Nature Conservation and Sustainable Tourism in a Former Baltic Sea Coastal Military Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Processing
2.2.1. Step 1 Field Investigation of the Current Situation with Tourism in the Target Area
2.2.2. Step 2 Delivering a GIS Map of Tourism-Related Spatial Conflicts
2.2.3. Step 3 Interpreting the Spatial Variation of Coastal Tourism-Related Conflicts
- Associate professor in tourism geography (18 years of expertise in the field);
- Practitioner (nature conservationist) with 13 years of expertise in integrated coastal planning and conservation;
- Leader of a local tourism association (11 years in the sector);
- Local forest ranger (27 years of expertise);
- Elder of the local eldership (22 years of administrative career).
2.2.4. Step 4 Validating the Outcome of the DPSIR Exercise by a Focus Group
2.2.5. Step 5 Decision-Support in Littoral Habitat Management and Tourism Planning
3. Results
3.1. Coastal Tourism Patterns in Pajūris Regional Park
3.2. Results of the DPSIR/Delphi Analysis
3.3. Differences Between Littoral and Areal Tourism Zones
4. Discussion
- Overrepresentation of specific stakeholders and homogeneous expert groups could have led to echo-chamber effects, limiting innovative or alternative viewpoints;
- Subjectivity in Delphi responses and DPSIR classification required qualitative judgment, which could have introduced subjectivity;
- Confirmation and anchoring bias may have led to unconscious prioritizing of certain decision-making pathways;
- Limited adaptability to dynamic coastal systems, particularly considering the inherent dynamism of linear littoral habitats and coastal squeeze against the static nature of Delphi consensus-building and DPSIR’s linear framework failing to capture these complexities fully.
- Diversified the expert panel to include the optimal range of stakeholders;
- Used mixed methods, incorporating quantitative data to complement expert opinions;
- Ensured an iterative feedback mechanism through the additional step of the focus group to challenge dominant assumptions and foster critical engagement.
5. Conclusions
- For the Pajūris Regional Park conservation authorities: (i) regulate visitor flows in the park; (ii) restrict visitor flows to the cycling paths; (iii) strictly curb the urban sprawl in Nemirseta and Karklė seaside resorts; iv) fence off the Olandų Kepurė cliff gully sites from visitors.
- For citizens (local communities and tourism associations) in Pajūris Regional Park: (i) participate actively in the updating of the National Baltic Coastal Zone Management Program of Lithuania for 2021–2030 to continue beach nourishment in Karklė; (ii) allow public spaces for more intensive leisure in Karklė; (iii) volunteer for clearing brushwood in Šaipiai; (iv) establish more leisure facilities and provide more information for visitors in the hinterland.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Povilanskas, R.; Armaitienė, A.; Breber, P.; Razinkovas-Baziukas, A.; Taminskas, J. The Integrity of Linear Littoral Habitats of Lesina and Curonian Lagoons. Hydrobiologia 2012, 699, 99–110. [Google Scholar] [CrossRef]
- Robles-Diaz-de-León, L.F.; Nava-Tudela, A. Playing with Asimina triloba (pawpaw): A species to consider when enhancing riparian forest buffer systems with non-timber products. Ecol. Model. 1998, 112, 169–193. [Google Scholar] [CrossRef]
- Povilanskas, R.; Chubarenko, B.V. Interaction between the drifting dunes of the Curonian Barrier Spit and the Curonian Lagoon. Baltica 2000, 13, 8–14. [Google Scholar]
- Povilanskas, R.; Riepšas, E.; Armaitienė, A.; Dučinskas, K.; Taminskas, J. Shifting Dune Types of the Curonian Spit and Factors of Their Development. Balt. For. 2011, 17, 215–226. [Google Scholar]
- Povilanskas, R. Landscape Management on the Curonian Spit: A Cross-Border Perspective; EUCC Publishers: Klaipeda, Lithuania, 2004; 242p. [Google Scholar]
- Jurkus, E.; Taminskas, J.; Povilanskas, R.; Urbis, A.; Mėžinė, J.; Urbis, D. Joining application of unmanned aerial vehicle imagery with GIS for monitoring of soft cliff linear habitats. J. Mar. Sci. Eng. 2025, 13, 80. [Google Scholar] [CrossRef]
- Zhu, E.; Gao, H.; Chen, L.; Yao, J.; Liu, T.; Sha, M. Interactions between coastal protection forest ecosystems and human activities: Quality, service and resilience. Ocean Coast. Manag. 2024, 254, 107190. [Google Scholar] [CrossRef]
- Šimanauskienė, R.; Linkevičienė, R.; Povilanskas, R.; Satkūnas, J.; Veteikis, D.; Baubinienė, A.; Taminskas, J. Curonian Spit coastal dunes landscape: Climate driven change calls for the management optimization. Land 2022, 11, 877. [Google Scholar] [CrossRef]
- Danial, H.; Syahrul, S.S.; Muhammad, Y. A Model of Fish Marketing at Paotere Fishing Ports for Increasing Fishermen’s Income. Int. J. Dev. Res. 2018, 8, 20013–20018. [Google Scholar]
- Doody, J.P. Sand Dune Conservation, Management and Restoration; Springer: Dordrecht, The Netherlands, 2013; 304p. [Google Scholar]
- Jordan, P.; Fröhle, P. Bridging the gap between coastal engineering and nature conservation? A review of coastal ecosystems as nature-based solutions for coastal protection. J. Coast. Conserv. 2022, 26, 4. [Google Scholar] [CrossRef]
- Pörtner, H.O.; Roberts, D.C.; Masson-Delmotte, V. The Ocean and Cryosphere in a Changing Climate: Special Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2022; 756p. [Google Scholar]
- Pontee, N. Defining coastal squeeze: A discussion. Ocean Coast. Manag. 2013, 84, 204–207. [Google Scholar] [CrossRef]
- Luijendijk, A.; Hagenaars, G.; Ranasinghe, R.; Baart, F.; Donchyts, G.; Aarninkhof, S. The state of the world’s beaches. Sci. Rep. 2018, 8, 6641. [Google Scholar] [CrossRef] [PubMed]
- Er-Ramy, N.; Nachite, D.; Anfuso, G.; Williams, A.T. Coastal scenic quality assessment of Moroccan Mediterranean beaches: A tool for proper management. Water 2022, 14, 1837. [Google Scholar] [CrossRef]
- Yasmeen, A.; Pumijumnong, N.; Arungrat, N.; Punwong, P.; Sereenonchai, S.; Chareonwong, U. Nature-based solutions for coastal erosion protection in a changing climate: A cutting-edge analysis of contexts and prospects of the muddy coasts. Estuar. Coast. Shelf Sci. 2024, 298, 108632. [Google Scholar] [CrossRef]
- Lithgow, D.; Martínez, M.L.; Gallego-Fernández, J.B.; Silva, R.; Ramírez-Vargas, D.L. Exploring the co-occurrence between coastal squeeze and coastal tourism in a changing climate and its consequences. Tour. Manag. 2019, 74, 43–54. [Google Scholar] [CrossRef]
- Doody, J.P. ‘Coastal squeeze’—An historical perspective. J. Coast. Conserv. 2004, 10, 129–138. [Google Scholar] [CrossRef]
- Silva, R.; Martínez, M.L.; van Tussenbroek, B.I.; Guzmán-Rodríguez, L.O.; Mendoza, E.; López-Portillo, J. A framework to manage coastal squeeze. Sustainability 2020, 12, 10610. [Google Scholar] [CrossRef]
- Jurkus, E.; Povilanskas, R.; Taminskas, J. Current Trends and Issues in Research on Biodiversity Conservation and Tourism Sustainability. Sustainability 2022, 14, 3342. [Google Scholar] [CrossRef]
- Jurkus, E.; Taminskas, J.; Povilanskas, R.; Kontautienė, V.; Baltranaitė, E.; Dailidė, R.; Urbis, A. Delivering tourism sustainability and competitiveness in seaside and marine resorts with GIS. J. Mar. Sci. Eng. 2021, 9, 312. [Google Scholar] [CrossRef]
- Povilanskas, R.; Razinkovas-Baziukas, A.; Jurkus, E. Integrated environmental management of transboundary transitional waters: Curonian Lagoon case study. Ocean Coast. Manag. 2014, 101, 14–23. [Google Scholar] [CrossRef]
- Liu, P.; Sun, J. Marketing strategy of marine resort: An exploratory study. J. Coast. Res. 2020, 106, 42–44. [Google Scholar] [CrossRef]
- Povilanskas, R.; Armaitienė, A. Marketing of coastal barrier spits as liminal spaces of creativity. Procedia Soc. Behav. Sci. 2014, 148, 397–403. [Google Scholar] [CrossRef]
- Tribe, J. Tribes, territories and networks in the tourism academy. Ann. Tour. Res. 2010, 37, 7–33. [Google Scholar] [CrossRef]
- Sheller, M.; Urry, J. Places to play, places in play. In Tourism Mobilities: Places to Play, Places in Play; Sheller, M., Urry, J., Eds.; Routledge: London, UK; New York, NY, USA, 2004; pp. 1–10. [Google Scholar]
- Travel Weekly. Available online: https://travelweekly.co.uk/articles/309479/visit-cornwall-chief-urges-visitors-to-stay-away-from-countys-beaches (accessed on 10 December 2024).
- Klusáček, P.; Martinát, S.; Krejčí, T.; Bartke, S. Re-development of a former military training area—The case of Brdy told from a local actors’ perspective. Land Use Policy 2019, 82, 147–157. [Google Scholar] [CrossRef]
- Martinović, K. Tivat’s urban regeneration-from arsenal to Porto Montenegro. Bull. Serb. Geogr. Soc. 2024, 104, 405–416. [Google Scholar] [CrossRef]
- Seits, I. Noblessner District in Tallinn: Recycling the Pasts to Discover the Futures. J. Eurasian Stud. 2024, 15, 213–226. [Google Scholar] [CrossRef]
- Iwama, D. Tides of Dispossession: Property in Militarized Land and the Coloniality of Military Base Conversion in Okinawa. Okinawan J. Isl. Stud. 2021, 2, 93–114. [Google Scholar]
- Baubinas, R.; Taminskas, J. Military Digression in the Lithuanian Coastal Region. In Proceedings of the EUCC–WWF Conference Coastal Conservation and Management in the Baltic Region, Klaipėda, Lithuania, 2–8 May 1994. [Google Scholar]
- Povilanskas, R.; Armaitienė, A.; Dyack, B.; Jurkus, E. Islands of prescription and islands of negotiation. J. Destin. Mark. Manag. 2016, 5, 260–274. [Google Scholar] [CrossRef]
- Baltranaitė, E.; Jurkus, E.; Povilanskas, R. Impact of Physical Geographical Factors on Sustainable Planning of South Baltic Seaside Resorts. Baltica 2017, 30, 119–131. [Google Scholar] [CrossRef]
- Gelumbauskaitė, L.Ž. On the morphogenesis and morphodynamics of the shallow zone off the Kuršių Nerija (Curonian Spit). Baltica 2003, 16, 37–42. [Google Scholar]
- Komar, P.D. Computer models of shoreline configuration: Headland erosion and the graded beach revisited. In Models in Geomorphology, 2nd ed.; Woldenberg, M.J., Ed.; Routledge: Abington, UK; New York, NY, USA, 2020; pp. 155–170. [Google Scholar]
- Povilanskas, R.; Armaitienė, A. Seaside Resort-Hinterland Nexus: Palanga, Lithuania. Ann. Tour. Res. 2011, 38, 1156–1177. [Google Scholar] [CrossRef]
- Baltranaite, E.; Povilanskas, R. Quantitative content analysis of the influence of natural factors on the competitiveness of South Baltic seaside resorts using the KH Coder 2.0 method. Geophys. Res. Abstr. 2019, 21, 17–20. [Google Scholar]
- Carson, D.A.; Carson, D.B.; Argent, N. Cities, hinterlands and disconnected urban-rural development: Perspectives from sparsely populated areas. J. Rural Stud. 2022, 93, 104–111. [Google Scholar] [CrossRef]
- Florido-Benítez, L. Málaga Costa del Sol airport and its new conceptualization of hinterland. Tour. Crit. Pract. Theory 2021, 2, 195–221. [Google Scholar] [CrossRef]
- Armaitienė, A.; Povilanskas, R.; Jones, E. Lithuania: Sustainable Rural Tourism Development in the Baltic Coastal Region. In Tourism in the New Europe: The Challenges and Opportunities of EU Enlargement; Hall, D., Smith, M., Marciszewska, B., Eds.; CABI Publishers: Wallingford, UK; Cambridge, MA, USA, 2006; pp. 183–198. [Google Scholar]
- Povilanskas, R.; Urbis, A. National ICZM strategy and initiatives in Lithuania. Coastline Rep. 2004, 2, 9–15. [Google Scholar]
- Climate. Ranger’s Office of Pajūris Regional Park. Available online: https://www.pajuris.info/ (accessed on 19 December 2024). (In Lithuanian).
- Masoodian, S.A. Sistan’s 120 Days Wind. J. Appl. Climatol. 2014, 1, 37–46. (In Lithuanian) [Google Scholar]
- Dailidė, R.; Dailidė, G.; Razbadauskaitė-Venskė, I.; Povilanskas, R.; Dailidienė, I. Sea-breeze front research based on remote sensing methods in coastal Baltic Sea climate: Case of Lithuania. J. Mar. Sci. Eng. 2022, 10, 1779. [Google Scholar] [CrossRef]
- Soomere, T.; Weisse, R.; Behrens, A. Wave climatology in the Arkona Basin, the Baltic Sea. Ocean Sci. Discuss. 2011, 8, 2237–2270. [Google Scholar]
- Kajala, L.; Almik, A.; Dahl, R.; Dikšaitė, L.; Erkkonen, J.; Fredman, P.; Jensen, F.; Sødergaard, K.K.; Sievãnen, T.; Skov-Petersen, H.; et al. Visitor Monitoring in Nature Areas—A Manual Based on Experiences from Nordic and Baltic Countries; Swedish Environmental Protection Agency: Stockholm, Sweden, 2007. [Google Scholar]
- Huang, S.-C.L. Visitor responses to the changing character of the visual landscape as an agrarian area becomes a tourist destination: Yilan County, Taiwan. J. Sustain. Tour. 2013, 21, 154–171. [Google Scholar] [CrossRef]
- Urbis, A.; Povilanskas, R.; Newton, A. Valuation of aesthetic ecosystem services of protected coastal dunes and forests. Ocean Coast. Manag. 2019, 179, 104832. [Google Scholar] [CrossRef]
- Adeoye-Olatunde, O.A.; Olenik, N.L. Research and scholarly methods: Semi-structured interviews. J. Am. Coll. Clin. Pharm. 2021, 4, 1358–1367. [Google Scholar] [CrossRef]
- Hennink, M.M.; Kaiser, B.N.; Marconi, V.C. Code saturation versus meaning saturation: How many interviews are enough? Qual. Health Res. 2017, 27, 591–608. [Google Scholar] [CrossRef] [PubMed]
- Kang, N.; Liu, C. Towards landscape visual quality evaluation: Methodologies, technologies, and recommendations. Ecol. Indic. 2022, 142, 109174. [Google Scholar] [CrossRef]
- Serrano Giné, D.; Pérez Albert, M.J.; Palacio Buendía, A.V. Aesthetic assessment of the landscape using psychophysical and psychological models: Comparative analysis in a protected natural area. Landsc. Urban Plan. 2021, 214, 104197. [Google Scholar] [CrossRef]
- Xu, H.; Plieninger, T.; Primdahl, J. A Systematic Comparison of Cultural and Ecological Landscape Corridors in Europe. Land 2019, 8, 41. [Google Scholar] [CrossRef]
- Urbis, A.; Povilanskas, R.; Jurkus, E.; Taminskas, J.; Urbis, D. GIS-based aesthetic appraisal of short-range viewsheds of coastal dune and forest landscapes. Forests 2021, 12, 1534. [Google Scholar] [CrossRef]
- Iamtrakul, P.; Chayphong, S.; Seo, D.; Trinh, T.A. Geo-spatial analysis of transit planning for sustainable tourism development in Bangkok, Thailand. J. Asian Archit. Build. Eng. 2024, 24. [Google Scholar] [CrossRef]
- Povilanskas, R.; Armaitienė, A.; Jones, E.; Valtas, G.; Jurkus, E. Third-Country Tourists on the Ferries linking Germany with Lithuania. Scand. J. Hosp. Tour. 2015, 15, 327–340. [Google Scholar] [CrossRef]
- Sadeghi, H.; Jafarpour Ghalehteimouri, K.; Seidiy, S.S. Assessment of tourism development services in peri-urban villages using the VIKOR model and spatial statistics algorithms in GIS for mapping spatial interactions. SN Soc. Sci. 2024, 4, 222. [Google Scholar] [CrossRef]
- Zhu, H.; Yan, X. Temporal and Spatial Evolution and Factors Influencing Tourist Resorts in China. Complexity 2024, 1, 6632478. [Google Scholar] [CrossRef]
- Baltranaitė, E.; Povilanskas, R.; Dučinskas, K.; Ernšteins, R.; Tõnesson, H. Systems approach to Eastern Baltic coastal zone management. Water 2020, 12, 3102. [Google Scholar] [CrossRef]
- Takyi, R.; El Mahrad, B.; Addo, C.; Essandoh, J.; ElHadary, M.; Adade, R.; Buadi, E.J.; Botwe, B.O.; Nunoo, F.K.E. Assessment of coastal and marine ecosystems in West Africa: The case of Ghana. Mar. Poll. Bull. 2023, 197, 115735. [Google Scholar] [CrossRef] [PubMed]
- Mandić, A. Structuring challenges of sustainable tourism development in protected natural areas with Driving force–Pressure–State–Impact–Response (DPSIR) framework. Environ. Syst. Decis. 2020, 40, 560–576. [Google Scholar] [CrossRef]
- Takyi, R.; El Mahrad, B.; Nunoo, F.K.E.; Adade, R.; ElHadary, M.; Essandoh, J. Adaptive management of environmental challenges in West African coastal lagoons. Sci. Total Environ. 2022, 838, 156234. [Google Scholar] [CrossRef]
- OECD. OECD Core Set of Indicators for Environmental Performance Reviews; OECD: Paris, France, 1994. [Google Scholar]
- Yang, X.; Yang, Z.; Quan, L.; Xue, B. Pursuing Urban Sustainability in Dynamic Balance Based on the DPSIR Framework: Evidence from Six Chinese Cities. Land 2024, 13, 1334. [Google Scholar] [CrossRef]
- EEA. Europe’s Environment: The Dobřiš Assessment; Report No 1/1995; European Environmental Agency: Copenhagen, Denmark, 1995. [Google Scholar]
- Bruno, M.F.; Sapponieri, A.; Molfetta, G.; Damiani, L. The DPSIR Approach for Coastal Risk Assessment under Climate Change at Regional Scale: The Case of Apulian Coast (Italy). J. Mar. Sci. Eng. 2020, 8, 531. [Google Scholar] [CrossRef]
- Federigi, I.; Balestri, E.; Castelli, A.; De Battisti, D.; Maltagliati, F.; Menicagli, V.; Verani, M.; Lardicci, C.; Carducci, A. Beach pollution from marine litter: Analysis with the DPSIR framework (driver, pressure, state, impact, response) in Tuscany, Italy. Ecol. Indic. 2022, 143, 109395. [Google Scholar] [CrossRef]
- Gari, S.R.; Newton, A.; Icely, J.D. A review of the application and evolution of the DPSIR framework with an emphasis on coastal social-ecological systems. Ocean Coast. Manag. 2015, 103, 63–77. [Google Scholar] [CrossRef]
- Quevedo, J.M.D.; Uchiyama, Y.; Kohsaka, R. A blue carbon ecosystems qualitative assessment applying the DPSIR framework: Local perspective of global benefits and contributions. Mar. Policy 2021, 128, 104462. [Google Scholar] [CrossRef]
- Molina, R.; Di Paola, G.; Manno, G.; Panicciari, A.; Anfuso, G.; Cooper, A. A DAPSI (W) R (M) framework approach to characterization of environmental issues in touristic coastal systems. An example from Southern Spain. Ocean Coast. Manag. 2023, 244, 106797. [Google Scholar] [CrossRef]
- Sobhani, P.; Esmaeilzadeh, H.; Wolf, I.D.; Deljouei, A.; Marcu, M.V.; Sadeghi, S.M.M. Evaluating the ecological security of ecotourism in protected area based on the DPSIR model. Ecol. Indic. 2023, 155, 110957. [Google Scholar] [CrossRef]
- Ahtiainen, H.; Dodd, L.F.; Korpinen, S.; Pakalniete, K.; Saikkonen, L. Quantifying effectiveness and sufficiency of measures—An application of the DPSIR framework for the marine environment. Mar. Policy 2025, 172, 106480. [Google Scholar] [CrossRef]
- Elliott, M.; Burdon, D.; Atkins, J.P.; Borja, A.; Cormier, R.; De Jonge, V.N.; Turner, R.K. “And DPSIR begat DAPSI(W)R(M)!”—A unifying framework for marine environmental management. Mar. Pollut. Bull. 2017, 118, 27–40. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.H.; Chen, F.; Tang, C.J.; Lu, Y.; Feng, Y.X. Integration of DPSIR framework and TOPSIS model reveals insight into the coastal zone ecosystem health. Ocean Coast. Manag. 2022, 226, 106285. [Google Scholar] [CrossRef]
- Davies-Vollum, K.S.; Koomson, D.; Raha, D. Coastal lagoons of West Africa: A scoping study of environmental status and management challenges. Anthr. Coasts 2024, 7, 7. [Google Scholar] [CrossRef]
- El Behja, H.; El M’rini, A.; Nachite, D.; Bouchkara, M.; El Khalidi, K.; Zourarah, B.; Galal Uddin, M.; Abioui, M. Evaluating coastal lagoon sustainability through the driver-pressure-state-impact-response approach: A study of Khenifiss Lagoon, southern Morocco. Front. Earth Sci. 2024, 12, 1322749. [Google Scholar] [CrossRef]
- Jorge-Romero, G.; Elliott, M.; Defeo, O. The cross-ecosystem dimension of managing sandy beach social-ecological systems. Ocean Coast. Manag. 2025, 262, 107551. [Google Scholar] [CrossRef]
- Oenoto, M.; Leach, A.W.; Kell, L.T.; Mumford, J. Exending the Driver-Pressure-State-Impact-Response Causal Chain Framework to Include Human Activities, Welfare and Management. Collect. Vol. Sci. Pap. ICCAT 2023, 80, 117–130. [Google Scholar]
- Semeraro, A.; Dupont, R.; Stratigaki, V.; Sterckx, T.; Van Hoey, G. DAPSI (W) R (M) put into practice for a nature-based solution: Framework applied to the coastbusters approach. Nat. Based Solut. 2024, 6, 100147. [Google Scholar] [CrossRef]
- Roepstorff, A.; Povilanskas, R. On the concepts of nature protection and sustainable use of natural resources: A case study from the Curonian lagoon. In Proceedings of the EUCC–WWF Conference Coastal Conservation and Management in the Baltic Region, Klaipėda, Lithuania, 2–8 May 1994. [Google Scholar]
- Taylor, E. We agree, don’t we? The Delphi method for health environments research. HERD Health Environ. Res. Des. J. 2020, 13, 11–23. [Google Scholar] [CrossRef]
- Boulkedid, R.; Abdoul, H.; Loustau, M.; Sibony, O.; Alberti, C. Using and reporting the Delphi method for selecting healthcare quality indicators: A systematic review. PLoS ONE 2011, 6, e20476. [Google Scholar] [CrossRef]
- Hernández-López, J.; Cervantes, O.; Olivos-Ortiz, A.; Guzmán-Reyna, R.R. DSPIR framework as planning and management tools for the La Boquita Coastal System, Manzanillo, Mexico. J. Mar. Sci. Eng. 2020, 8, 615. [Google Scholar] [CrossRef]
- Garrod, B.; Fyall, A. Managing Heritage Tourism. Ann. Tour. Res. 2000, 27, 682–708. [Google Scholar] [CrossRef]
- Hsu, C.C.; Sandford, B.A. The Delphi technique: Making sense of consensus. Pract. Assess. Res. Eval. 2007, 12, 10. [Google Scholar]
- Gobster, P.H.; Schneider, I.E.; Floress, K.M.; Haines, A.L.; Arnberger, A.; Dockry, M.J.; Benton, C. Understanding the key characteristics and challenges of pine barrens restoration: Insights from a Delphi survey of forest land managers and researchers. Restor. Ecol. 2021, 29, 13273. [Google Scholar] [CrossRef]
- La Sala, P.; Conto, F.; Conte, A.; Fiore, M. Cultural Heritage in Mediterranean Countries: The Case of an IPA Adriatic Cross Border Cooperation Project. Int. J. Eur. Med. Stud. 2016, 9, 31–50. [Google Scholar]
- Lupp, G.; Konold, W.; Bastian, O. Landscape management and landscape changes towards more naturalness and wilderness: Effects on scenic qualities—The case of the Muritz National Park in Germany. J. Nat. Conserv. 2013, 21, 10–21. [Google Scholar] [CrossRef]
- Monavari, S.M.; Khorasani, N.; Mirsaeed, S.S.G. Delphi-based Strategic Planning for Tourism Management–A Case Study. Pol. J. Environ. Stud. 2013, 22, 465–473. [Google Scholar]
- Olszewska, A.A.; Marques, P.F.; Ryan, R.L.; Barbosa, F. What makes a landscape contemplative? Environ. Plan. B Urban Anal. City Sci. 2018, 45, 7–25. [Google Scholar] [CrossRef]
- Tan, W.J.; Yang, C.F.; Château, P.A.; Lee, M.T.; Chang, Y.C. Integrated coastal-zone management for sustainable tourism using a decision support system based on system dynamics: A case study of Cijin, Kaohsiung, Taiwan. Ocean Coast. Manag. 2018, 153, 131–139. [Google Scholar] [CrossRef]
- Gundumogula, M. Importance of Focus Groups in Qualitative Research. Int. J. Humanit. Soc. Sci. 2020, 8, 299–302. [Google Scholar] [CrossRef]
- Tscherning, K.; Helming, K.; Krippner, B.; Sieber, S.; y Paloma, S.G. Does research applying the DPSIR framework support decision making? Land Use Policy 2012, 29, 102–110. [Google Scholar] [CrossRef]
- Kohsaka, R. Developing biodiversity indicators for cities: Applying the DPSIR model to Nagoya and integrating social and ecological aspects. Ecol. Res. 2010, 25, 925–936. [Google Scholar] [CrossRef]
- Lewison, R.L.; Rudd, M.A.; Al-Hayek, W.; Baldwin, C.; Beger, M.; Lieske, S.N.; Jones, C.; Satumanatpan, S.; Junchompoo, C.; Hines, E. How the DPSIR framework can be used for structuring problems and facilitating empirical research in coastal systems. Environ. Sci. Policy 2016, 56, 110–119. [Google Scholar] [CrossRef]
- Quevedo, J.M.D.; Lukman, K.M.; Ulumuddin, Y.I.; Uchiyama, Y.; Kohsaka, R. Applying the DPSIR framework to qualitatively assess the globally important mangrove ecosystems of Indonesia: A review towards evidence-based policymaking approaches. Mar. Policy 2023, 147, 105354. [Google Scholar] [CrossRef]
- Povilanskas, R.; Jurkienė, A.; Dailidienė, I.; Ernšteins, R.; Newton, A.; Leyva Ollivier, M.E. Circles of Coastal Sustainability and Emerald Growth Perspectives for Transitional Waters Under Human Stress. Sustainability 2024, 16, 2544. [Google Scholar] [CrossRef]
- Hansen, A.S. The Visitor: Connecting Health, Wellbeing and the Natural Environment. In Tourism, Health, Wellbeing and Protected Areas; Azara, I., Michopoulou, E., Niccolini, F., Taff, B.D., Clarke, A., Eds.; CABI: Wallingford, UK; Boston, MA, USA, 2018; pp. 125–138. [Google Scholar]
- Susilowati, Y.; Nur, W.H.; Sulaiman, A.; Kumoro, Y. Study of dynamics of coastal sediment cell boundary in Cirebon coastal area based on integrated shoreline Montecarlo model and remote sensing data. Reg. Stud. Mar. Sci. 2022, 52, 102268. [Google Scholar] [CrossRef]
- Alarcon Ferrari, C.; Jönsson, M.; Gebreyohannis Gebrehiwot, S.; Chiwona-Karltun, L.; Mark-Herbert, C.; Manuschevich, D.; Powell, N.; Do, T.; Bishop, K.; Hilding-Rydevik, T. Citizen science as democratic innovation that renews environmental monitoring and assessment for the sustainable development goals in rural areas. Sustainability 2021, 13, 2762. [Google Scholar] [CrossRef]
- Chen, V.Y.; Lu, D.J.; Han, Y.S. Hybrid intelligence for marine biodiversity: Integrating citizen science with AI for enhanced intertidal conservation efforts at Cape Santiago, Taiwan. Sustainability 2024, 16, 454. [Google Scholar] [CrossRef]
- Omstedt, A.; Dailidienė, I.; von Storch, H.; Grønfeldt Winther, R. Philosophical views of Baltic Basin climate and environmental sciences. Oceanologia 2024, 66, 66407. [Google Scholar] [CrossRef]
- Sinha, R.K.; Kumar, R.; Phartyal, S.S.; Sharma, P. Interventions of citizen science for mitigation and management of plastic pollution: Understanding sustainable development goals, policies, and regulations. Sci. Total Environ. 2024, 955, 176621. [Google Scholar] [CrossRef]
- Soriano-González, J.; Sánchez-García, E.; González-Villanueva, R. From a citizen science programme to a coastline monitoring system: Achievements and lessons learnt from the Spanish CoastSnap network. Ocean Coast. Manag. 2024, 256, 107280. [Google Scholar] [CrossRef]
- Jamal, T.; Higham, J. Justice and ethics: Towards a new platform for tourism and sustainability. J. Sustain. Tour. 2021, 29, 143–157. [Google Scholar] [CrossRef]
- Macdonald, C.; Wester, J. Public understanding of wildlife tourism: Defining terms, harms, and benefits. J. Ecotour. 2021, 20, 198–209. [Google Scholar] [CrossRef]
Framework | Advantages | Disadvantages |
---|---|---|
Well-structured and familiar for policymakers | Limited detail on human and ecological interactions | |
Widely used in various environmental assessments | Limited socioeconomic considerations | |
Effective communication tool facilitating broader discussions | Limited differentiation between activities and pressures | |
DPSIR | Policy-oriented | Lack of explicit activity analysis |
Structured analysis helps identify key intervention points | Lack of human welfare considerations | |
Simplicity makes it effective for engaging stakeholders | Simplification of complex interactions | |
Clear cause–effect relationships | Vague response mechanisms | |
More detailed, comprehensive and systemic | Overly detailed for broader policy discussions | |
Stronger policy guidance | Overly complex | |
Enhanced stakeholder engagement | Potential overcomplication for stakeholders | |
DAPSI(W)R(M) | Explicit consideration of welfare impacts | Higher data and resource demands |
Improved management focus for policymakers | Less familiarity among policymakers | |
Flexible and adaptable | Lack of standard procedures | |
Better differentiation of responses | Less established in tourism research |
Counting Spot | Cyclists 2023 | Cyclists 2024 | Hikers 2023 | Hikers 2024 | Total 2023 | Total 2024 |
---|---|---|---|---|---|---|
Nemirseta, cycle path—direction to Karklė | 79,850 | 89,505 | 13,380 | 12,995 | 93,230 | 102,500 |
Nemirseta, cycle path—direction to Palanga | 76,208 | 84,210 | 14,753 | 14,585 | 90,961 | 98,795 |
Olandų Kepurė, cycle path—direction to Klaipeda | 66,622 | 73,635 | 12,090 | 9084 | 78,712 | 82,719 |
Olandų Kepurė, cycle path—direction to Karklė | 74,580 | 83,634 | 13,437 | 11,240 | 98,017 | 94,874 |
Olandų Kepurė, hiking trail to the cliff | 0 | 0 | 417,294 | 423,771 | 417,294 | 423,771 |
Total | 297,260 | 330,984 | 470,954 | 471,675 | 778,214 | 802,659 |
No. * | Target Area | Major Amenities | Acreage (Hectares) | Available Beds | Visitors (Thousand) | Overnights (Thousand) |
---|---|---|---|---|---|---|
1. | Nemirseta (Palanga) | Baltic seaside beach, parabolic dunes | 51 | 150 | 246 | 646 |
2. | Karklė | Baltic seaside beach, period village | 112 | 680 | 322 | 865 |
3. | Šaipiai | Rural idyll, coastal grasslands | 629 | 20 | 114 | 2 |
4. | Olandų Kepurė | The highest sea cliff in Lithuania | 123 | 0 | 424 | 0 |
Total | 915 | 850 | 1106 | 1513 |
No. * | Target Area | Drivers | Pressures | States | Impacts | Responses |
---|---|---|---|---|---|---|
1. | Nemirseta (Palanga) | Development of large-scale leisure facilities | Intensified visits to the target area | Sandy grassland trampling | Ecological and aesthetic values deteriorate | Choreographing of visitor flows in the target area |
Urban sprawl in the target area | Forest floor and dune soil erosion | Shrinking of the forest and dune area | Target area’s leisure potential declining | Urban sprawl in the target area strictly curbed | ||
2. | Karklė | Intensified development of local leisure facilities | Losing of authentic heritage features | Loss of the small-scale seaside resort identity | Decline of the traditional seaside resort aesthetic appeal | Allotting public spaces for intensive leisure |
Human-induced climate change | Increasing coastal erosion | Eroded coast is not replenishing | Coastal squeeze | Regular beach nourishment | ||
3. | Šaipiai | Intensifying leisure in an area not adapted for it | Increasing visitor number in the nature reserve | Increasing noise in habitats important for birds | Areas appealing for calm leisure are shrinking | Restricting visitor flows to the cycling paths |
Stopping grazing by sheep and goats in the target area | Open grassland habitats overgrown with shrubs | Declining biodiversity and NATURA 2000 habitats | Lost open grassland and Black alder ‘savannah’ landscapes | Volunteers are used for clearing brushwood | ||
4. | Olandų Kepurė | Human-induced soft-cliff erosion | Deepening of erosion and deflation gullies | The erosion of the cliff is increasing | Aesthetic quality of the cliff is declining | Fencing off the cliff gully sites from visitors |
Increasing number of same-day visitors | Old-stand forest floor trampling and degradation | Degradation of valuable old-stand forest ecosystems | Declining scenic and leisure appeal of the target area | Providing more leisure facilities and information |
Core Areas | Hinterland Areas | |
---|---|---|
Linear habitats | Coastal squeeze Overcrowding Facility maintenance | Coastal erosion Visitor congestion Appealing coastal vistas |
Areal habitats | Urban sprawl Losing heritage authenticity Access restrictions for cars | Recreational digression Sandy habitat fragility Uncontrolled urbanization |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jurkus, E.; Taminskas, J.; Urbis, A.; Povilanskas, R. Nature Conservation and Sustainable Tourism in a Former Baltic Sea Coastal Military Area. Land 2025, 14, 887. https://doi.org/10.3390/land14040887
Jurkus E, Taminskas J, Urbis A, Povilanskas R. Nature Conservation and Sustainable Tourism in a Former Baltic Sea Coastal Military Area. Land. 2025; 14(4):887. https://doi.org/10.3390/land14040887
Chicago/Turabian StyleJurkus, Egidijus, Julius Taminskas, Arvydas Urbis, and Ramūnas Povilanskas. 2025. "Nature Conservation and Sustainable Tourism in a Former Baltic Sea Coastal Military Area" Land 14, no. 4: 887. https://doi.org/10.3390/land14040887
APA StyleJurkus, E., Taminskas, J., Urbis, A., & Povilanskas, R. (2025). Nature Conservation and Sustainable Tourism in a Former Baltic Sea Coastal Military Area. Land, 14(4), 887. https://doi.org/10.3390/land14040887