Lower Bounds for Gaussian Estrada Index of Graphs
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Cvetković, D.M.; Doob, M.; Gutman, I.; Torgašev, A. Recent Results in the Theory of Graph Spectra; North-Holland: Amsterdam, The Netherlands, 1988. [Google Scholar]
- Estrada, E. Characterization of 3D molecular structure. Chem. Phys. Lett. 2000, 319, 713–718. [Google Scholar] [CrossRef]
- Estrada, E. Characterization of the folding degree of proteins. Bioinformatics 2002, 18, 697–704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Estrada, E. Characterization of the amino acid contribution to the folding degree of proteins. Proteins 2004, 54, 727–737. [Google Scholar] [CrossRef] [PubMed]
- Estrada, E.; Rodríguez-Velázquez, J.A. Subgraph centrality in complex networks. Phys. Rev. E 2005, 71, 056103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Estrada, E.; Rodríguez-Velázquez, J.A. Spectral measures of bipartivity in complex networks. Phys. Rev. E 2005, 72, 046105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Estrada, E.; Rodríguez-Velázquez, J.A.; Randić, M. Atomic branching in molecules. Int. J. Quantum Chem. 2006, 106, 823–832. [Google Scholar] [CrossRef]
- Shang, Y. Local natural connectivity in complex networks. Chin. Phys. Lett. 2011, 28, 068903. [Google Scholar] [CrossRef]
- Shang, Y. Biased edge failure in scale-free networks based on natural connectivity. Indian J. Phys. 2012, 86, 485–488. [Google Scholar] [CrossRef]
- Wu, J.; Barahona, M.; Tan, Y.J.; Deng, H.Z. Robustness of regular ring lattices based on natural connectivity. Int. J. Syst. Sci. 2011, 42, 1085–1092. [Google Scholar] [CrossRef] [Green Version]
- Gutman, I. Lower bounds for Estrada index. Publ. Inst. Math. Beograd (N.S.) 2008, 83, 1–7. [Google Scholar] [CrossRef]
- Gutman, I.; Deng, H.; Radenković, S. The Estrada index: an updated survey. In Selected Topics on Applications of Graph Spectra; Cvetković, D., Gutman, I., Eds.; Mathematical Institute: Belgrade, Serbia, 2011; pp. 155–174. [Google Scholar]
- Gutman, I.; Radenković, S. A lower bound for the Estrada index of bipartite molecular graphs. Kragujev. J. Sci. 2007, 29, 67–72. [Google Scholar]
- De la Peña, J.A.; Gutman, I.; Rada, J. Estimating the Estrada index. Lin. Algebra Appl. 2007, 427, 70–76. [Google Scholar] [CrossRef]
- Shang, Y. Lower bounds for the Estrada index of graphs. Electron. J. Linear Algebra 2012, 23, 664–668. [Google Scholar] [CrossRef]
- Shang, Y. Estrada index of general weighted graphs. Bull. Aust. Math. Soc. 2013, 88, 106–112. [Google Scholar] [CrossRef]
- Zhou, B. On Estrada index. MATCH Commun. Math. Comput. Chem. 2008, 60, 485–492. [Google Scholar]
- Lenes, E.; Mallea-Zepeda, E.; Robbiano, M.; Rodríguez, J. On the diameter and incidence energy of iterated total graphs. Symmetry 2018, 10, 252. [Google Scholar] [CrossRef]
- Borovićanin, B.; Gutman, I. Nullity of graphs: an updated survey. In Selected Topics on Applications of Graph Spectra; Cvetković, D., Gutman, I., Eds.; Mathematical Institute: Belgrade, Serbia, 2011; pp. 137–154. [Google Scholar]
- Kutzelnigg, W. What I like about Hückel theory. J. Comput. Chem. 2007, 28, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Estrada, E.; Alhomaidhi, A.A.; Al-Thukair, F. Exploring the “Middel Earth” of network spectra via a Gaussian matrix function. Chaos 2017, 27, 023109. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.W.; Zunger, A. Solving Schrödinger’s equation around a desired energy: application to silicon quantum dots. J. Chem. Phys. 1994, 100, 2394. [Google Scholar] [CrossRef]
- Gutman, I.; Trinajstić, N. Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons. Chem. Phys. Lett. 1972, 17, 535–538. [Google Scholar] [CrossRef]
- Gutman, I.; Das, K.C. The first Zagreb index 30 years after. MATCH Commun. Math. Comput. Chem. 2004, 50, 83–92. [Google Scholar]
- Shao, Z.; Siddiqui, M.K.; Muhammad, M.H. Computing Zagreb indices and Zagreb polynomials for symmetrical nanotubes. Symmetry 2018, 10, 244. [Google Scholar] [CrossRef]
- Zhou, B. On spectral radius of nonnegative matrices. Australas. J. Combin. 2000, 22, 301–306. [Google Scholar]
- Shang, Y. Estrada index of random bipartite graphs. Symmetry 2015, 7, 2195–2205. [Google Scholar] [CrossRef]
- Shang, Y. The Estrada index of evolving graphs. Appl. Math. Comput. 2015, 250, 415–423. [Google Scholar] [CrossRef]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shang, Y. Lower Bounds for Gaussian Estrada Index of Graphs. Symmetry 2018, 10, 325. https://doi.org/10.3390/sym10080325
Shang Y. Lower Bounds for Gaussian Estrada Index of Graphs. Symmetry. 2018; 10(8):325. https://doi.org/10.3390/sym10080325
Chicago/Turabian StyleShang, Yilun. 2018. "Lower Bounds for Gaussian Estrada Index of Graphs" Symmetry 10, no. 8: 325. https://doi.org/10.3390/sym10080325
APA StyleShang, Y. (2018). Lower Bounds for Gaussian Estrada Index of Graphs. Symmetry, 10(8), 325. https://doi.org/10.3390/sym10080325