Generalized Liouville–Caputo Fractional Differential Equations and Inclusions with Nonlocal Generalized Fractional Integral and Multipoint Boundary Conditions
Abstract
:1. Introduction
2. Preliminaries
- 1.
- if
- 2.
- If
3. Main Results for the Problem (1)
- For a function and a nondecreasing function such that
- there exists a positive constant such that
- and
4. Existence Results for the Problem (2)
4.1. The Carathéodory Case
- is -Carathéodory, where ;
- there exists a continuous nondecreasing function and a function such that
- there exists a constant such that
4.2. The Lipschitz Case
- is such that is measurable for each , where ;
- for almost all and with and for almost all where
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Magin, R.L. Fractional Calculus in Bioengineering; Begell House: Chicago, IL, USA, 2006. [Google Scholar]
- Zaslavsky, G.M. Hamiltonian Chaos and Fractional Dynamics; Oxford University Press: New York, NY, USA, 2008. [Google Scholar]
- Javidi, M.; Ahmad, B. Dynamic analysis of time fractional order phytoplankton-toxic phytoplankton-zooplankton system. Ecol. Model. 2015, 318, 8–18. [Google Scholar] [CrossRef]
- Fallahgoul, H.A.; Focardi, S.M.; Fabozzi, F.J. Fractional Calculus and Fractional Processes with Applications to Financial Economics: Theory and Application; Elsevier/Academic Press: London, UK, 2017. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. North-Holland Mathematics Studies. In Theory and Applications of Fractional Differential Equations; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Lakshmikantham, V.; Leela, S.; Devi, J.V. Theory of Fractional Dynamic Systems; Cambridge Academic Publishers: Cambridge, UK, 2009. [Google Scholar]
- Diethelm, K. The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type; Springer-Verlag: Berlin, Genmany, 2010. [Google Scholar]
- Ahmad, B.; Alsaedi, A.; Ntouyas, S.K.; Tariboon, J. Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Bitsadze, A.; Samarskii, A. On some simple generalizations of linear elliptic boundary problems. Russ. Acad. Sci. Dokl. Math. 1969, 10, 398–400. [Google Scholar]
- Ciegis, R.; Bugajev, A. Numerical approximation of one model of the bacterial self-organization. Nonlinear Anal. Model. Control 2012, 17, 253–270. [Google Scholar]
- Richard, P.; Nicodemi, M.; Delannay, R.; Ribiere, P.; Bideau, D. Slow relaxation and compaction of granular system. Nat. Mater. 2005, 4, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Quezada, J.C.; Sagnol, L.; Chazallon, C. Shear Test on Viscoelastic Granular Material Using Contact Dynamics Simulations. In EPJ Web of Conferences, Powders & Grains: Montpellier, France, 2017. [Google Scholar]
- Pereira, F.L.; de Sousa, J.B.; de Matos, A.C. An Algorithm for Optimal Control Problems Based on Differential Inclusions. In Proceedings of the 34th Conference on Decision & Control, New Orleans, LA, USA, 13–15 December 1995. [Google Scholar]
- Korda, M.; Henrion, D.; Jones, C.N. Convex computation of the maximum controlled invariant set for polynomial control systems. SIAM J. Control Optim. 2014, 52, 2944–2969. [Google Scholar] [CrossRef]
- Bastien, J. Study of a driven and braked wheel using maximal monotone differential inclusions: Applications to the nonlinear dynamics of wheeled vehicles. Arch. Appl. Mech. 2014, 84, 851–880. [Google Scholar] [CrossRef]
- Kisielewicz, M. Stochastic Differential Inclusions and Applications; Springer: New York, NY, USA, 2013. [Google Scholar]
- Danca, M.F. Synchronization of piecewise continuous systems of fractional order. Nonlinear Dyn. 2014, 78, 2065–2084. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, B.; Nieto, J.J. Riemann-Liouville fractional integro-differential equations with fractional nonlocal integral boundary conditions. Bound. Val. Prob. 2011, 2011, 36. [Google Scholar] [CrossRef]
- Liang, S.; Zhang, J. Existence of multiple positive solutions for m-point fractional boundary value problems on an infinite interval. Math. Comput. Model. 2011, 54, 1334–1346. [Google Scholar] [CrossRef]
- Bai, Z.B.; Sun, W. Existence and multiplicity of positive solutions for singular fractional boundary value problems. Comput. Math. Appl. 2012, 63, 1369–1381. [Google Scholar] [CrossRef]
- Agarwal, R.P.; O’Regan, D.; Stanek, S. Positive solutions for mixed problems of singular fractional differential equations. Math. Nachr. 2012, 285, 27–41. [Google Scholar] [CrossRef]
- Ahmad, B.; Ntouyas, S.K.; Alsaedi, A. A study of nonlinear fractional differential equations of arbitrary order with Riemann–Liouville type multistrip boundary conditions. Math. Probl. Eng. 2013, 2013, 9. [Google Scholar] [CrossRef]
- Ahmad, B.; Ntouyas, S.K. Existence results for higher order fractional differential inclusions with multi-strip fractional integral boundary conditions. Electron. J. Qual. Theory Differ. Equat. 2013, 2013, 1–19. [Google Scholar] [CrossRef]
- O’Regan, D.; Staněk, S. Fractional boundary value problems with singularities in space variables. Nonlinear Dyn. 2013, 71, 641–652. [Google Scholar] [CrossRef]
- Zhai, C.; Xu, L. Properties of positive solutions to a class of four-point boundary value problem of Caputo fractional differential equations with a parameter. Commun. Nonlinear Sci. Numer. Simul. 2014, 19, 2820–2827. [Google Scholar] [CrossRef]
- Graef, J.R.; Kong, L.; Wang, M. Existence and uniqueness of solutions for a fractional boundary value problem on a graph. Fract. Calc. Appl. Anal. 2014, 17, 499–510. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Liu, S.; Zhang, L. Eigenvalue problem for nonlinear fractional differential equations with integral boundary conditions. Abstr. Appl. Anal. 2014, 2014. [Google Scholar] [CrossRef]
- Henderson, J.; Kosmatov, N. Eigenvalue comparison for fractional boundary value problems with the Caputo derivative. Fract. Calc. Appl. Anal. 2014, 17, 872–880. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Ahmad, B.; Wang, G. Successive iterations for positive extremal solutions of nonlinear fractional differential equations on a half line. Bull. Aust. Math. Soc. 2015, 91, 116–128. [Google Scholar] [CrossRef]
- Henderson, J.; Luca, R. Nonexistence of positive solutions for a system of coupled fractional boundary value problems. Bound. Val. Probl. 2015, 2015, 138. [Google Scholar] [CrossRef] [Green Version]
- Ntouyas, S.K.; Etemad, S. On the existence of solutions for fractional differential inclusions with sum and integral boundary conditions. Appl. Math. Comput. 2015, 266, 235–243. [Google Scholar] [CrossRef]
- Mei, Z.D.; Peng, J.G.; Gao, J.H. Existence and uniqueness of solutions for nonlinear general fractional differential equations in Banach spaces. Indagat. Math. 2015, 26, 669–678. [Google Scholar] [CrossRef]
- Ahmad, B.; Ntouyas, S.K. Existence results for fractional differential inclusions with Erdelyi-Kober fractional integral conditions. Ann. Univ. Ovidius Constanta-Seria Mat. 2017, 25, 5–24. [Google Scholar] [CrossRef]
- Srivastava, H.M. Remarks on some families of fractional-order differential equations. Integral Transforms Spec. Funct. 2017, 28, 560–564. [Google Scholar] [CrossRef]
- Wang, G.; Pei, K.; Agarwal, R.P.; Zhang, L.; Ahmad, B. Nonlocal Hadamard fractional boundary value problem with Hadamard integral and discrete boundary conditions on a half-line. J. Comput. Appl. Math. 2018, 343, 230–239. [Google Scholar] [CrossRef]
- Ahmad, B.; Luca, R. Existence of solutions for sequential fractional integro-differential equations and inclusions with nonlocal boundary conditions. Appl. Math. Comput. 2018, 339, 516–534. [Google Scholar] [CrossRef]
- Katugampola, U.N. New approach to a generalized fractional integral. Appl. Math. Comput. 2015, 218, 860–865. [Google Scholar] [CrossRef]
- Katugampola, U.N. A new approach to generalized fractional derivatives. Bull. Math. Anal. Appl. 2014, 6, 1–15. [Google Scholar]
- Jarad, F.; Abdeljawad, T.; Baleanu, D. On the generalized fractional derivatives and their Caputo modification. J. Nonlinear Sci. Appl. 2017, 10, 2607–2619. [Google Scholar] [CrossRef] [Green Version]
- Granas, A.; Dugundji, J. Fixed Point Theory; Springer-Verlag: New York, NY, USA, 2003. [Google Scholar]
- Krasnoselskii, M.A. Two remarks on the method of successive approximations. Uspekhi Mat. Nauk 1955, 10, 123–127. [Google Scholar]
- Deimling, K. Multivalued Differential Equations; Walter De Gruyter: New York, NY, USA, 1992. [Google Scholar]
- Lasota, A.; Opial, Z. An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 1965, 13, 781–786. [Google Scholar]
- Covitz, H.; Nadler, S.B. Multivalued contraction mappings in generalized metric spaces. Israel J. Math. 1970, 8, 5–11. [Google Scholar] [CrossRef]
- Castaing, C.; Valadier, M. Convex Analysis and Measurable Multifunctions; Springer-Verlag: Berlin/Heidelberg, Germany, 1977. [Google Scholar]
- Laskin, N. Fractional quantum mechanics and Levy path integrals. Phys. Lett. A 2000, 268, 298–305. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsaedi, A.; Alghanmi, M.; Ahmad, B.; Ntouyas, S.K. Generalized Liouville–Caputo Fractional Differential Equations and Inclusions with Nonlocal Generalized Fractional Integral and Multipoint Boundary Conditions. Symmetry 2018, 10, 667. https://doi.org/10.3390/sym10120667
Alsaedi A, Alghanmi M, Ahmad B, Ntouyas SK. Generalized Liouville–Caputo Fractional Differential Equations and Inclusions with Nonlocal Generalized Fractional Integral and Multipoint Boundary Conditions. Symmetry. 2018; 10(12):667. https://doi.org/10.3390/sym10120667
Chicago/Turabian StyleAlsaedi, Ahmed, Madeaha Alghanmi, Bashir Ahmad, and Sotiris K. Ntouyas. 2018. "Generalized Liouville–Caputo Fractional Differential Equations and Inclusions with Nonlocal Generalized Fractional Integral and Multipoint Boundary Conditions" Symmetry 10, no. 12: 667. https://doi.org/10.3390/sym10120667
APA StyleAlsaedi, A., Alghanmi, M., Ahmad, B., & Ntouyas, S. K. (2018). Generalized Liouville–Caputo Fractional Differential Equations and Inclusions with Nonlocal Generalized Fractional Integral and Multipoint Boundary Conditions. Symmetry, 10(12), 667. https://doi.org/10.3390/sym10120667