Assessing Changes in Ecosystem Service Values over 1985–2050 in Response to Land Use and Land Cover Dynamics in Abaya-Chamo Basin, Southern Ethiopia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. LULC Simulation
2.4. Assignment of Ecosystem Service Values
2.5. Estimation of Ecosystem Service Values
3. Results
3.1. The Observed and Projected LULC Changes in ACB
3.2. Estimated Changes in the Total Ecosystem Service Values
3.3. Impact of LULC Changes on the Value of Individual Ecosystem Service
4. Discussion
5. Limitations of the Study
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Costanza, R.; Arge, R.; DeGroot, R.; Farberk, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; Neill, R.V.O.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- The Economics of Ecosystems and Biodiversity (TEEB) Mainstreaming the Economics of Nature: A Synthesis of the Approach, Conclusions and Recommendations of TEEB; Progress Press: Valletta, Malta, 2010.
- Millennium Ecosystem Assessment (MEA). Millennium Ecosystem Assessment, 2005. Ecosystems and Human Well-being: Synthesis; Island Press: Washington, DC, USA, 2005; ISBN 1597260401. [Google Scholar]
- Styers, D.M.; Chappelka, A.H.; Marzen, L.J.; Somers, G.L. Developing a land-cover classification to select indicators of forest ecosystem health in a rapidly urbanizing landscape. Landsc. Urban Plan. 2010, 94, 158–165. [Google Scholar] [CrossRef]
- Nelson, G.C.; Bennett, E.; Berhe, A.A.; Cassman, K.; DeFries, R.; Dietz, T.; Dobermann, A.; Dobson, A.; Janetos, A.; Levy, M.; et al. Anthropogenic Drivers of Ecosystem Change: An Overview. Ecol. Soc. 2006, 11, 29. [Google Scholar] [CrossRef]
- Burkhard, B.; Crossman, N.; Nedkov, S.; Petz, K.; Alkemade, R. Mapping and modelling ecosystem services for science, policy and practice. Ecosyst. Serv. 2013, 4, 1–3. [Google Scholar] [CrossRef]
- Helfenstein, J.; Kienast, F. Ecosystem service state and trends at the regional to national level: A rapid assessment. Ecol. Indic. 2014, 36, 11–18. [Google Scholar] [CrossRef]
- Mendoza-González, G.; Martínez, M.L.; Lithgow, D.; Pérez-Maqueo, O.; Simonin, P. Land use change and its effects on the value of ecosystem services along the coast of the Gulf of Mexico. Ecol. Econ. 2012, 82, 23–32. [Google Scholar] [CrossRef]
- Brink, A.B.; Eva, H.D. Monitoring 25 years of land cover change dynamics in Africa: A sample based remote sensing approach. Appl. Geogr. 2009, 29, 501–512. [Google Scholar] [CrossRef]
- Giri, C.; Long, J. Land Cover Characterization and Mapping of South America for the Year 2010 Using Landsat 30 m Satellite Data. Remote Sens. 2014, 6, 9494–9510. [Google Scholar] [CrossRef] [Green Version]
- Zabel, F.; Delzeit, R.; Schneider, J.M.; Seppelt, R.; Mauser, W.; Václavík, T. Global impacts of future cropland expansion and intensification on agricultural markets and biodiversity. Nat. Commun. 2019, 10, 2844. [Google Scholar] [CrossRef] [Green Version]
- Costanza, R.; de Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Lawler, J.J.; Lewis, D.J.; Nelson, E.; Plantinga, A.J.; Polasky, S.; Withey, J.C.; Helmers, D.P.; Martinuzzi, S.; Pennington, D.; Radeloff, V.C. Projected land-use change impacts on ecosystem services in the United States. Proc. Natl. Acad. Sci. USA 2014, 111, 7492–7497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubiszewski, I.; Costanza, R.; Anderson, S.; Sutton, P. The future value of ecosystem services: Global scenarios and national implications. Ecosyst. Serv. 2017, 26, 289–301. [Google Scholar] [CrossRef]
- Fiquepron, J.; Garcia, S.; Stenger, A. Land use impact on water quality: Valuing forest services in terms of the water supply sector. J. Environ. Manag. 2013, 126, 113–121. [Google Scholar] [CrossRef]
- Polasky, S.; Nelson, E.; Pennington, D.; Johnson, K.A. The impact of land-use change on ecosystem services, biodiversity and returns to landowners: A case study in the state of Minnesota. Environ. Resour. Econ. 2011, 48, 219–242. [Google Scholar] [CrossRef]
- De Groot, R.; Brander, L.; van der Ploeg, S.; Costanza, R.; Bernard, F.; Braat, L.; Christie, M.; Crossman, N.; Ghermandi, A.; Hein, L.; et al. Global estimates of the value of ecosystems and their services in monetary units. Ecosyst. Serv. 2012, 1, 50–61. [Google Scholar] [CrossRef]
- West, P.C.; Gibbs, H.K.; Monfreda, C.; Wagner, J.; Barford, C.C.; Carpenter, S.R.; Foley, J.A. Trading carbon for food: Global comparison of carbon stocks vs. crop yields on agricultural land. Proc. Natl. Acad. Sci. USA 2010, 107, 19645–19648. [Google Scholar] [CrossRef] [Green Version]
- Arowolo, A.O.; Deng, X.; Olatunji, O.A.; Obayelu, A.E. Assessing changes in the value of ecosystem services in response to land-use/land-cover dynamics in Nigeria. Sci. Total Environ. 2018, 636, 597–609. [Google Scholar] [CrossRef]
- Song, W.; Deng, X. Land-use/land-cover change and ecosystem service provision in China. Sci. Total Environ. 2017, 576, 705–719. [Google Scholar] [CrossRef]
- Kindu, M.; Schneider, T.; Teketay, D.; Knoke, T. Changes of ecosystem service values in response to land use/land cover dynamics in Munessa-Shashemene landscape of the Ethiopian highlands. Sci. Total Environ. 2016, 547, 137–147. [Google Scholar] [CrossRef]
- Förster, J.; Barkmann, J.; Fricke, R.; Hotes, S.; Kleyer, M.; Kobbe, S.; Kübler, D.; Rumbaur, C.; Siegmund-Schultze, M.; Seppelt, R.; et al. Assessing ecosystem services for informing land-use decisions: A problem-oriented approach. Ecol. Soc. 2015, 20, 31. [Google Scholar] [CrossRef] [Green Version]
- Thellmann, K.; Golbon, R.; Cotter, M.; Cadisch, G.; Asch, F. Assessing Hydrological Ecosystem Services in a Rubber-Dominated Watershed under Scenarios of Land Use and Climate Change. Forests 2019, 10, 176. [Google Scholar] [CrossRef] [Green Version]
- Cotter, M.; Berkhoff, K.; Gibreel, T.; Ghorbani, A.; Golbon, R.; Nuppenau, E.A.; Sauerborn, J. Designing a sustainable land use scenario based on a combination of ecological assessments and economic optimization. Ecol. Indic. 2014, 36, 779–787. [Google Scholar] [CrossRef]
- Ariti, A.T.; van Vliet, J.; Verburg, P.H. Land-use and land-cover changes in the Central Rift Valley of Ethiopia: Assessment of perception and adaptation of stakeholders. Appl. Geogr. 2015, 65, 28–37. [Google Scholar] [CrossRef]
- Bewket, W.; Abebe, S. Land-use and land-cover change and its environmental implications in a tropical highland watershed, Ethiopia. Int. J. Environ. Stud. 2013, 70, 126–139. [Google Scholar] [CrossRef]
- Garedew, E.; Sandewall, M.; Söderberg, U.; Campbell, B.M. Land-use and land-cover dynamics in the central rift valley of ethiopia. Environ. Manag. 2009, 44, 683–694. [Google Scholar] [CrossRef]
- Gashaw, T.; Tulu, T.; Argaw, M.; Worqlul, A.W. Evaluation and prediction of land use/land cover changes in the Andassa watershed, Blue Nile Basin, Ethiopia. Environ. Syst. Res. 2017, 6, 17. [Google Scholar] [CrossRef] [Green Version]
- Minta, M.; Kibret, K.; Thorne, P.; Nigussie, T.; Nigatu, L. Land use and land cover dynamics in Dendi-Jeldu hilly-mountainous areas in the central Ethiopian highlands. Geoderma 2018, 314, 27–36. [Google Scholar] [CrossRef]
- Woldeyohannes, A.; Cotter, M.; Kelboro, G.; Dessalegn, W. Land Use and Land Cover Changes and Their Effects on the Landscape of Abaya-Chamo Basin, Southern Ethiopia. Land 2018, 7, 2. [Google Scholar] [CrossRef] [Green Version]
- Zeleke, G.; Hurni, H. Implications of Land Use and Land Cover Dynamics for Mountain Resource Degradation in the Northwestern Ethiopian Highlands. Mt. Res. Dev. 2001, 21, 184–191. [Google Scholar] [CrossRef] [Green Version]
- Ethiopian Forestry Action Program (EFAP). Ethiopian Forestry Action Program: The Challenge for Development; Ministry of National Resources Development and Environmental Protection: Addis Abeba, Ethiopia, 1993. [Google Scholar]
- Birhane, E.; Ashfare, H.; Fenta, A.A.; Hishe, H.; Gebremedhin, M.A.; Wahed, H.G.; Solomon, N. Land use land cover changes along topographic gradients in Hugumburda national forest priority area, Northern Ethiopia. Remote Sens. Appl. Soc. Environ. 2019, 13, 61–68. [Google Scholar] [CrossRef]
- Mekasha, A.; Gerard, B.; Tesfaye, K.; Nigatu, L.; Duncan, A.J. Inter-connection between land use/land cover change and herders’/farmers’ livestock feed resource management strategies: A case study from three Ethiopian eco-environments. Agric. Ecosyst. Environ. 2014, 188, 150–162. [Google Scholar] [CrossRef] [Green Version]
- Gibbs, H.K.; Ruesch, A.S.; Achard, F.; Clayton, M.K.; Holmgren, P.; Ramankutty, N.; Foley, J.A. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc. Natl. Acad. Sci. USA 2010, 107, 16732–16737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Food and Agriculture Organization of the United Nations (FAO). Global Forest Resources Assessment 2010 Country Report Ethiopia; FAO: Rome, Italy, 2010. [Google Scholar]
- Tsegaye, D.; Moe, S.R.; Vedeld, P.; Aynekulu, E. Land-use/cover dynamics in Northern Afar rangelands, Ethiopia. Agric. Ecosyst. Environ. 2010, 139, 174–180. [Google Scholar] [CrossRef]
- Gashaw, T.; Tulu, T.; Argaw, M.; Worqlul, A.W.; Tolessa, T.; Kindu, M. Estimating the impacts of land use/land cover changes on Ecosystem Service Values: The case of the Andassa watershed in the Upper Blue Nile basin of Ethiopia. Ecosyst. Serv. 2018, 31, 219–228. [Google Scholar] [CrossRef]
- Tolessa, T.; Senbeta, F.; Kidane, M. The impact of land use/land cover change on ecosystem services in the central highlands of Ethiopia. Ecosyst. Serv. 2017, 23, 47–54. [Google Scholar] [CrossRef]
- Nyssen, J.; Simegn, G.; Taha, N. An upland farming system under transformation: Proximate causes of land use change in Bela-Welleh catchment (Wag, Northern Ethiopian Highlands). Soil Tillage Res. 2009, 103, 231–238. [Google Scholar] [CrossRef]
- Qin, K.; Li, J.; Liu, J.; Yan, L.; Huang, H. Setting conservation priorities based on ecosystem services—A case study of the Guanzhong-Tianshui Economic Region. Sci. Total Environ. 2019, 650, 3062–3074. [Google Scholar] [CrossRef]
- Pandeya, B.; Buytaert, W.; Zulkafli, Z.; Karpouzoglou, T.; Mao, F.; Hannah, D.M. A comparative analysis of ecosystem services valuation approaches for application at the local scale and in data scarce regions. Ecosyst. Serv. 2016, 22, 250–259. [Google Scholar] [CrossRef] [Green Version]
- Farley, J.; Costanza, R. Payments for ecosystem services: From local to global. Ecol. Econ. 2010, 69, 2060–2068. [Google Scholar] [CrossRef]
- Farley, J. The role of prices in conserving critical natural capital. Conserv. Biol. 2008, 22, 1399–1408. [Google Scholar] [CrossRef]
- Alarcon, G.G.; de Freitas, L.A.D.S.; da Fountoura, G.O.; de Macedo, C.X.; Ribeiro, D.C. The challenges of implementing a legal framework for Payment for Ecosystem Services in Santa Catarina, Brazil. Nat. Conserv. 2016, 14, 132–136. [Google Scholar] [CrossRef] [Green Version]
- Tolessa, T.; Senbeta, F.; Abebe, T. Land use/land cover analysis and ecosystem services valuation in the central highlands of Ethiopia. For. Trees Livelihoods 2016, 26, 111–123. [Google Scholar] [CrossRef]
- Kubiszewski, I.; Costanza, R.; Dorji, L.; Thoennes, P.; Tshering, K. An initial estimate of the value of ecosystem services in Bhutan. Ecosyst. Serv. 2013, 3, e11–e21. [Google Scholar] [CrossRef]
- Johnston, R.J.; Rosenberger, R.S. Methods, Trends and Controversies in Contemporary Benefit Transfer. J. Econ. Surv. 2009, 24, 479–510. [Google Scholar] [CrossRef]
- Ebinger, C.J.; Yemane, T.; Woldegabriel, G.; Aronson, J.L.; Walter, R.C. Late Eocene-Recent volcanism and faulting in the southern main Ethiopian rift. J. Geol. Soc. Lond. 1993, 150, 99–108. [Google Scholar] [CrossRef] [Green Version]
- Billi, P. (Ed.) Landscapes and Landforms of Ethiopia; World Geomorphological Landscapes; Springer: Dordrecht, The Netherlands, 2015; ISBN 978-94-017-8025-4. [Google Scholar]
- Assefa, E.; Bork, H.-R. Deforestation and forest management in Southern Ethiopia: Investigations in the Chencha and Arbaminch areas. Environ. Manag. 2014, 53, 284–299. [Google Scholar] [CrossRef]
- Wagesho, N. Catchment dynamics and its impact on runoff generation: Coupling watershed modelling and statistical analysis to detect catchment responses. Int. J. Water Resour. Environ. Eng. 2014, 6, 73–87. [Google Scholar] [CrossRef]
- Schutt, B.; Thiemann, S. Kulfo River, South Ethiopia as a regulator of lake level changes in the Lake Abaya-Lake Chamo system. Zbl. Geol. Paläont 2006, 1, 129–143. [Google Scholar]
- Getahun, A. Agricultural systems in Ethiopia. Agric. Syst. 1978, 3, 281–293. [Google Scholar] [CrossRef]
- Central Statistics Agency (CSA). Population Projection for Ethiopia 2007–2037. The 2012 Inter-Censual Population Survey; CSA: Addis Ababa, Ethiopia, 2013. [Google Scholar]
- Soares-Filho, B.S.; Rodrigues, H.; Costa, W. Modeling Environmental Dynamics with Dinamica EGO: Guidebook. Available online: https://www.csr.ufmg.br/dinamica/dokuwiki/doku.php?id=tutorial:start (accessed on 5 May 2019).
- Berberoğlu, S.; Akın, A.; Clarke, K.C. Cellular automata modeling approaches to forecast urban growth for adana, Turkey: A comparative approach. Landsc. Urban Plan. 2016, 153, 11–27. [Google Scholar] [CrossRef]
- Assefa, E.; Bork, H. Dynamics and driving forces of agricultural landscapes in Southern Ethiopia: A case study of the Chencha and Arbaminch areas. J. Land Use Sci. 2016, 11, 278–293. [Google Scholar] [CrossRef]
- Pérez-Vega, A.; Mas, J.-F.; Ligmann-Zielinska, A. Comparing two approaches to land use/cover change modeling and their implications for the assessment of biodiversity loss in a deciduous tropical forest. Environ. Model. Softw. 2012, 29, 11–23. [Google Scholar] [CrossRef]
- Soares-Filho, B.; Rodrigues, H.; Follador, M. A hybrid analytical-heuristic method for calibrating land-use change models. Environ. Model. Softw. 2013, 43, 80–87. [Google Scholar] [CrossRef]
- Stan, K.; Sanchez-Azofeifa, A. Deforestation and secondary growth in Costa Rica along the path of development. Reg. Environ. Chang. 2019, 19, 587–597. [Google Scholar] [CrossRef]
- Stan, K.; Sanchez-Azofeifa, A.; Espírito-Santo, M.; Portillo-Quintero, C. Simulating Deforestation in Minas Gerais, Brazil, under Changing Government Policies and Socioeconomic Conditions. PLoS ONE 2015, 10, e0137911. [Google Scholar] [CrossRef] [PubMed]
- Ramos, C.J.P.; de Alencastro Graça, P.M.L.; Fearnside, P.M. Deforestation Dynamics on an Amazonian Peri-Urban Frontier: Simulating the Influence of the Rio Negro Bridge in Manaus, Brazil. Environ. Manag. 2018, 62, 1134–1149. [Google Scholar] [CrossRef] [PubMed]
- Elz, I.; Tansey, K.; Page, S.; Trivedi, M. Modelling Deforestation and Land Cover Transitions of Tropical Peatlands in Sumatra, Indonesia Using Remote Sensed Land Cover Data Sets. Land 2015, 4, 670–687. [Google Scholar] [CrossRef] [Green Version]
- Leija-Loredo, E.G.; Pavón, N.P. The northernmost tropical rain forest of the Americas: Endangered by agriculture expansion. Trop. Ecol. 2017, 58, 641–652. [Google Scholar]
- Ahmed, S.; Bramley, G. How will Dhaka grow spatially in future? -Modelling its urban growth with a near-future planning scenario perspective. Int. J. Sustain. Built Environ. 2015, 4, 359–377. [Google Scholar] [CrossRef] [Green Version]
- Malek, Ž.; Zumpano, V.; Hussin, H. Forest management and future changes to ecosystem services in the Romanian Carpathians. Environ. Dev. Sustain. 2018, 20, 1275–1291. [Google Scholar] [CrossRef] [Green Version]
- Leija-Loredo, E.G.; Pavón, N.P.; Sánchez-González, A.; Rodriguez-Laguna, R.; Ángeles-Pérez, G. Land cover change and carbon stores in a tropical montane cloud forest in the Sierra Madre Oriental, Mexico. J. Mt. Sci. 2018, 15, 2136–2147. [Google Scholar] [CrossRef]
- Wang, L.; Young, S.S.; Wang, W.; Ren, G.; Xiao, W.; Long, Y.; Li, J.; Zhu, J. Conservation priorities of forest ecosystems with evaluations of connectivity and future threats: Implications in the Eastern Himalaya of China. Biol. Conserv. 2016, 195, 128–135. [Google Scholar] [CrossRef]
- Hagen, A. Fuzzy set approach to assessing similarity of categorical maps. Int. J. Geogr. Inf. Sci. 2003, 17, 235–249. [Google Scholar] [CrossRef] [Green Version]
- Jose, S. Agroforestry for ecosystem services and environmental benefits: An overview. Agrofor. Syst. 2009, 76, 1–10. [Google Scholar] [CrossRef]
- Reid, R.S.; Kruska, R.L.; Muthui, N.; Taye, A.; Wotton, S.; Wilson, C.J.; Mulatu, W. Land-use and land-cover dynamics in response to changes in climatic, biological and socio-political forces: The case of southwestern Ethiopia. Landsc. Ecol. 2000, 15, 339–355. [Google Scholar] [CrossRef]
- Kindu, M.; Schneider, T.; Döllerer, M.; Teketay, D.; Knoke, T. Scenario modelling of land use/land cover changes in Munessa-Shashemene landscape of the Ethiopian highlands. Sci. Total Environ. 2018, 622–623, 534–546. [Google Scholar] [CrossRef]
- Pendleton, L.H.; Thébaud, O.; Mongruel, R.C.; Levrel, H. Has the value of global marine and coastal ecosystem services changed? Mar. Policy 2016, 64, 156–158. [Google Scholar] [CrossRef] [Green Version]
- Bennett, E.M.; Peterson, G.D.; Gordon, L.J. Understanding relationships among multiple ecosystem services. Ecol. Lett. 2009, 12, 1394–1404. [Google Scholar] [CrossRef]
- Lant, C.L.; Ruhl, J.B.; Kraft, S.E. The Tragedy of Ecosystem Services. Bioscience 2008, 58, 969–974. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Wu, B.; Yang, P. Assessing the changes in land use and ecosystem services in an oasis agricultural region of Yanqi Basin, Northwest China. Environ. Monit. Assess. 2014, 186, 8343–8357. [Google Scholar] [CrossRef]
- Gebre-Mariam, Z. The effects of wet and dry seasons on concentrations of solutes and phytoplankton biomass in seven Ethiopian rift-valley lakes. Limnologica 2002, 179, 169–179. [Google Scholar]
- Schütt, B.; Wenclawiak, B. Off-site effects of soil erosion in the environment of Lake Abaya, South Ethiopia. DIE ERDE-J. Geogr. Soc. Berl. 2010, 141, 217–233. [Google Scholar]
LULC Categories | Description | Equivalent Biome | Total Ecosystem Service Coefficient (2007 USD ha−1 year−1) | ||
---|---|---|---|---|---|
A | B | A | B | ||
Inland waters | Watercourses like rivers and streams, and water bodies, like lakes and ponds | Lakes/rivers | Water | 12,512 | 11,182.83 |
Forests | All type of forests and woodland | Tropical forest | Natural forests | 5381 | 1361.63 |
Shrubland | Bush or shrub-dominated land with isolated trees always with a lower range of grass | Tropical forest | Woodlands | 5381 | 1361.63 |
Arable land | Regularly ploughed land for growing rain-fed and/or irrigated crops with some border trees | Cropland | Croplands | 5568 | 311.27 |
Heterogeneous Agricultural areas | Annual crops mixed with permanent crops and some woody vegetation usually eucalyptus trees | Cropland | Croplands | 5568 | 311.27 |
Coffee agroforestry | Coffee plantations with mixed shade trees, Enset, Khat, and fruit trees | Tropical forest | Woodlands | 5381 | 1576.30 |
Natural grassland | A grassland with low productivity often situated in plains, rough ground, or rocky areas | Grassland/rangeland | Grasslands | 4166 | 404.69 |
Inland wetlands | non-forested areas seasonally or permanently waterlogged | Swamps/floodplains | - | 25,681 | 2775.60 * |
Built-up areas | Continuous and discontinuous impervious layers and aggregated buildings of all kinds | Urban | Settlement | 6661 | 0 |
Inland Waters | Forests | Shrubland | Arable Land | Heterogeneous Agricultural Areas | Coffee Agroforestry ** | Natural Grassland | Inland Wetlands *** | Built-up Areas | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Provisioning | A | B * | ||||||||||||||||
Food production | 106 | 56.58 | 200 | 44.16 | 200 | 44.16 | 2323 | 258.83 | 2323 | 258.83 | 200 | 258.83 | 1192 | 162.08 | 614 | 180.2 | ||
Water supply | 1808 | 2921.46 | 27 | 11.04 | 27 | 11.04 | 400 | 400 | 27 | 11.04 | 60 | 408 | 275 | |||||
Raw material | 84 | 70.7112 | 84 | 70.71 | 219 | 219 | 84 | 70.71 | 54 | 539 | 209 | |||||||
Genetic resources | 1517 | 56.58 | 1517 | 56.58 | 1042 | 1042 | 1517 | 56.58 | 1214 | 99 | 68.4 | |||||||
Regulating services | ||||||||||||||||||
Water regulation | 7514 | 7514.1 | 8 | 8.28 | 8 | 8.28 | 8 | 8.28 | 3 | 4.14 | 5606 | 741.9 | 16 | |||||
aste treatment | 918 | 595.47 | 120 | 187.68 | 120 | 187.68 | 397 | 397 | 120 | 187.68 | 75 | 120.06 | 3015 | 33 | ||||
Erosion control | 337 | 338.1 | 337 | 338.1 | 107 | 107 | 337 | 338.1 | 44 | 40.02 | 2607 | 81.3 | ||||||
Climate regulation | 2044 | 307.74 | 2044 | 307.74 | 411 | 411 | 2044 | 307.74 | 40 | 488 | 199.3 | 905 | ||||||
Biological control | 11 | 11 | 33 | 33.12 | 33 | 33.12 | 11 | 31 | 31.74 | 948 | ||||||||
Gas regulation | 12 | 18.8784 | 12 | 18.88 | 12 | 18.88 | 9 | 9.66 | 67.4 | |||||||||
Disturbance regulation | 66 | 6.9 | 66 | 6.9 | 66 | 6.9 | 2986 | |||||||||||
Supporting services | ||||||||||||||||||
Nutrient cycling | 3 | 254.472 | 3 | 254.47 | 3 | 254.47 | 1713 | 102.5 | ||||||||||
Pollination | 30 | 10.0326 | 30 | 10.03 | 22 | 19.32 | 22 | 19.32 | 30 | 10.0326 | 35 | 34.5 | ||||||
Soil formation | 14 | 13.8 | 14 | 13.8 | 532 | 532 | 14 | 13.8 | 2 | 1.38 | 43.5 | |||||||
Habitat/refugia | 39 | 23.874 | 39 | 23.87 | 39 | 23.874 | 1214 | 2455 | 687.4 | |||||||||
Cultural services | ||||||||||||||||||
Recreation | 2166 | 95.22 | 867 | 6.624 | 867 | 6.62 | 82 | 82 | 867 | 6.624 | 26 | 1.104 | 2211 | 20.7 | 5740 | |||
Cultural | 2 | 2.76 | 2 | 2.76 | 2 | 2.76 | 167 | 1992 | 66 | |||||||||
Total | 12,512 | 11,182.83 | 5381 | 1361.63 | 5381 | 1361.63 | 5568 | 311.27 | 5568 | 311.27 | 5381 | 1576.30 | 4166 | 404.69 | 25681 | 2775.6 | 6661 | 0.00 |
LULC Categories | Absolute Area Cover (km2) | Change | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1985 | % | 2010 | % | 2030 | % | 2050 | % | 1985–2010 | 2010–2030 | 2030–2050 | 1985–2050 | |
Inland waters | 1432.4 | 7.48 | 1434.1 | 7.49 | 1384.76 | 7.23 | 1367.2 | 7.14 | 1.7 | −49.34 | −17.56 | −65.2 |
Forests | 531.6 | 2.78 | 522.5 | 2.73 | 94.51 | 0.49 | 46.9 | 0.24 | −9.1 | −427.99 | −47.61 | −484.7 |
Shrubland | 4478.9 | 23.4 | 3188.2 | 16.7 | 2664.78 | 13.9 | 2198.77 | 11.5 | −1290.7 | −523.42 | −466.01 | −2280.13 |
Arable land | 4454 | 23.3 | 7088.6 | 37 | 8529.48 | 44.5 | 9397.96 | 49.1 | 2634.6 | 1440.88 | 868.48 | 4943.96 |
Heterogeneous agricultural areas | 2519.1 | 13.2 | 2162.1 | 11.3 | 2096.22 | 10.9 | 2010.4 | 10.5 | −357 | −65.88 | −85.82 | −508.7 |
Coffee agroforestry | 2226.3 | 11.6 | 2216.8 | 11.6 | 2481.6 | 13 | 2529.26 | 13.2 | −9.5 | 264.8 | 47.66 | 302.96 |
Natural grassland | 3205.7 | 16.7 | 2143.8 | 11.2 | 1555.83 | 8.13 | 1253.24 | 6.55 | −1061.9 | −587.97 | −302.59 | −1952.46 |
Inland wetlands | 291.2 | 1.52 | 365.5 | 1.91 | 297.8 | 1.56 | 291.65 | 1.52 | 74.3 | −67.7 | −6.15 | 0.45 |
Built-up areas | 7.5 | 0.04 | 25 | 0.13 | 41.62 | 0.22 | 51.22 | 0.27 | 17.5 | 16.62 | 9.6 | 43.72 |
LULC Categories | Total Ecosystem Service Value (2007 USD in Million Year−1) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1985 | 2010 | 2030 | 2050 | Change | ||||||||
Value | % | Value | % | Value | % | Value | % | 1985–2010 | 2010–2030 | 2030–2050 | 1985–2050 | |
Inland waters | 1792.22 | 14.78 | 1794.35 | 14.41 | 1732.61 | 13.93 | 1710.64 | 13.71 | 2.13 | −61.74 | −21.97 | −81.58 |
Forests | 286.05 | 2.36 | 281.16 | 2.26 | 50.86 | 0.41 | 25.24 | 0.20 | −4.89 | −230.3 | −25.62 | −260.81 |
Shrubland | 2410.10 | 19.87 | 1715.57 | 13.78 | 1433.92 | 11.53 | 1183.16 | 9.48 | −694.53 | −281.65 | −250.76 | −1226.94 |
Arable land | 2479.99 | 20.45 | 3946.93 | 31.69 | 4749.21 | 38.19 | 5232.78 | 41.95 | 1466.94 | 802.28 | 483.57 | 2752.79 |
Heterogeneous agricultural areas | 1402.63 | 11.56 | 1203.86 | 9.67 | 1167.18 | 9.38 | 1119.39 | 8.97 | −198.77 | −36.68 | −47.79 | −283.24 |
Coffee agroforestry | 1670.62 | 13.77 | 1663.49 | 13.36 | 1862.19 | 14.97 | 1897.96 | 15.21 | −7.13 | 198.7 | 35.77 | 227.34 |
Natural grassland | 1335.49 | 11.01 | 893.11 | 7.17 | 648.16 | 5.21 | 522.10 | 4.19 | −442.38 | −244.95 | −126.06 | −813.39 |
Inland wetlands | 747.83 | 6.17 | 938.64 | 7.54 | 764.78 | 6.15 | 748.99 | 6.00 | 190.81 | −173.86 | −15.79 | 1.16 |
Built-up areas | 4.99 | 0.04 | 16.65 | 0.13 | 27.72 | 0.22 | 34.12 | 0.27 | 11.66 | 11.07 | 6.4 | 29.13 |
Total | 12,129.87 | 12,453.75 | 12,436.63 | 12,474.37 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woldeyohannes, A.; Cotter, M.; Biru, W.D.; Kelboro, G. Assessing Changes in Ecosystem Service Values over 1985–2050 in Response to Land Use and Land Cover Dynamics in Abaya-Chamo Basin, Southern Ethiopia. Land 2020, 9, 37. https://doi.org/10.3390/land9020037
Woldeyohannes A, Cotter M, Biru WD, Kelboro G. Assessing Changes in Ecosystem Service Values over 1985–2050 in Response to Land Use and Land Cover Dynamics in Abaya-Chamo Basin, Southern Ethiopia. Land. 2020; 9(2):37. https://doi.org/10.3390/land9020037
Chicago/Turabian StyleWoldeyohannes, Ashebir, Marc Cotter, Wubneshe Dessalegn Biru, and Girma Kelboro. 2020. "Assessing Changes in Ecosystem Service Values over 1985–2050 in Response to Land Use and Land Cover Dynamics in Abaya-Chamo Basin, Southern Ethiopia" Land 9, no. 2: 37. https://doi.org/10.3390/land9020037
APA StyleWoldeyohannes, A., Cotter, M., Biru, W. D., & Kelboro, G. (2020). Assessing Changes in Ecosystem Service Values over 1985–2050 in Response to Land Use and Land Cover Dynamics in Abaya-Chamo Basin, Southern Ethiopia. Land, 9(2), 37. https://doi.org/10.3390/land9020037