Importance of Blue–Green Infrastructure in the Spatial Development of Post-Industrial and Post-Mining Areas: The Case of Piekary Śląskie, Poland
Abstract
:1. Introduction
2. Research Review
2.1. The Concept of Blue–Green Infrastructure in Urban Development Planning
- Competition between cities for new investments is crucial from the perspective of local and regional policy;
- The redevelopment of post-industrial areas according to the concept of sustainable development;
- Blue–green infrastructure as an element of sustainable urban development.
2.2. The Importance of Blue–Green Infrastructure in Revitalizing Post-Industrial (Post-Mining) Areas
2.3. Practical Recommendations for Implementing Blue–Green Infrastructure in Post-Industrial (Post-Mining) Cities
3. Materials and Methods
3.1. Research Area
3.2. Data Collection and Processing Stages
- Searches for cadastral parcels;
- The downloading of WMS and WMTS layers;
- The retrieval of archival maps from the Mapster database;
- The Study of Conditions and Directions for Spatial Development of Piekary Śląskie [1],
- Local Spatial Development Plans [51],
- The 2022 Report on the State of Piekary Śląskie [52],
- The Development Strategy of the Upper Silesian-Zagłębie Metropolis for 2022–2027, with a Perspective until 2035 [53].
- The analysis of planning documents was part of the qualitative research. The records concerning the directions of urban policy in the context of implementing blue–green infrastructure in the city were checked.
- Compiling quantitative and qualitative data in the third research stage allowed for the ultimate creation of the attribute table in the QGIS program with layers of the post-industrial and post-mining areas for Piekary Śląskie. A total of eleven post-industrial and post-mining areas were inventoried. The data in the attribute table include area names, inclusion in the Local Development Plan, directions in the Study of Conditions and Directions of Spatial Development, and current land use. The preparation and description of the attributes concerning current land use were made possible by field research and a map analysis using the OSM (OpenStreetMap) service.
4. Results
4.1. Historical Outline—Industry and Mining in Piekary Śląskie
4.1.1. Ore Mining
4.1.2. Andaluzja Hard Coal Mine
4.1.3. Julian Hard Coal Mine
4.1.4. Brickworks in Kozłowa Góra
4.2. Development of Post-Industrial and Post-Mining Areas in Piekary Śląskie
4.3. Possibilities of Using Blue–Green Infrastructure for Post-Industrial Areas
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Studium Uwarunkowań i Kierunków Zagospodarowania Przestrzennego Miasta Piekary Śląskie [Study of the Conditions and Directions of Spatial Development of the City of Piekary Śląskie], 2024. Available online: https://piekaryslaskie.bip.net.pl/kategorie/212-studium-uwarunkowan-i-kierunkow-zagospodarowania-przestrzennego-miasta-piekary-slaskie?lang=PL (accessed on 10 September 2024).
- Tkocz, M. Tradycyjny okręg przemysłowy z perspektywy 25-lecia funkcjonowania w gospodarce rynkowej w Polsce. Przykład Górnośląskiego Okręgu Przemysłowego [A traditional industrial district from the perspective of 25 years of functioning in a market economy in Poland. An example of the Upper Silesian Industrial District]. Pract. Kom. Geogr. Przem. Pol. Tow. Geogr. 2015, 29, 112–126. [Google Scholar]
- Dragan, W.; Szmytkie, R. Ścieżki dezintegracji miast konurbacji katowickiej [Disintegration paths of the Katowice conurbation cities]. Czas. Geogr. 2020, 91, 183–206. [Google Scholar]
- Kantor-Pietraga, I.; Krzysztofik, R.; Runge, J.; Spórna, T. Problemy zarządzania miastem kurczącym się na przykładzie Bytomia [Problems of governance shrinking city for the example of Bytom]. In Społeczna Odpowiedzialność w Procesach Zarządzania Funkcjonalnymi Obszarami Miejskimi [Social Responsibility in the Processes of Governance Functional Urban Areas]; Markowski, T., Stawasz, D., Eds.; Biuletyn KPZK PAN: Warszawa, Poland, 2014; pp. 162–175. [Google Scholar]
- Kantor-Pietraga, I. Systematyka Procesu Depopulacji Miast na Obszarze Polski od XIX do XXI Wieku [Systematics of the Depopulation Process of Cities in Poland from the 19th to the 21st Century]; Uniwersytet Śląski: Katowice, Poland, 2014. [Google Scholar]
- Kowalski, A.; Majcher, M.; Mielcarek, Z.; Wojtacha, P. Doświadczenia z eksploatacji górniczej ZG” Piekary” pod dzielnicą Brzeziny Śląskie [Experience gained from mining of the “Piekary” Colliery under The Brzeziny Śląskie district]. WUG Bezp. Pract. Ochr. Środ. Gór. 2006, 11, 28–35. [Google Scholar]
- Kantor-Pietraga, I.; Zdyrko, A.; Bednarczyk, J. Semi-Natural Areas on Post-Mining Brownfields as an Opportunity to Strengthen the Attractiveness of a Small Town. An Example of Radzionków in Southern Poland. Land 2021, 10, 761. [Google Scholar] [CrossRef]
- Kozińska, A.M.; Greinert, A. Koncepcja rekultywacji i zagospodarowania części terenu po byłej Kopalni Węgla Kamiennego “Niwka” w Sosnowcu [The concept of reclamation and development of part of the area of the former “Niwka” Coal Mine in Sosnowiec]. Prz. Bud. 2013, 84, 82–85. [Google Scholar]
- Santorius, P.; Białecka, B.; Grabowski, J. Środowiskowe i gospodarcze problemy spowodowane degradacją terenów w Górnośląskim Zagłębiu Węglowym [Environmental and economic problems caused by degradation of terrains in Upper Silesia Coal Basin]. Pract. Nauk. GIG. Gór. Środ./Gł. Inst. Gór. 2007, 1, 85–99. [Google Scholar]
- Pytel, S.; Sitek, S.; Chmielewska, M.; Zuzańska-Żyśko, E.; Runge, A.; Markiewicz-Patkowska, J. Transformation Directions of Brownfields: The Case of the Górnośląsko-Zagłębiowska Metropolis. Sustainability 2021, 13, 2075. [Google Scholar] [CrossRef]
- Rall, E.L.; Haase, D. Creative intervention in a dynamic city: A sustainability assessment of an interim use strategy for brownfields in Leipzig, Germany. Landsc. Urban Plan. 2011, 100, 189–201. [Google Scholar] [CrossRef]
- Januchta-Szostak, A. Błękitno-zielona infrastruktura jako narzędzie adaptacji miast do zmian klimatu i zagospodarowania wód opadowych [Blue-green infrastructure as a tool for urban adaptation to climate change and rainwater management]. Zesz. Nauk. Politech. Pozn. 2020, 3, 37–74. [Google Scholar] [CrossRef]
- Kronenberg, J.; Bergier, T. (Eds.) Wyzwania zrównoważonego rozwoju w Polsce [Challenges of Sustainable Development in Poland]; Wydawnictwo Fundacja Sendzimira: Kraków, Poland, 2010. [Google Scholar]
- Janiszek, M.; Krzysztofik, R. Green Infrastructure as an Effective Tool for Urban Adaptation—Solutions from a Big City in a Post-industrial Region. Sustainability 2023, 15, 8928. [Google Scholar] [CrossRef]
- Iwaszuk, E.; Rudik, G.; Duin, L.; Mederake, L.; Davis, M.; Naumann, S.; Wagner, I. Addressing Climate Change in Cities–Catalogue of Urban Nature-Based Solutions; Wydawca Fundacja Sendzimira: Berlin, Germany; Kraków, Poland, 2019. [Google Scholar]
- Flores, C.C.; Vikolainen, V.; Crompvoets, J. Governance assessment of a blue-green infrastructure project in a small size city in Belgium. The potential of Herentals for a leapfrog to water sensitive. Cities 2021, 117, 103331. [Google Scholar] [CrossRef]
- Kimic, K.; Ostrysz, K. Assessment of Blue and Green Infrastructure Solutions in Shaping Urban Public Spaces—Spatial and Functional, Environmental, and Social Aspects. Sustainability 2021, 13, 11041. [Google Scholar] [CrossRef]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions, Green Infrastructure (GI)—Enhancing Europe’s Natural Capital, Final Report, Brussels 2013, pp. 1–11. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:52013DC0249 (accessed on 28 December 2024).
- Strumiłło, K. Zielone miasto w kontekście zrównoważonego rozwoju [Green city in the context of sustainable development]. Build 2023, 317, 12–17. [Google Scholar] [CrossRef]
- Pietryka, K. Błękitno-zielona infrastruktura a bezpieczeństwo powodziowe środowisk zurbanizowanych [Blue-green infrastructure and flood safety of urbanized environments]. In Najnowsze Doniesienia z Zakresu Ochrony Środowiska i Nauk Pokrewnych [The Latest News on Environmental Protection and Related Sciences]; Danielewska, A., Maciąg, M., Eds.; Wydawnictwo Naukowe TYGIEL: Lublin, Poland, 2020; pp. 22–40. [Google Scholar]
- Kowalewski, Z. Powodzie w Polsce-rodzaje, występowanie oraz system ochrony przed ich skutkami [Floods in Poland-types, occurrence and flood control system]. Woda Środ. Obsz. Wiej. 2006, 6, 207–220. [Google Scholar]
- Janasz, M.; Kałużyński, P. Zielona infrastruktura wyzwaniem dla logistyki miejskiej [Green infrastructure as a challenge for urban logistics]. In Różne Oblicza Logistyki. Zbiór Prac Studentów [Different Faces of Logistics. Collection of Students’ Works]; Motowidlak, U., Wronkowski, D., Reńda, A., Eds.; Wydawnictwo Uniwersytetu Łódzkiego: Łódź, Poland, 2018; pp. 161–176. [Google Scholar] [CrossRef]
- Monteiro, R.; Ferreira, J.C.; Antunes, P. Green Infrastructure Planning Principles: An Integrated Literature Review. Land 2020, 9, 525. [Google Scholar] [CrossRef]
- Pauleit, S.; Liu, L.; Ahern, J.; Kazmierczak, A. Multifunctional Green Infrastructure Planning to Promote Ecological Services in the City. In Urban Ecology: Patterns, Processes, and Applications; Niemela, J., Breuste, J.H., Elmqvist, T., Guntenspergen, G., James, P., McIntyre, N.E., Eds.; Oxford University Press: Oxford, UK, 2011; pp. 272–285. [Google Scholar] [CrossRef]
- Gill, S.E.; Handley, J.F.; Ennos, A.R.; Pauleit, S. Adapting cities for climate change: The role of the green infrastructure. Built Environ. 2007, 33, 115–133. [Google Scholar] [CrossRef]
- Golan, M.; Grochowicz, M.; Żebrowski, M. Zagospodarowanie tymczasowe na obszarach poprzemysłowych: Studia przypadków z miast polskich i zachodnioeuropejskich [Temporary use in post-industrial areas. Case studies from Polish and Western European cities]. Urban Dev. Issues 2021, 69, 5–16. [Google Scholar] [CrossRef]
- Lamond, J.; Everett, G. Sustainable Blue-Green Infrastructure: A social practice approach to understanding community preferences and stewardship. Landsc. Urban Plan. 2019, 191, 103639. [Google Scholar] [CrossRef]
- Jadach-Sepioło, A. (Ed.) Gminny Program Rewitalizacji. In Praktyczny Poradnik dla Mieszkańców i Władz Lokalnych [Municipal Revitalisation Programme. A Practical Guide for Inhabitants and Local Authorities]; National Institute for Spatial Policy and Housing: Warsaw, Poland, 2018. [Google Scholar]
- Rowe, G.; Frewer, L.J.A. Typology of Public Engagement Mechanisms. Sci. Technol. Hum. Values 2005, 30, 251–290. [Google Scholar] [CrossRef]
- Kopp, J.; Frajer, J.; Lehnert, M.; Kohout, M.; Ježek, J. Integrating Concepts of Blue-green Infrastructure to Support Multidisciplinary Planning of Sustainable Cities. Probl. Ekorozwoju—Probl. Sustain. Dev. 2021, 16, 137–146. [Google Scholar] [CrossRef]
- Bernaciak, A.; Bernaciak, A.; Fortuński, B. Blue-green infrastructure of a regenerative city. Econ. Environ. 2025, 91, 978. [Google Scholar] [CrossRef]
- Loures, L. Post-industrial landscapes as drivers for urban redevelopment: Public versus expert perspectives towards the benefits and barriers of the reuse of post-industrial sites in urban areas. Habitat Int. 2015, 45, 72–81. [Google Scholar] [CrossRef]
- Kaur, R.; Gupta, K. Blue-Green Infrastructure (BGI) network in urban areas for sustainable storm water management: A geospatial approach. City Environ. Interact. 2022, 16, 100087. [Google Scholar] [CrossRef]
- Hajto, M. (Ed.) 2023 Podręcznik Adaptacji dla Miast. Wytyczne do Przygotowania Miejskiego Planu Adaptacji do Zmian Klimatu [Adaptation Handbook for Cities. Guidelines for Preparing a City Adaptation Plan to Climate Change]; Instytut Ochrony Środowiska–Państwowy Instytut Badawczy [Warsaw: Institute of Environmental Protection-National Research Institute]: Warszawa, Poland, 2023. [Google Scholar]
- Kacperczyk, E.; Ciesielska, K.; Hernik, G.; Matysek-Zdun, U. (Eds.) Powierzchnia i Ludność w Przekroju Terytorialnym w 2024 Roku [Surface Area and Population by Territorial Division in 2024]; Główny Urząd Statystyczny Statistics Poland: Warsaw, Poland, 2024. [Google Scholar]
- Bank Danych Lokalnych [Local Data Bank]. Główny Urząd Statystyczny w Polsce [Central Statistical Office in Poland]. Available online: https://bdl.stat.gov.pl/BDL/start (accessed on 18 December 2024).
- Krzysztofik, R. The Socio-Economic Transformation of the Katowice Conurbation in Poland. In Growth and Change in Post-Socialist Cities of Central Europe; Cudny, W., Kunc, J., Eds.; Routledge: London, UK, 2021; pp. 195–216. [Google Scholar] [CrossRef]
- Główny Urząd Geodezji i Kartografii (GUGiK). Baza Danych Obiektów Topograficznych [Head Office of Geodesy and Cartography (GUGiK). Topographic Objects Database]. Available online: https://www.gov.pl/web/gugik/dane-udostepniane-bez-platnie-do-pobrania-z-serwisu-wwwgeoportalgovpl (accessed on 19 December 2024).
- Kondracki, J. Geografia Regionalna Polski [Regional Geography of Polan]; Wydawnictwo Naukowe PWN: Warszawa, Poland, 2009. [Google Scholar]
- Nita, J. Wyrobiska surowców skalnych w krajobrazie miejskim Górnośląsko-Zagłębiowskiej Metropolii [Excavations of rock raw materials in the urban landscape of the GZM Metropolitan Area]. Pract. Kom. Kraj. Kult. PTG 2019, 41, 203–222. [Google Scholar] [CrossRef]
- Cebula, C.; Słota, M.; Wrana, A. Inwentaryzacja resztek pokładów węgla oraz analiza mechanizmów ich powstawania na przykładzie kopalni “Piekary” [Inventory of coal seams residues and analysis of the mechanisms of their formation on the example of “Piekary” mine]. Wiad. Gór. 2012, 63, 74–79. [Google Scholar]
- Chwastek, K. Strajk w kopalni “Julian” 13–17 grudnia 1981 roku [The strike at the mine “Julian” on 13th–17th December 1981]. Stud. Śl. 2019, 85, 153–173. [Google Scholar]
- Kropka, J.; Grabala, D.; Wróbel, J.; Sołtysiak, M. Właściwości fizykochemiczne wody dopływającej do Centralnej Pompowni Bolko w Bytomiu z wyrobisk górniczych zlikwidowanych kopalń rud cynku i ołowiu [Physico-chemical characteristics of water flowing to Bolko central pumping station in Bytom from mine workings of liquidated Zn-Pb ore mines]. Hydrogeology 2019, 1–2, 52–67. [Google Scholar]
- Strozik, G. Ocena wpływu odwadniania wyrobisk górniczych na stan zagrożenia występowaniem deformacji nieciągłych na obszarze północnej części niecki bytomskiej [Assessment of Influence of Mine Drainage on the Sinkhole Occurrence Risk in The Northern part of Bytom Trough]. Inż. Miner. 2017, 18, 153–161. [Google Scholar] [CrossRef]
- Główny Urząd Geodezji i Kartografii (GUGiK). Usługi Przeglądania WMS i WMTS [WMS and WMTS Viewing Services]. Available online: https://www.geoportal.gov.pl/pl/usluga/uslugi-przegladania-wms-i-wmts/ (accessed on 15 December 2024).
- Rosas-Chavoya, M.; Gallardo-Salazar, J.L.; López-Serrano, P.M.; Alcántara-Concepción, P.C.; León-Miranda, A.K. QGIS a constantly growing free and open-source geospatial software contributing to scientific development. Cuad. Investig. Geogr. 2022, 48, 197–213. [Google Scholar] [CrossRef]
- Szczepanek, R. Quantum GIS–wolny i otwarty system informacji geograficznej [Quantum GIS–free and open source geographical information system]. Czas. Tech. Środ. 2012, 109, 171–182. [Google Scholar] [CrossRef]
- Nowak, M.M.; Słupecka, K.; Jackowiak, B. Geotagging of natural history collections for reuse in environmental research. Ecol. Indic. 2021, 131, 108131. [Google Scholar] [CrossRef]
- System OPI-TPP 2.0 [The Post-Mining Area Management System in the Silesian Voivodeship]. Available online: https://opi-tpp2.pl/ (accessed on 15 November 2024).
- Jąderko-Skubis, K. Wspomaganie zarządzania terenami pogórniczymi w województwie śląskim–analiza wybranych elementów systemu OPI-TPP 2.0 [Supporting the management of post-mining areas in the Silesian Voivodeship—Analysis of selected elements of the OPI-TPP 2.0 system]. In Innowacyjna Zielona Gospodarka [Innovative Green Economy]; Kruczek, M., Ed.; Główny Instytut Górnictwa: Katowice, Poland, 2023; pp. 45–56. [Google Scholar]
- Miejscowe Plany Zagospodarowania Miasta Piekary Śląskie [Local Development Plans for the City of Piekary Śląskie]. Available online: https://piekaryslaskie.bip.net.pl/kategorie/210-miejscowe-plany-zagospodarowania-przestrzennego-obowiazujace?lang=PL (accessed on 27 December 2024).
- Raport o Stanie Miasta Piekary Śląskie w Roku 2022 [Report on the State of the City of Piekary Śląskie in 2022]. Available online: https://piekaryslaskie.archiwum.bip.net.pl/c1065.html (accessed on 27 December 2024).
- Strategia Rozwoju Górnośląsko-Zagłębiowskiej Metropolii na lata 2022–2027, z Perspektywą do 2035 r. [Development Strategy of the Metropolis GZM for 2022–2027 with an Outlook to 2035]. Available online: https://bip.metropoliagzm.pl/artykul/34552/129693/strategia-rozwoju-gornoslasko-zaglebiowskiej-metropolii-na-lata-20222027-z-perspektywa-do-2035-r (accessed on 27 December 2024).
- Strozik, G.; Jendrus, R. Śladami górnictwa rudnego przez Księżą Górę i Kocie Górki w Piekarach Śląskich [In the footsteps of ore mining by the Ksieza Gora and Kocie Gorki in Piekary Slaskie]. Przyr. Górnego Śl. 2017, 88, 4–7. [Google Scholar]
- Strozik, G. Use of Fly Ash for Filling of Shallow Underground Ore Mine Workings on The Example of Mine Area Reclamation in Piekary Śląskie. Gospod. Surow. Miner.–Miner. Resour. Manag. 2018, 34, 139–154. [Google Scholar]
- Adamczak, D. Ostatni rolnicy w przemysłowej części Górnego Śląska [The last farmers in the industrial part of Upper Silesia]. Rocz. Muz. “Górnośląski Park Etnograficzny w Chorzowie” 2015, 3, 204–231. [Google Scholar]
- Gustkiewicz, J.; Zuberek, W.M.; Jochymczyk, K.; Kaczor, D. Geophysical monitoring of soil deformation due to underground mining. In Seismogenic Process Monitoring. Proceedings of a Joint Japan-Poland Symposium on Mining and Experimental Seismology, Kyoto, Japan, November 1999; Ogasawara, H., Yanagidani, T., Ando, M., Eds.; A. A. Balkema Publishers: Lisse, The Netherlands, 2002; pp. 25–36. [Google Scholar]
- Potempa, E.A. Kompania Węglowa S.A. Zakład Górniczy “Piekary” w Piekarach Śląskich: 100 lat KWK “Andaluzja” [Kompania Węglowa S.A. “Piekary” Mining Plant in Piekary Śląskie: 100 Years of “Andaluzja” Coal Mine]; Wydawca Kompania Węglowa SA oddział Zakład Górniczy “Piekary”: Piekary Śląskie, Poland, 2008. [Google Scholar]
- Duda, A. 60 lat kopalni „Piekary” [60 years of the „Piekary” mine]. Gaz. Firmowa Kompanii Węglowej 2014, 10, 26–29. [Google Scholar]
- Kaszowska, O. Współpraca zakładów górniczych z lokalnymi społecznościami w przypadkach eksploatacji pod osiedlami mieszkaniowymi [Cooperation of mines with local communities in cases of mining exploitation under housing estates]. Pract. Nauk. GIG. Gór. Środ./Gł. Inst. Gór. 2007, 3, 13–25. [Google Scholar]
- Jaros, J. Słownik Historyczny Kopalń Węgla na Ziemiach Polskich [Historical Dictionary of Coal Mines in Poland]; Śląski Instytut Naukowy: Katowice, Poland, 1984. [Google Scholar]
- Riley, R.; Tkocz, M. Coal mining in Upper Silesia under communism and capitalism. Eur. Urban Reg. Stud. 1998, 5, 217–235. [Google Scholar] [CrossRef]
- Dulias, R. Geomorfologiczne skutki eksploatacji węgla kamiennego w Zagłębiu Dąbrowskim [Geomorphological effects of hard coal exploitation in the Dąbrowa Basin]. Kształtowanie Środowiska Geograficznego i Ochrona Przyrody na Obszarach Uprzemysłowionych i Zurbanizowanych 2007, 38, 11–22. [Google Scholar]
- Zdyrko, A. Przekształcenia zagospodarowania przestrzennego terenów poprzemysłowych w gminach powiatu tarnogórskiego z wykorzystaniem metod GIS [Transformations of spatial development of post-industrial areas in the municipalities of Tarnowskie Góry district using GIS methods]. Konwers. Wiedzy o Mieście 2022, 35, 67–77. [Google Scholar] [CrossRef]
- Kasztelewicz, Z.; Michalski, A.; Jagodziński, Z.; Czaplicki, P. Zagospodarowanie terenów pogórniczych w KWB “Konin” w Kleczewie SA [Development of the post-mining areas in Konin Lignite Mine in Kleczewo SA]. Gór. Geoinżynieria 2007, 31, 331–338. [Google Scholar]
- James, P.; Tzoulas, K.; Adams, M.D.; Barber, A.; Box, J.; Breuste, J.H.; Thompson, C.W. Towards an integrated understanding of green space in the European built environment. Urban For. Urban Green. 2009, 8, 65–75. [Google Scholar] [CrossRef]
- Kabisch, N. Ecosystem service implementation and governance challenges in urban green space planning—The case of Berlin, Germany. Land Use Policy 2015, 42, 557–567. [Google Scholar] [CrossRef]
- Nowakowska, A.; Walczak, B. Dziedzictwo przemysłowe jako kapitał terytorialny. Przykład Łodzi [Industrial heritage as territorial capital. The example of Łódź]. Gospod. Prakt. Teori. 2017, 45, 45–56. [Google Scholar] [CrossRef]
- Waszczuk, T. Transformations of brownfields in the period of economic recession. Illusion of “Bilbao effect”. Przestrz. Forma 2017, 30, 217–240. [Google Scholar] [CrossRef]
- Nawrot, F. Budowa instalacji odnawialnych źródeł energii a planowanie przestrzenne [Construction project of the renewable energy installation and spatial planning]. Praw. Probl. Gór. Ochr. Środ. 2017, 1, 71–89. [Google Scholar]
- Ling, C.; Handley, J.; Rodwell, J. Restructuring the post-industrial landscape: A multifunctional approach. Landsc. Res. 2007, 32, 285–309. [Google Scholar] [CrossRef]
- Nowakowski, M. Centrum Miasta. Teoria, Projekty, Realizacje [City Center. Theory, Projects, Implementations]; Wydawnictwo Arkady: Warszawa, Poland, 1990. [Google Scholar]
- Zemło, M. (Ed.) Małe Miasta. Przestrzenie [Small Towns. Spaces]; Stowarzyszenie Collegium Suprasliense: Supraśl, Poland, 2003. [Google Scholar]
- Lai, Y.; Tang, B.; Chen, X.; Zheng, X. Spatial determinants of land redevelopment in the urban renewal processes in Shenzhen, China. Land Use Policy 2021, 103, 105330. [Google Scholar] [CrossRef]
- Preston, P.D.; Dunk, R.M.; Smith, G.R.; Cavan, G. Not all brownfields are equal: A typological assessment reveals hidden green space in the city. Landsc. Urban Plan. 2023, 229, 104590. [Google Scholar] [CrossRef]
- Jian, H.; Hao, H.; Haidan, J.; Haize, P.; Chuan, L. Brownfield redevelopment evaluation based on structure-process-outcome theory and continuous ordered weighted averaging operator-topology method. Sci. Rep. 2023, 13, 17530. [Google Scholar] [CrossRef]
- Kabisch, N.; Haase, D. Green spaces of European cities revisited for 1990–2006. Landsc. Urban Plan. 2013, 110, 113–122. [Google Scholar] [CrossRef]
- Hansen, R.; Pauleit, S. From Multifunctionality to Multiple Ecosystem Services? A Conceptual Framework for Multifunctionality in Green Infrastructure Planning for Urban Areas. Ambio 2014, 43, 516–529. [Google Scholar] [CrossRef]
- Benedict, M.A.; McMahon, E.T. Green Infrastructure: Linking Landscapes and Communities; Island Press: Washington, DC, USA, 2006. [Google Scholar]
- Lafortezza, R.; Davies, C.; Sanesi, G.; Konijnendijk, C.C. Green infrastructure as a tool to support spatial planning in European urban regions. iForest—Biogeosci. For. 2013, 6, 102–108. [Google Scholar] [CrossRef]
- Ahern, J. Green infrastructure for cities: The spatial dimension. In Cities of the Future: Towards Integrated Sustainable Water and Landscape Management; Novotny, V., Brown, P.R., Eds.; IWA Publishing: London, UK, 2007; pp. 267–283. [Google Scholar]
- Climate ADAPT. Available online: https://climate-adapt.eea.europa.eu/ (accessed on 28 December 2024).
- Strategiczny Plan Adaptacji 2020 (Strategiczny Plan Adaptacji dla Sektorów i Obszarów Wrażliwych na Zmiany Klimatu do Roku 2020 z Perspektywą do Roku 2030) [Strategic Adaptation Plan 2020 (Strategic Adaptation Plan for Sectors and Areas Sensitive to Climate Change by 2020 with a Perspective to 2030)]. Available online: https://bip.mos.gov.pl/strategie-plany-programy/strategiczny-plan-adaptacji-2020 (accessed on 30 December 2024).
- Spadło, K.; Basińska, P.; Jadach-Sepioło, A.; Muszyńska-Jeleszyńska, D.; Goślicka, B. Błękitna Infrastruktura w Procesach Rewitalizacji [Blue Infrastructure in Revitalization Processes]; Instytut Rozwoju Miast i Regionów: Warszawa-Kraków, Poland, 2020. [Google Scholar]
- Hoang, A.T.; Pham, V.V.; Nguyen, X.P. Integrating renewable sources into energy system for smart city as a sagacious strategy towards clean and sustainable process. J. Clean. Prod. 2021, 305, 127161. [Google Scholar] [CrossRef]
- Kocak, E.; Ulug, E.E.; Oralhan, B. The impact of electricity from renewable and non-renewable sources on energy poverty and greenhouse gas emissions (GHGs): Empirical evidence and policy implications. Energy 2023, 272, 127125. [Google Scholar] [CrossRef]
- Mert, Y. Contribution to sustainable development: Redevelopment of post-mining brownfields. J. Clean. Prod. 2019, 240, 118212. [Google Scholar] [CrossRef]
- Pavolová, H.; Bakalár, T.; Emhemed, E.M.; Hajduová, Z.; Pafčo, M. Model of sustainable regional development with implementation of brownfield areas. Entrep. Sustain. Issues 2019, 6, 1088–1100. [Google Scholar] [CrossRef]
- Guimarães, P. Business Improvement Districts: A Systematic Review of an Urban Governance Model towards City Center Revitalization. Land 2021, 10, 922. [Google Scholar] [CrossRef]
- Michael Conlin i Lee Jolliffe, red. Mining Heritage and Tourism: A Global Synthesis; Routledge: London, UK, 2010. [Google Scholar]
- Sattler, J. Detroit and the Ruhr: Two Post-industrial Landscapes. New Glob. Stud. 2013, 7, 87–97. [Google Scholar] [CrossRef]
- Kusińska, E. Contemporary Cities of the Ruhr–Green Post-industrial Agglomerations. Hous. Environ. 2018, 24, 179–185. [Google Scholar] [CrossRef]
- Keil, A. Use and perception of post-industrial urban landscapes in Ruhr. In Wild Urban Woodlands; Kowarik, I., Körner, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 117–130. [Google Scholar] [CrossRef]
- Eiringhaus, P. How industrial heritage became green–Renaturalisation narratives in regional history culture. In Boom–Crisis–Heritage: King Coal and the Energy Revolutions After 1945; Bluma, L., Farrenkopf, M., Meyer, T., Eds.; De Gruyter Oldenbourg: Berlin, Germany; Boston, MA, USA, 2021; pp. 257–266. [Google Scholar] [CrossRef]
Green Infrastructure Element | Applicable Areas | Ecological Benefits | Community Benefits |
---|---|---|---|
Urban parks and gardens | Large urban spaces—city centers, commercial outskirts | Reduction of the urban heat island effect, improved air quality, protection of plant and animal species, and soil conservation | Improved urban landscape aesthetics, creation of recreational and relaxation spaces, educational functions, and fostering human–nature connections in urban environments |
Pocket parks | Small urban spaces between buildings | Improved air quality and preservation of soil and groundwater properties | Enhancement of urban aesthetics, promotion of urban greenery within local communities, and fostering social integration through collective environmental stewardship |
Flower meadows | Open urban spaces such as flower beds, wastelands, and fallow land | Biodiversity conservation by providing shelter for pollinators, increased plant pollination, and rainwater retention | Enhanced urban landscape aesthetics and attractiveness |
Green roofs | Public buildings, residential buildings, and transport infrastructure (e.g., bus stop shelters) | Reduction of the urban heat island effect, thermal insulation, and rainwater retention | Improved urban aesthetics and attractiveness, creation of recreational spaces, educational functions, and engagement of local communities in green roof initiatives |
Water-recreational spaces | Post-extraction pits from natural resource exploitation | Increased biodiversity, water filtration and retention, local climate regulation, and ecosystem balance maintenance | Expanded tourism and recreational opportunities, flood protection, and improved urban landscape aesthetics |
No. | Area Name | Inclusion in the Local Development Plan | Directions in the Study of Conditions and Directions of Spatial Development | Current Land Use |
---|---|---|---|---|
1. | Andaluzja Hard Coal Mine | No | • Areas designated for production and service development • Infrastructure development directions: an area designated for the installation of renewable energy facilities with a capacity exceeding 500 kW, including a protective zone | • Green areas • Wasteland |
2. | Andaluzja Hard Coal Mine—Dołki Shaft | Yes | • Areas designated for production and service development • Areas designated for service development (public and commercial) • Infrastructure development directions: an area designated for the installation of renewable energy facilities with a capacity exceeding 500 kW, including a protective zone | • Green areas • Wasteland • Service buildings |
3. | Siemianowice Hard Coal Mine—Rozalia Shaft | Yes | • Low green areas • Single- and multi-family residential areas | • Green areas • Wasteland • Remnants of the Rozalia Shaft |
4. | Orzeł Biały Mining and Metallurgical Plant | Yes | • Areas designated for production and service development | • Orzeł Biały S.A.—Waste Recycling Plant |
5. | Aluminum Transmission Areas—Brzeziny Śląskie | Yes | • Areas designated for production and service development • Areas designated for the installation of renewable energy facilities with a capacity exceeding 100 kW, including a protective zone | • Wasteland • Spoil heaps • Post-mining areas • Green areas |
6. | Aluminum Transmission Areas—Brzeziny Śląskie Spoil Heap | Yes | • Areas designated for production and service development • Areas designated for the installation of renewable energy facilities with a capacity exceeding 100 kW, including a protective zone | • Wasteland • Spoil heaps • Post-mining areas • Green areas |
7. | Powstańców Śląskich Hard Coal Mine—Shaft VI | Yes | • Areas designated for production and service development • Low green areas • Boundaries of documented mineral deposits under mining ownership • Public-purpose investment (local): boundaries of areas of particular natural value | • Green areas • Wasteland |
8. | Brick Factory near Grzybowa Street—Kozłowa Góra | Yes | • Areas designated for production and service development | • Service development areas |
9. | Former Brick Factory—Now “Staw Cegielnia” (Brickworks Pond) | Yes | • Water areas | • Water area (Staw Cegielnia)—a reservoir formed by the flooding of the former brickworks |
10. | Bobrek-Piekary Hard Coal Mine | Yes | • Areas designated for central urban functions as a newly developed city center • Boundaries of post-industrial areas designated for revitalization | • Post-industrial area • Wasteland designated for revitalization |
11. | Food Processing Plant | Yes | • Areas designated for service development (public and commercial services) | • Service buildings (confectionery shop, travel agency) • Green areas |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kantor-Pietraga, I.; Zdyrko-Bednarczyk, A.; Bednarczyk, J. Importance of Blue–Green Infrastructure in the Spatial Development of Post-Industrial and Post-Mining Areas: The Case of Piekary Śląskie, Poland. Land 2025, 14, 918. https://doi.org/10.3390/land14050918
Kantor-Pietraga I, Zdyrko-Bednarczyk A, Bednarczyk J. Importance of Blue–Green Infrastructure in the Spatial Development of Post-Industrial and Post-Mining Areas: The Case of Piekary Śląskie, Poland. Land. 2025; 14(5):918. https://doi.org/10.3390/land14050918
Chicago/Turabian StyleKantor-Pietraga, Iwona, Aleksandra Zdyrko-Bednarczyk, and Jakub Bednarczyk. 2025. "Importance of Blue–Green Infrastructure in the Spatial Development of Post-Industrial and Post-Mining Areas: The Case of Piekary Śląskie, Poland" Land 14, no. 5: 918. https://doi.org/10.3390/land14050918
APA StyleKantor-Pietraga, I., Zdyrko-Bednarczyk, A., & Bednarczyk, J. (2025). Importance of Blue–Green Infrastructure in the Spatial Development of Post-Industrial and Post-Mining Areas: The Case of Piekary Śląskie, Poland. Land, 14(5), 918. https://doi.org/10.3390/land14050918