Agricultural Expansion in the Brazilian Cerrado: Increased Soil and Nutrient Losses and Decreased Agricultural Productivity
Abstract
:1. Introduction
2. Study Area
3. Methods
3.1. Input Data and Pre-Processing
- (a)
- Agriculture class: agriculture areas, a mosaic of agricultural areas with remaining forest, a mosaic of forest vegetation with agricultural areas, and a mosaic of grassland with agricultural areas;
- (b)
- Pasture: planted and managed pastureland (e.g., cattle-ranching);
- (c)
- Silviculture: planted and managed forests with exotic species (e.g., eucalyptus, pines);
- (d)
- Natural vegetation: includes natural vegetation in different stages of ecological succession (e.g., forest vegetation, grassland, and wetland);
- (e)
- Others: artificial areas (e.g., urbanized zones, road systems, non-agricultural systems), continental water bodies, coastal water bodies, and uncovered lands (e.g., rock outcrops and sand dunes).
3.2. Revised Universal Soil Loss Equation (RUSLE) Model
3.2.1. Rainfall-Runoff Erosivity Factor (R)
3.2.2. Soil Erodibility Factor (K)
3.2.3. Topographic Factor (LS)
3.2.4. Cover and Management Factor (C)
3.2.5. Supporting Practice Factor (P)
3.3. Crop Productivity Loss (CPL) Estimation
3.4. Nitrogen (N) and Phosphorus (P) Potential Loss Estimation
3.5. Statistical Analysis
4. Results and Discussion
4.1. Potential Soil Loss in the Brazilian Cerrado and Its Spatial Distribution
4.2. Crop Productivity Loss in Severely Eroded Areas and Their Spatial Distribution
4.3. Potential Nutrient Loss in Severely Eroded Lands
4.4. Priority Areas for Soil Conservation and Erosion Control Practices
4.5. Limitations of This Study
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food Security: The Challenge of Feeding 9 Billion People. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rojas, R.V.; Achouri, M.; Maroullins, J.; Caon, L. Healthy soils: A prerequisite for sustainable food security. Environ. Earth Sci. 2016, 75, 180. [Google Scholar] [CrossRef]
- Montanarella, L.; Pennock, D.J.; McKenzie, N.; Badraoui, M.; Chude, V.; Baptista, I.; Mamo, T.; Yemefack, M.; Aulakh, M.S.; Yagi, K.; et al. World’s soils are under threat. Soil 2016, 2, 79–82. [Google Scholar] [CrossRef]
- FAO and ITPS. Status of the World’s Soil Resources (SWSR)—Main Report; Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils: Rome, Italy, 2015. [Google Scholar]
- Berhe, A.A.; Torn, M.S. Erosion redistribution of topsoil controls soil nitrogen dynamics. Biogeochemistry 2017, 132, 37–54. [Google Scholar] [CrossRef]
- Berhe, A.A.; Barnes, R.T.; Six, J.; Marin-Spiotta, E. Role of soil erosion in biogeochemical cycling of essential elements: Carbon, nitrogen, and phosphorus. Ann. Rev. Earth Planet. Sci. 2018, 46, 521–548. [Google Scholar] [CrossRef]
- Berhe, A.A.; Arnold, C.; Stacy, E.; Lever, R.; McCorkle, E.; Araya, S.N. Soil erosion controls on biogeochemical cycling of carbon and nitrogen. Nat. Educ. Knowl. 2014, 5, 2. [Google Scholar]
- Panagos, P.; Standardi, G.; Borrelli, P.; Lugato, E.; Montanarella, E.; Bosello, F. Cost of agricultural productivity loss due to soil erosion in the European Union: From direct cost evaluation approaches to the use of macroeconomic models. Land Degrad. Dev. 2018, 29, 471–484. [Google Scholar] [CrossRef] [Green Version]
- Pimentel, D.; Kounang, N. Ecology of soil erosion in ecosystems. Ecosystems 1998, 1, 416–426. [Google Scholar] [CrossRef]
- Lal, R. Soil erosion in the humid tropics with particular reference to agricultural land development and soil management. In Hydrology of Humid Tropical Regions with Particular Reference to the Hydrological Effects of Agriculture and Forestry Practice (Proceedings of the Hamburg Symposium), IAHS’Publ. no. 140; IAHS: Wallingford, UK, 1983. [Google Scholar]
- Stocking, M.A. Tropical soils and food security. Science 2003, 302, 1356–1359. [Google Scholar] [CrossRef]
- Alexandratos, N.; Bruinsma, J. World Agriculture towards 2030/2050: The 2012 Revision; ESA Working paper No. 12-03; FAO: Rome, Italy, 2012. [Google Scholar]
- Tilman, D.; Balzer, C.; Hill, J.; Belfort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef] [Green Version]
- Lambin, E.F.; Mwyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl. Acad. Sci. USA 2011, 108, 3465–3472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- OECD/Food and Agriculture Organization of the United Nations. OECD-FAO Agricultural Outlook 2015; OECD Publishing: Paris, France, 2015. [Google Scholar]
- Rada, N. Assessing Brazil’s Cerrado Agricultural Miracle. Food Policy 2013, 28, 146–155. [Google Scholar] [CrossRef]
- Wickramasinghe, U.; Syed, S.; Siregar, H. The Role of Policies in Agricultural Transformation. Lessons from Brazil, Indonesia and the Republic of Korea; CAPSA Working Paper No. 106; CAPSA: Indonesia, 2012. [Google Scholar]
- Brazilian Institute of Geography and Statistics (IBGE). Produção Agrícola Municipal; Sistema IBGE de Recuperação Automática—SIDRA: Rio de Janeiro, Brazil, 2000; (In Portuguese). Available online: https://sidra.ibge.gov.br/tabela/1612 (accessed on 5 October 2015).
- Leite, R.C.C.; Leal, M.R.L.V.; Cortez, L.A.B.; Griffin, W.M.; Scandiffio, M.I.G. Can Brazil replace 5% of the 2025 gasoline world demand with ethanol? Energy 2009, 34, 655–661. [Google Scholar] [CrossRef]
- Balcombe, K.; Rapsomanikis, G. Bayesian estimation and selection of nonlinear vector error correction models: The case of the sugar-ethanol-oil nexus in Brazil. Am. J. Agric. Econ. 2008, 90, 658–668. [Google Scholar] [CrossRef]
- Scherr, S.J.; Yadav, S. Land Degradation in the Developing World: Implications for Food, Agriculture, and the Environment to 2020; Food, Agriculture, and the Environment Discussion Paper 14; FAO: Rome, Italy, 1996. [Google Scholar]
- Solaimani, K.; Modallaldoust, S.; Lotfi, S. Investigation of land use changes on soil erosion processes using geographical information system. Int. J. Environ. Sci. Technol 2009, 6, 415–424. [Google Scholar] [CrossRef]
- Brath, A.; Castellarin, A.; Montanari, A. Evaluating the effects of land use changes on annual average gross erosion. Hydrol. Earth Syst. Sci. 2002, 6, 255–265. [Google Scholar] [CrossRef]
- Panagos, P.; Borrelli, P.; Poesen, J.; Ballabio, C.; Lugato, E.; Meusburger, K.; Montanarella, L.; Alewell, C. The new assessment of soil loss by water erosion in Europe. Environ. Sci. Policy 2015, 54, 438–447. [Google Scholar] [CrossRef] [Green Version]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses: A Guide to Conservation Planning; Agriculture Handbook No. 537; U.S. Department of Agriculture (USDA): Washington, DC, USA, 1978.
- Renard, K.G.; Foster, G.R.; Weesies, G.A.; McCool, D.K.; Yoder, D.C. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE); Agriculture Handbook No. 703; U.S. Department of Agriculture (USDA): Washington, DC, USA, 1997.
- Zhang, H.; Yang, Q.; Li, R.; Liu, Q.; Moore, D.; He, P.; Ritsema, C.J.; Geissen, V. Extension of a GIS procedure for calculating the RUSLE equation LS factor. Comput. Geosci. 2013, 52, 177–188. [Google Scholar] [CrossRef]
- Liu, J.; You, L.; Amini, M.; Obersteiner, M.; Herrero, M.; Zehnder, A.J.B.; Yang, H. A high-resolution assessment on global nitrogen flows in cropland. Proc. Natl. Acad. Sci. USA 2010, 107, 8035–8040. [Google Scholar] [CrossRef] [Green Version]
- Smaling, E.M.A.; Roscoe, R.; Lesschen, J.P.; Bouwman, A.F.; Comunello, E. From forest to waste: Assessment of the Brazilian soybean chain, using nitrogen as a marker. Agri. Ecosyst. Environ. 2008, 128, 185–197. [Google Scholar] [CrossRef]
- Panagos, P.; Borrelli, P.; Poesen, J.; Ballabio, C.; Lugato, E.; Meusburger, K.; Montanarella, L.; Alewell, C. Reply to “The new assessment of soil loss by water erosion in Europe. Panagos, P. et al., 2015 Environ. Sci. Policy 54, 438–447—A response” by Evans and Boardman [Environ. Sci. Policy 58, 11–15]. Environ. Sci. Policy 2016, 59, 143–150. [Google Scholar] [CrossRef]
- Oreskes, N.; Shrader-Frechette, K.; Belitz, K. Verification, validation, and confirmation of numerical models in the earth sciences. Science 1994, 263, 641–646. [Google Scholar] [CrossRef]
- Galdino, S.; Sano, E.E.; Andrade, R.G.; Grego, C.R.; Nogueira, S.F.; Bragantini, C.; Flosi, A.H.G. Large-scale modeling of soil erosion with RUSLE for conservation planning of degraded cultivated Brazilian pastures. Land Degrad. Dev. 2015, 27, 773–784. [Google Scholar] [CrossRef]
- Cunha, E.R.; Bacani, V.M.; Panachuki, E. Modeling soil erosion RUSLE and GIS in a watershed occupied by rural settlement in the Brazilian Cerrado. Nat. Hazards 2016, 85, 851–868. [Google Scholar] [CrossRef]
- Amorim, R.S.S.; da Silva, D.; Pruski, F.F.; Matos, A.T. Avaliação do desempenho dos modelos de predição da erosão hídrica USLE, RUSLE e WEPP para diferentes condições edafoclimáticas do Brasil. Eng. Agríc. 2010, 30, 1046–1049. (In Portuguese) [Google Scholar] [CrossRef] [Green Version]
- Bramorski, J.; Trivelin, P.C.O.; Crestana, S. Nitrogen loss by erosion from mechanically tilled and untilled soil under successive simulated rainfalls. Rev. Bras. Cienc. Solo 2015, 39, 1204–1211. [Google Scholar] [CrossRef]
- Oliveira, P.T.S. Water Balance and Soil Erosion in the Brazilian Cerrado. Ph.D. Thesis, Science—Hydraulics and Sanitary Engineering, University of São Paulo, São Carlos, Bazil, 2014. [Google Scholar]
- Anache, J.A.A.; Wendland, E.C.; Oliveira, P.T.S.; Flanagan, D.S.; Nearing, N.A. Runoff and soil erosion plot-scale studies under natural rainfall: A meta-analysis of the Brazilian experience. Catena 2017, 152, 29–39. [Google Scholar] [CrossRef]
- Peron, A.J.; Evangelista, A.R. Degradação de pastagens em regiões de Cerrado. Ciênc. Agrotec. 2004, 28, 655–661. (In Portuguese) [Google Scholar] [CrossRef]
- Sano, S.M.; Almeida, S.P.; Ribeiro, J.F. Cerrado: Ecologia e Flora; Embrapa Informacão Tecnológica, Embrapa Cerrados: Brasília, Brazil, 2008. (In Portuguese) [Google Scholar]
- Lewinsohn, T.M.; Prado, P.I. How Many Species Are There in Brazil? Cuantas Especies Hay en Brasil? Conserv. Biol. 2005, 19, 619–624. [Google Scholar] [CrossRef]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; Fonseca, G.A.B.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Bustamante, M.M.C.; Nardoto, G.B.; Pinto, A.S.; Resende, J.C.F.; Takahashi, F.S.C.; Vieira, L.C.G. Potential Impacts of Climate Change on Biogeochemical Functioning of Cerrado Ecosystems. Braz. J. Biol. 2012, 72, 655–671. [Google Scholar] [CrossRef] [PubMed]
- Eiten, G. The cerrado vegetation of Brazil. Botan. Rev. 1972, 38, 201–341. [Google Scholar] [CrossRef]
- Cochrane, T.T.; Jones, P.G. Savannas, forests and wet season potential evapotranspiration in tropical South America. Trop. Agric. 1981, 58, 85–190. [Google Scholar]
- Oliveira-Filho, A.; Ratter, J. Vegetation physiognomies and woody flora of the Cerrado biome. In The Cerrado of Brazil. Ecology and Natural History of a Neotropical Savanna; Oliviera, P.S., Marquis, T.J., Eds.; Columbia University Press: New York, NY, USA, 2002; pp. 91–120. [Google Scholar]
- Santos, H.G.; Carvalho Junior, W.; Dart, R.O.; Áglio, M.L.D.; Sousa, J.S.; Pares, J.G.; Fontana, A.; Martins, A.L.S.; Oliveira, A.P. O Novo Mapas de Solos do Brasil. Legenda Atualizada—Dados Eletrônicos; Embrapa Solos: Rio de Janeiro, Brazil, 2011; 67p. (In Portuguese) [Google Scholar]
- Medina, E. Mineral Nutrition: Tropical Savannas. Prog. Bot. 1993, 54, 237–253. [Google Scholar]
- Valeriano, M.M.; Rosseti, D.F.; Albuquerque, P.C.G. Topodata: Desenvolvimento da primeira versão do banco de dados geomorfométricos locais em cobertura nacional. In Proceedings of the Simpósio Brasileiro de Sensoriamento Remoto, Natal, Brazil, 25–30 April 2009; INPE: São José dos Campos, Bazil, 2009; pp. 5499–5506. (In Portuguese). Available online: http://urlib.net/dpi.inpe.br/sbsr@80/2008/11.14.21.06 (accessed on 5 October 2015).
- Ferreira, M.E.; Ferreira, L.G.; Miziara, F.; Soares-Filho, B.S. Modeling landscape dynamics in the central Brazilian savanna biome: Future scenarios and perspectives for conservation. J. Land Use Sci. 2013, 8, 403–421. [Google Scholar] [CrossRef]
- Brazilian Ministry of the Environment (MMA). Mapeamento do uso e Cobertura da Terra do Cerrado: Projeto TerraClass Cerrado 2013; Ministério do Meio Ambiente, coordenação da Casa Civil da Presidência da República (MMA): Brasília, Brazil, 2015; 69p. (In Portuguese)
- Brazilian Food Supply Company (CONAB). Séries Históricas de Área Plantada, Produtividade e Produção Relativas às Safras 1976/77 a 2015/2016 de Grãos; CONAB: Brasília, Brazil, 2016. (In Portuguese) [Google Scholar]
- Lahsen, M.; Bustamante, M.M.C.; Dalla-Nora, E.L. Undervaluing and Overexploiting the Brazilian Cerrado at Our Peril. Environ. Sci. Policy Sustain. Dev. 2016, 58, 4–15. [Google Scholar] [CrossRef] [Green Version]
- Brazilian Food Supply Company (CONAB). Acompanhamento da Safra Brasileira: Grãos—Safra 2010/2011; Companhia Nacional de Abastecimento: Brasília, Brazil, 2011. (In Portuguese) [Google Scholar]
- Oliveira, P.T.S.; Wendland, E.; Nearing, M.A. Rainfall erosivity in Brazil: A review. Catena 2012, 100, 139–147. [Google Scholar] [CrossRef]
- Brazilian Institute of Geography and Statistics (IBGE). Mudança na Cobertura e uso da Terra 2000-2010-2012-2014; IBGE: Rio de Janeiro, Brazil, 2015. (In Portuguese) [Google Scholar]
- Brazilian Food Supply Company (CONAB). Séries Históricas de Área Plantada Relativas às Safras 2000/2001 de Grãos; CONAB: Brasília, Brazil, 2015. [Google Scholar]
- Brazilian Food Supply Company (CONAB). Séries Históricas de Área Plantada Relativas às Safras 2011/2012 de Grãos; CONAB: Brasília, Brazil, 2015. (In Portuguese) [Google Scholar]
- Rudorff, B.F.T.; Aguiar, D.A.; Silva, W.F.; Sugawara, L.M.; Adami, M.; Moreira, M.A. Studies on the Rapid Expansion of Sugarcane for Ethanol Production in São Paulo State (Brazil) Using Landsat Data. Remote Sens. 2010, 2, 1057–1076. [Google Scholar] [CrossRef] [Green Version]
- Moreira, M.A.; Rudorff, B.F.T.; Barros, M.A.; de Faria, V.G.C.; Adami, M.A. Geotecnologias para mapear lavouras de café nos Estados de Minas Gerais e São Paulo. Eng. Agr. Jaboticabal 2010, 30, 1123–1135. [Google Scholar] [CrossRef]
- Zhang, L.; O’Neill, A.; Lacy, S. Spatial Analysis of Soil Erosion in Catchments: A Review of modeling Approaches. Water Res. Ecol. 1995, 3, 58–64. [Google Scholar]
- Kinnel, P.I.A. Event Soil Loss, Runoff and the Universal Soil Loss Equation family of models: A Review. J. Hidrol. 2010, 385, 384–397. [Google Scholar] [CrossRef]
- Wischmeier, W.H.; Mannering, J.V. Soil and Water Management and Conservation. Relation of Soil Properties to its Erodibility. Soil Sci. Soc. Am. Proc. 1969, 33, 131–137. [Google Scholar] [CrossRef]
- Farhan, Y.; Nawaiseh, S. Spatial assessment of soil erosion risk using RUSLE and GIS techniques. Environ. Earth Sci. 2015, 74, 4649–4669. [Google Scholar] [CrossRef]
- Farinasso, M.; Carvalho Júnior, O.A.; Guimarães, R.F.; Gomes, R.A.T.; Ramos, V.M. Avaliação Quantitativa do Potencial de Erosão Laminar em Grandes Áreas por meio de EUPS—Equação Universal de Perdas de Solos Utilizando Novas Metodologias em SIG para os Cálculos dos seus Fatores na Região do Alto Parnaíba—PI—MA. Rev. Bras. Morfol. 2006, 7, 73–85. (In Portuguese) [Google Scholar]
- Castro, W.J.; Lemke-de-Castro, M.L.; Lima, J.O.; Oliveira, L.F.C.; Rodrigues, C.; Figueiredo, C.C. Erodibilidade de Solos do Cerrado Goiano. Revista em Agronegócios e Meio Ambiente 2011, 4, 305–320. (In Portuguese) [Google Scholar]
- Mannigel, A.R.; Carvalho, M.P.; Moreti, D.; Luciano, R.M. Fator Erodibilidade e Tolerância de Perda de Solos do Estado de São Paulo. Acta Scientiarum 2002, 24, 1335–1340. [Google Scholar] [CrossRef]
- da Silva, A.M.; Silva, M.L.N.; Curi, N.; Avanzi, J.C.; Ferreira, M.M. Erosividade da Chuva e Erodibilidade de Cambissolo e Latossolo na Região de Lavras, Sul de Minas Gerais. Rev. Bras. Cienc. Solo 2009, 33, 1811–1820. (In Portuguese) [Google Scholar] [CrossRef]
- Cabral, J.B.P.; Becegato, V.A.; Scopel, I.; Lopes, R.M. Uso de Técnicas de Geoprocessamento para Mapear o Potencial Natural de Erosão da Chuva na Bacia Hidrográfica do Reservatório de Cachoeira Dourada—GO/MG. Revista Ra’E Ga 2005, 10, 107–116. (In Portuguese) [Google Scholar] [CrossRef]
- Demarchi, J.C.; Zimback, C.R.L. Mapeamento, Erodibilidade e Tolerância de Perda de Solo na Sub-bacia do Ribeirão das Perobas. Energia na Agricultura 2014, 29, 102–114. (In Portuguese) [Google Scholar] [CrossRef]
- da Silva, A.M.; Alvares, C.A. Levantamento de Informações e Estruturação de um Banco de Dados sobre a Erodibilidade de Classes de Solos no Estado de São Paulo. Geociências 2005, 24, 33–41. (In Portuguese) [Google Scholar]
- Ahmad, N.; Mermut, A. Vertisols and Technologies for Their Management; Elsevier: Amsterdam, The Netherlands, 2003; p. 152. [Google Scholar]
- Brooks, K.N.; Folliott, P.F.; Gregersen, H.M.; Deabano, L.F. Hydrology and the Management of Watershed, 4th ed.; Blackwell Publishing: Ames, IA, USA, 2003; p. 825. ISBN 9781118459751. [Google Scholar]
- Desmet, P.J.J.; Govers, G. A GIS procedure for automatically calculating the USLE LS factor on topographically complex landscape units. J. Soil Water Conserv. 1996, 51, 427–433. [Google Scholar]
- McCool, D.K.; Brown, G.R.; Foster, G.R.; Meyer, L.D. Revised Slope Steepness Factor for the Universal Soil Loss Equation. Am. Soc. Agric. Eng. 1987, 30, 1387–1396. [Google Scholar] [CrossRef]
- Ramalho Filho, A.; Beek, K.J. Sistema de Avaliação da Aptidão Agrícola das Terras, 3th ed.; EMBRAPA-CNPS: Rio de Janeiro, Brazil, 1995. (In Portuguese) [Google Scholar]
- Gasnari, B.P.; Ramesh, H. Assessment of Soil Erosion by RUSLE Model Using Remote Sensing and GIS—A Case Study of Nethravathi Basin. Geosci. Front. 2016, 7, 953–961. [Google Scholar] [CrossRef]
- Galdino, S. Estimativa da Perda de Terra sob Pastagens Cultivadas em Solos Arenosos da Bacia Hidrográfica do Alto Taquari—MS/MT. Ph.D. Thesis, Universidade Estadual de Campinas, Campinas, Brazil, 2012. (In Portuguese). [Google Scholar]
- Oliveira, P.T.S.; Nearing, M.A.; Wendland, E. Orders of Magnitude Increase in Soil Erosion Associated with Land Use Change from Native to Cultivated Vegetation in a Brazilian Savannah Environment. Earth Surf. Process. Landf. 2015, 40, 1524–1532. [Google Scholar] [CrossRef]
- Silva, M.A.; Silva, M.L.N.; Curi, N.; Oliveira, A.H.; Avanzi, J.C.; Norton, L.D. Water erosion risk prediction in eucalyptus plantations. Ciênc. Agrotecnol. 2014, 38, 160–172. [Google Scholar] [CrossRef]
- Silva, B.P.C.; Silva, M.L.N.; Batista, P.V.G.; Pontes, L.M.; Araujo, E.F.; Curi, N. Soil and water losses in eucalyptus plantation and natural forest and determinantion of the USLE factors at a pilot sub-basin in Rio Grande do Sul, Brazil. Ciênc. Agrotecnol. 2016, 40, 432–444. [Google Scholar] [CrossRef]
- Bertol, I.; Shick, j.; Batistela, O. Razão de perdas de solo e fator C para as culturas de soja e trigo em trêssSistemas de preparo em um cambissolo húmico alumínico. Rev. Bras. Ciênc. Solo 2001, 25, 451–461. (In Portuguese) [Google Scholar] [CrossRef]
- Bertol, I.; Shick, J.; Batistela, O. Razão de perdas de solo e fator C para milho e aveia em rotação com outras culturas em três tipos de preparo de solo. Rev. Bras. Ciênc. Solo 2002, 26, 545–552. (In Portuguese) [Google Scholar] [CrossRef] [Green Version]
- Weill, M.A.M. Estimativa da Erosão do Solo e Avaliação do seu Impacto na Microbacia do Ceveiro (Piracicaba, SP) Através do Índice de Tempo de Vida. Ph.D. Thesis, Universidade de São Paulo, Piracicaba, Brazil, 1999. (In Portuguese). [Google Scholar]
- Prochnow, D.; Dechen, S.C.F.; de Maria, I.C.; Castro, O.M.; Vieira, S.R. Razão de Perdas de Terra e Fator C da Cultura do Cafeeiro em Cinco Espaçamentos, em Pindorama (SP). Rev. Bras. Ciênc. Solo 2005, 29, 91–98. [Google Scholar] [CrossRef]
- Oliveira, A.M.M.D.; Pinto, S.D.A.F.; Lombardi Neto, F. Caracterização de Indicadores de Erosão do Solo em Bacias Hidrográficas com Suporte de Geotecnologias e Modelo Preditivo. Est. Geogr. 2007, 5, 63–86. (In Portuguese) [Google Scholar]
- Medeiros, G.O.R.; Giarolla, A.; Sampaio, G.; Marinho, M.A. Estimates of annual soil loss rates in the state of São Paulo, Brazil. Rev. Bras. Ciênc. Solo 2016, 40, 1–18. [Google Scholar] [CrossRef]
- Gomes, L.; Simões, S.J.C.; Forti, M.C.; Ometto, J.P.H.B.; Dalla-Nora, E.L. Using geotechnology to estimate soil loss rate in the Brazilian Cerrado. J. Geogr. Inf. Syst. 2017, 9, 420–439. [Google Scholar] [CrossRef]
- Gomes, L. Impacts of Land Use Changes on Soil Nitrogen Balance in the Brazilian Cerrado Region. Ph.D. Thesis, Earth System Science; National Institute for Space Research, São José dos Campos, Brazil, 2017. [Google Scholar]
- Brazilian Institute of Geography and Statistics (IBGE). Rendimento Médio da Produção das Lavouras. Sistema IBGE de Recuperação Automática—SIDRA. Rio de Janeiro, 2000 (In Portuguese). Available online: http://www2.sidra.ibge.gov.br/bda/tabela/listabl.asp?c=99&z=t&o=11 (accessed on 20 August 2017).
- Brazilian Institute of Geography and Statistics (IBGE). Rendimento médio da produção das lavouras Sistema IBGE de Recuperação Automática—SIDRA. Rio de Janeiro, 2012 (In Portuguese). Available online: http://www2.sidra.ibge.gov.br/bda/tabela/listabl.asp?c=99&z=t&o=11 (accessed on 20 August 2017).
- Statistical Yearbook of the Brazilian Association of Planted Forest Producers (ABRAF). Anuário Estatístico da ABRAF: Ano Base 2003; ABRAF: Brasília, Brazil, 2003. (In Portuguese) [Google Scholar]
- Statistical Yearbook of the Brazilian Association of Planted Forest Producers (ABRAF). Anuário Estatístico da ABRAF: Ano Base 2012; ABRAF: Brasília, Brazil, 2013. (In Portuguese) [Google Scholar]
- Brazilian Institute of Geography and Statistics (IBGE). Produção Agrícola Municipal. Sistema IBGE de Recuperação Automática—SIDRA; IBGE: Rio de Janeiro, Brazil, 2012; (In Portuguese). Available online: https://sidra.ibge.gov.br/tabela/1612 (accessed on 5 October 2017).
- Batjes, N.H.; Bernoux, M.; Cerri, C.E.P. Soil Data Derived from SOTER for Studies of Carbon Stocks and Change in Brazil (ver. 1.0; GEFSOC Project); Report 2004/03; ISRIC—World Soil Information: Wageningen, The Netherlands, 2004; p. 32. [Google Scholar]
- Shagguan, W.; Dai, Y.; Duan, Q.; Liu, B.; Yuan, H. A global soil data set for Earth System modeling. J. Adv. Model. Earth Syst. 2014, 6, 249–263. [Google Scholar] [CrossRef]
- Jolliffe, I.T. Principal Component Analysis; Series: Springer Series in Statistics; Springer: New York, NY, USA, 2002. [Google Scholar]
- Shaw, P.J.A. Intoductory Multivariated Statistics for the Enviromental Science; Arnold: London, UK, USA, 2003. [Google Scholar]
- Manzatto, C.V.; Assad, E.D.; Baca, J.F.M.; Zaroni, M.J.; Pereira, S.E.M. Zoneamento Agroclimático da Cana-de-Açúcar: Expandir a Produção, Preservar a Vida e Garantir o Futuro; EMBRAPA Solos: Rio de Janeiro, Brazil, 2009. (In Portuguese) [Google Scholar]
- FAO; IFAD; UNICEF; WPF; WHO. The State of Food Security and Nutrition in the World 2018. Building Climate Resilience for Food Security and Nutrition; FAO: Rome, Italy, 2018. [Google Scholar]
- Amundson, R.; Berhe, A.A.; Hopmans, J.W.; Olson, C.; Sztein, A.E.; Sparks, D.L. Soil and human security in the 21st century. Science 2015, 348, 647–653. [Google Scholar] [CrossRef] [PubMed]
- Telles, T.S.; Guimarães, M.F.; Dechen, S.C.F. The costs of soil erosion. Rev. Bras. Cienc. Solo 2011, 35, 287–298. [Google Scholar] [CrossRef] [Green Version]
- Schick, J.; Bertol, I.; Balbinot Junior, A.A.; Batistela, O. Erosão hídrica em cambissolo húmico alumínico submetido a diferentes sistemas de preparo e cultivo do solo: II. Perdas de nutrientes e carbono orgânico. Rev. Bras. Cienc. Solo 2000, 24, 437–447. (In Portuguese) [Google Scholar] [CrossRef]
- Bertol, I.; Mello, E.L.; Guadagnin, J.C.; Zaparolli, A.L.V.; Garrafa, M.R. Nutrients losses by water erosion. Sci. Agric. 2003, 3, 581–586. [Google Scholar] [CrossRef]
- Seganfredo, M.L.; Eltz, F.L.F.; Brum, A.C.R. Perdas de solo, água e nutrientes por erosão em sistemas de culturas em plantio direto. Rev. Bras. Cienc. Solo 1997, 21, 287–291. (In Portuguese) [Google Scholar]
- Guadagnin, J.C.; Bertol, I.; Cassol, P.C.; do Amaral, A.J. Perdas de solo, água e nitrogênio por erosão hídrica em diferentes sistemas de manejo. Rev. Bras. Cienc. Solo 2005, 29, 277–286. (In Portuguese) [Google Scholar] [CrossRef] [Green Version]
- Leon, J.; Osorio, N. Role of Litter Turnover in Soil Quality in Tropical Degraded Lands of Colombia. Sci. World J. 2014, 13. [Google Scholar] [CrossRef] [PubMed]
- Scherr, S.J. The future food security and economic consequences of soil degradation in the developing world. In Response to Land Degradation; Oxford Press: New Delhi, India, 2001; pp. 155–170. [Google Scholar]
- Valim, W.C.; Panachuki, E.; Pavei, D.S.; Sobrinho, T.A.; Almeida, W.S. Efeito de resíduos de vegetais de cana-de-açúcar no controle da erosão hídrica entressulcos. Ciências Agrárias 2016, 37, 1155–1164. (In Portuguese) [Google Scholar] [CrossRef]
- Lal, R. Restoring soil quality to mitigate soil degradation. Sustainability 2015, 7, 5875–5895. [Google Scholar] [CrossRef]
- Youlton, C.; Wendland, E.; Anache, A.a.; Poblete-Echeverria, C.; Dabney, S. Changes in erosion and runoff due to replacement of pasture land with sugarcane crops. Sustainability 2016, 8, 685. [Google Scholar] [CrossRef]
- Gomez, J.D.P. Estimativa de Erosão pela Equação Universal da Perda de Solo (USLE) e Transferência de Sedimentos Para todo Território Brasileiro. Master’s Thesis, Universidade de São Paulo, Piracicaba, Brazil, 2012. (In Portuguese). [Google Scholar]
No. | Data | Data Format | Resolution (m) | Scale | Source |
---|---|---|---|---|---|
1 | Erosivity map | Raster | 2822 | 1: 5,000,000 | [54] |
2 | Soil map | Vector | - | 1: 5,000,000 | [46] |
3 | Digital Elevation Model (DEM) | Raster | 94 | 1: 100,000 | [48] |
4 | 2000 and 2012 Land Use and Cover Maps | Vector | - | 1: 5,000,000 | [55] |
No. | Brazilian Soil Classification | Food and Agriculture Organization (FAO) Classification | Area (%) | K (t h MJ−1 mm−1) | Source |
---|---|---|---|---|---|
1 | Latossolos Vermelhos Distróficos | Ferralsols | 15.37 | 0.018 | [64] |
2 | Neossolos Quartzarênicos Órticos | Arenosols | 14.22 | 0.056 | [65] |
3 | Latossolos Amarelos Distróficos | Ferralsols | 11.40 | 0.028 | [64] |
4 | Latossolos Vermelho-Amarelos Distróficos | Ferralsols | 9.59 | 0.011 | [66] |
5 | Cambissolos Háplicos Tb Distróficos | Cambisols | 7.87 | 0.036 | [67] |
6 | Neossolos Litólicos Distróficos | Leptosols | 7.60 | 0.050 | [68] |
7 | Plintossolos Pétricos Concrecionarios | Plinthosols | 6.19 | 0.012 | [68] |
8 | Argissolos Vermelho-Amarelos Distróficos | Acrisols | 5.87 | 0.047 | [64] |
9 | Latossolos Vermelhos Distroférricos | Ferralsols | 4.06 | 0.012 | [68] |
10 | Plintossolos Háplicos Distróficos | Plinthosols | 4.02 | 0.055 | [64] |
11 | Argissolos Vermelhos Eutróficos | Acrisols | 2.84 | 0.031 | [65] |
12 | Argissolos Vermelho-Amarelos Eutróficos | Acrisols | 2.15 | 0.051 | [64] |
13 | Gleissolos Háplicos Tb Distróficos | Gleysols | 1.52 | 0.001 | [68] |
14 | Cambissolos Háplicos Ta Eutróficos | Cambisols | 1.42 | 0.039 | [64] |
15 | Argissolos Vermelhos Distróficos | Acrisols | 1.04 | 0.055 | [69] |
16 | Neossolos Flúvicos | Fluvisols | 0.56 | 0.046 | [64] |
18 | Neossolos Litólicos Eutróficos | Leptosols | 0.43 | 0.036 | [64] |
19 | Planossolos Nátricos Órticos | Solonetz | 0.42 | 0.057 | [64] |
20 | Nitossolos Vermelhos Distróficos | Nitisols | 0.37 | 0.011 | [64] |
21 | Chernossolos Argiluvicos Órticos | Chernozems | 0.35 | 0.010 | [70] |
22 | Luvissolos Crômicos Pálicos | Luvisols | 0.32 | 0.247 | [66] |
23 | Nitossolos Vermelhos Eutróficos | Nitisols | 0.27 | 0.011 | [64] |
24 | Neossolos Regolíticos Distróficos | Regosols | 0.23 | 0.050 | [68] |
25 | Chernossolos Rendzicos Órticos | Chernozems | 0.23 | 0.010 | [70] |
26 | Planossolos Háplicos Distróficos | Haplics | 0.20 | 0.057 | [64] |
27 | Planossolos Háplicos Eutróficos | Haplics | 0.18 | 0.057 | [64] |
28 | Neossolos Quartzarênicos Hidromórficos | Arenosols | 0.16 | 0.046 | [64] |
29 | Latossolos Vermelhos Eutroférricos | Ferralsols | 0.13 | 0.010 | [69] |
30 | Gleissolos Sálicos Sodicos | Gleysols | 0.08 | 0.001 | [68] |
31 | Luvissolos Crômicos Órticos | Luvisols | 0.08 | 0.247 | [66] |
32 | Cambissolos Húmicos Distróficos | Cambisols | 0.07 | 0.043 | [66] |
34 | Vertissolos Háplicos Órticos | Vertisols | 0.06 | 0.040 | [71] |
35 | Latossolos Vermelho-Amarelos Distroférricos | Ferralsols | 0.06 | 0.011 | [66] |
37 | Gleissolos Háplicos Ta Distróficos | Gleysols | 0.02 | 0.001 | [68] |
38 | Vertissolos Ebânicos Carbonaticos | Vertisols | 0.02 | 0.040 | [71] |
39 | Organossolos Háplicos Hêmicos | Histosols | 0.01 | 0.061 | [70] |
40 | Other (water, dunes and rocks) | - | 0.56 | - | - |
Categories (%) | Relief Classification | Area (%) |
---|---|---|
0–3 | Flat reliefs | 89.98 |
3–8 | Gentle hillslope | 8.88 |
8–13 | Gentle to moderate hillslope | 0.99 |
13–20 | Strongly undulating relief | 0.14 |
20–45 | Mountain with steep hillslope | 0.01 |
45–100 | Ridge escarpments | 0.00 |
No. | Land Use | Area (%) 2000 | Area (%) 2012 | C | Source |
---|---|---|---|---|---|
1 | Pasture | 36.79 | 40.76 | 0.05 | [77,38] |
2 | Natural Vegetation | 55.36 | 47.31 | 0.01 | [78] |
3 | Silviculture | 0.80 | 0.91 | 0.12 | [79,80] |
4 | Annual crops | 4.75 | 7.34 | 0.08 | [81,82] |
5 | Semi-perennial crops | 0.88 | 2.05 | 0.31 | [83] |
6 | Perennial crops | 0.32 | 0.47 | 0.11 | [84] |
7 | Others | 1.09 | 1.16 | 0.00 | - |
Soil Loss Interval (t ha−1 yr−1) | Soil Erosion Categories | Area (1000 ha) | Area (%) * | Area (1000 ha) | Area (%) * |
---|---|---|---|---|---|
2000 | 2012 | ||||
0–2.5 | Slight | 1221.62 | 56.08 | 1147.82 | 52.69 |
2.5–5 | 313.87 | 14.41 | 325.30 | 14.93 | |
5–10 | Moderate | 249.86 | 11.47 | 265.92 | 12.21 |
10–15 | High | 112.22 | 5.15 | 121.78 | 5.59 |
15–20 | 64.39 | 2.96 | 70.61 | 3.24 | |
20–40 | Very high | 111.10 | 5.10 | 123.95 | 5.69 |
40–80 | Severe | 60.91 | 2.80 | 69.76 | 3.20 |
>80 | Very severe | 44.30 | 2.03 | 53.13 | 2.44 |
Land Use Cover | Potential Soil Loss (t ha−1 yr−1) | Soil Loss Class | |
---|---|---|---|
2000 | 2012 | ||
Pasture | 14.25 | 14.94 | High |
Silviculture | 33.76 | 38.69 | Very high |
Annual crops | 11.42 | 11.86 | High |
Semi-perennial crops | 45.35 | 46.54 | Severe |
Perennial crops | 31.11 | 32.83 | Very high |
Principal Component (PC) | Eigenvalue | Variance (%) | Cummulative Variance (%) |
Areaa—2000 | |||
1 | 1.52 | 16.92 | 16.92 |
2 | 1.34 | 14.90 | 31.82 |
3 | 1.02 | 11.32 | 43.14 |
4 | 1.00 | 11.11 | 54.25 |
Principal component (PC) | Area a—2012 | ||
1 | 1.71 | 18.99 | 18.99 |
2 | 1.45 | 16.11 | 35.10 |
3 | 1.00 | 11.11 | 46.21 |
4 | 0.91 | 10.09 | 56.30 |
Principal component (PC) | Area b—2000 | ||
1 | 1.62 | 17.99 | 17.99 |
2 | 1.17 | 13.04 | 31.03 |
3 | 1.08 | 12.03 | 43.06 |
4 | 0.98 | 10.90 | 53.95 |
Principal component (PC) | Area b—2012 | ||
1 | 1.62 | 18.04 | 18.04 |
2 | 1.17 | 12.96 | 31.00 |
3 | 1.10 | 12.18 | 43.18 |
4 | 0.92 | 10.24 | 53.42 |
Principal component (PC) | Area d—2000 | ||
1 | 1.80 | 17.96 | 17.96 |
2 | 1.51 | 15.10 | 33.06 |
3 | 1.00 | 10.00 | 43.06 |
4 | 0.90 | 8.86 | 51.92 |
Principal component (PC) | Area d—2012 | ||
1 | 1.66 | 16.60 | 16.60 |
2 | 1.24 | 12.39 | 28.99 |
3 | 1.08 | 10.75 | 39.74 |
4 | 1.00 | 10.00 | 49.74 |
Variable | PC 1 | PC 2 | PC 3 | PC 4 |
Area a—2000 | ||||
S-Factor | 0.039 | −0.083 | −0.004 | 0.928 |
L-Factor | −0.077 | −0.108 | 0.889 | −0.148 |
R-factor | −0.714 | 0.018 | 0.130 | −0.168 |
K-factor | 0.724 | 0.020 | 0.148 | −0.022 |
C-factor | −0.100 | 0.831 | 0.060 | 0.093 |
P-factor | 0.000 | 0.000 | 0.000 | 0.000 |
Variable | Area a—2012 | |||
S-Factor | 0.070 | 0.033 | 0.005 | 0.956 |
L-Factor | −0.108 | −0.094 | 0.899 | −0.108 |
R-factor | 0.109 | −0.709 | 0.168 | −0.142 |
K-factor | −0.103 | 0.711 | 0.180 | 0.026 |
C-factor | 0.959 | −0.094 | −0.022 | 0.065 |
P-factor | 0.000 | 0.000 | 0.000 | 0.000 |
Variable | Area b—2000 | |||
S-Factor | −0.260 | −0.106 | −0.051 | −0.725 |
L-Factor | −0.028 | −0.016 | 0.803 | 0.134 |
R-factor | −0.051 | 0.871 | −0.038 | −0.020 |
K-factor | 0.058 | 0.848 | 0.131 | −0.033 |
C-factor | 0.936 | −0.024 | 0.012 | 0.019 |
P-factor | −0.102 | 0.000 | −0.032 | −0.048 |
Variable | Area b—2012 | |||
S-Factor | −0.257 | −0.094 | −0.018 | −0.809 |
L-Factor | −0.052 | −0.022 | 0.812 | 0.118 |
R-factor | −0.116 | 0.858 | −0.032 | 0.020 |
K-factor | 0.041 | 0.858 | 0.131 | −0.037 |
C-factor | 0.937 | −0.035 | 0.023 | 0.076 |
P-factor | −0.303 | −0.041 | −0.024 | 0.068 |
Variable | Area d—2000 | |||
S-Factor | −0.002 | −0.008 | −0.131 | 0.984 |
L-Factor | −0.038 | 0.960 | 0.012 | −0.117 |
R-factor | 0.895 | 0.082 | 0.219 | −0.028 |
K-factor | 0.836 | 0.056 | −0.008 | 0.008 |
C-factor | 0.186 | 0.138 | 0.802 | −0.103 |
P-factor | −0.792 | −0.023 | −0.185 | 0.096 |
Variable | Area d—2012 | |||
S-Factor | 0.002 | 0.009 | 0.211 | 0.877 |
L-Factor | −0.041 | 0.935 | −0.099 | −0.083 |
R-factor | 0.907 | 0.108 | 0.055 | −0.082 |
K-factor | 0.763 | 0.080 | 0.249 | 0.026 |
C-factor | 0.224 | 0.106 | 0.587 | −0.583 |
P-factor | −0.894 | −0.019 | 0.098 | 0.061 |
Land Use | Total Area (1000 ha) | Productivity (1000 t * or m3 **) | Area Severely Eroded (1000 ha) | Crop Productivity Loss in Severely Eroded Areas (1000 t) | % of Crop Loss (t * or m3 **) |
2000 | |||||
Annual (soy) | 3715 | 9758 | 561 | 103 | 1.06 |
Annual (maize) | 3431 | 12,966 | 518 | 151 | 1.16 |
Semi-perennial | 1824 | 149,890 | 1018 | 6689 | 4.46 |
Perennial | 653 | 1588 | 277 | 53 | 3.33 |
Silviculture | 1654 | 67,820 | 662 | 2208 | 3.26 |
Land use | 2012 | ||||
Annual (soy) | 7874 | 25,601 | 1319 | 325 | 1.27 |
Annual (maize) | 4725 | 32,188 | 791 | 418 | 1.30 |
Semi-perennial | 4258 | 378,993 | 2354 | 16,702 | 4.41 |
Perennial | 960 | 1782 | 411 | 60 | 3.35 |
Silviculture | 1880 | 89,333 | 803 | 3109 | 3.48 |
Land Use Cover | Average Soil Nutrient Loss | Average Soil Nutrient Loss in Moderately Eroded Areas (≤11 t ha−1 yr−1) | Average Soil Nutrient Loss in Severely Eroded Areas (>11 t ha−1 yr−1) | |||
---|---|---|---|---|---|---|
2000 | 2012 | 2000 | 2012 | 2000 | 2012 | |
Nitrogen (kg ha−1) | ||||||
Pasture | 14.3 | 14.8 | 3.1 | 3.1 | 50.3 | 50.9 |
Silviculture | 33.2 | 40.3 | 3.7 | 4.0 | 76.6 | 88.1 |
Annual | 13.5 | 12.0 | 2.9 | 2.9 | 72.6 | 57.0 |
Semi Perennial | 46.7 | 48.0 | 6.0 | 5.9 | 78.0 | 81.2 |
Perennial | 34.3 | 35.6 | 4.7 | 4.6 | 73.8 | 76.2 |
Phosphorus (g ha−1) | ||||||
Pasture | 5.1 | 5.4 | 1.1 | 1.1 | 18.0 | 18.4 |
Silviculture | 13.7 | 16.3 | 1.5 | 1.6 | 31.8 | 35.8 |
Annual | 3.9 | 4.1 | 0.9 | 0.9 | 20.8 | 19.9 |
Semi Perennial | 14.1 | 14.8 | 1.8 | 1.8 | 23.5 | 25.0 |
Perennial | 11.4 | 12.7 | 1.4 | 1.4 | 24.7 | 27.4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomes, L.; Simões, S.J.C.; Dalla Nora, E.L.; de Sousa-Neto, E.R.; Forti, M.C.; Ometto, J.P.H.B. Agricultural Expansion in the Brazilian Cerrado: Increased Soil and Nutrient Losses and Decreased Agricultural Productivity. Land 2019, 8, 12. https://doi.org/10.3390/land8010012
Gomes L, Simões SJC, Dalla Nora EL, de Sousa-Neto ER, Forti MC, Ometto JPHB. Agricultural Expansion in the Brazilian Cerrado: Increased Soil and Nutrient Losses and Decreased Agricultural Productivity. Land. 2019; 8(1):12. https://doi.org/10.3390/land8010012
Chicago/Turabian StyleGomes, Luciene, Silvio J. C. Simões, Eloi Lennon Dalla Nora, Eráclito Rodrigues de Sousa-Neto, Maria Cristina Forti, and Jean Pierre H. B. Ometto. 2019. "Agricultural Expansion in the Brazilian Cerrado: Increased Soil and Nutrient Losses and Decreased Agricultural Productivity" Land 8, no. 1: 12. https://doi.org/10.3390/land8010012
APA StyleGomes, L., Simões, S. J. C., Dalla Nora, E. L., de Sousa-Neto, E. R., Forti, M. C., & Ometto, J. P. H. B. (2019). Agricultural Expansion in the Brazilian Cerrado: Increased Soil and Nutrient Losses and Decreased Agricultural Productivity. Land, 8(1), 12. https://doi.org/10.3390/land8010012