 | 0.79 |
7 | 69 | 162 | 0.43 |
8 | 73 | 161 | 0.46 |
9 | 63 | 186 | 0.34 |
Average | 81 | 172 | 0.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schils, R.; Dekker, C.; Oenema, J.; Hilhorst, G.; Wagenaar, J.-P.; Verloop, K. Measuring and Modeling Soil Carbon Changes on Dutch Dairy Farms. Land 2025, 14, 874. https://doi.org/10.3390/land14040874
Schils R, Dekker C, Oenema J, Hilhorst G, Wagenaar J-P, Verloop K. Measuring and Modeling Soil Carbon Changes on Dutch Dairy Farms. Land. 2025; 14(4):874. https://doi.org/10.3390/land14040874
Chicago/Turabian StyleSchils, René, Colin Dekker, Jouke Oenema, Gerjan Hilhorst, Jan-Paul Wagenaar, and Koos Verloop. 2025. "Measuring and Modeling Soil Carbon Changes on Dutch Dairy Farms" Land 14, no. 4: 874. https://doi.org/10.3390/land14040874
APA StyleSchils, R., Dekker, C., Oenema, J., Hilhorst, G., Wagenaar, J.-P., & Verloop, K. (2025). Measuring and Modeling Soil Carbon Changes on Dutch Dairy Farms. Land, 14(4), 874. https://doi.org/10.3390/land14040874