An Inventory Ordering Model for Deteriorating Items with Compounding and Backordering
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Model Development
3.1.1. Deterioration (Waste) Cost
3.1.2. Warehousing Cost
3.1.3. Opportunity Cost
3.1.4. Annual Total Cost
3.1.5. The Basic Model
3.2. The Approximate Model
4. Results
5. Discussion
6. Conclusions
7. Limitations and Future Research
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Harris, F. How Many Parts to Make At Once. Factory Mag. Manag. 1913, 10, 135–136, 152. [Google Scholar] [CrossRef]
- Ghare, P.M.; Schrader, G.F. A Model for an Exponentially Decaying Inventory. J. Ind. Eng. 1963, 14, 238–243. [Google Scholar]
- Dave, U.; Patel, L.K. (T,Si) Policy Inventory Model for Deteriorating Items with Time Proportional Demand. J. Oper. Res. Soc. 1981, 32, 137–142. [Google Scholar] [CrossRef]
- Bahari-Kashani, H. Replenishment Schedule for Deteriorating Items with Time-Proportional Demand. J. Oper. Res. Soc. 1989, 40, 75–81. [Google Scholar] [CrossRef]
- Chung, K.J.; Ting, P.S. A Heuristic for Replenishment of Deteriorating Items with a Linear Trend in Demand. J. Oper. Res. Soc. 1993, 44, 1235–1241. [Google Scholar] [CrossRef]
- Chung, K.J.; Ting, P.S. On replenishment schedule for deteriorating items with time-proportional demand. Prod. Plan. Control 1994, 5, 392–396. [Google Scholar] [CrossRef]
- Kim, D. A heuristic for replenishment of deteriorating items with a linear trend in demand. Int. J. Prod. Econ. 1995, 39, 265–270. [Google Scholar] [CrossRef]
- Sachan, R.S. On (T, Si) Policy Inventory Model for Deteriorating Items with Time Proportional Demand. J. Oper. Res. Soc. 1984, 35, 1013–1019. [Google Scholar] [CrossRef]
- Çalışkan, C. A derivation of the optimal solution for exponentially deteriorating items without derivatives. Comput. Ind. Eng. 2020, 148, 106675. [Google Scholar] [CrossRef]
- Çalışkan, C. A note about ‘On replenishment schedule for deteriorating items with time-proportional demand’. Prod. Plan. Control 2020. [Google Scholar] [CrossRef]
- Widyadana, G.A.; Cárdenas-Barrón, L.E.; Wee, H.M. Economic order quantity model for deteriorating items with planned backorder level. Math. Comput. Model. 2011, 54, 1569–1575. [Google Scholar] [CrossRef]
- Çalışkan, C. A Simple Derivation of the Optimal Solution for the EOQ Model for Deteriorating Items with Planned Backorders. Appl. Math. Model. 2021, 89 Pt 2, 1373–1381. [Google Scholar] [CrossRef]
- Wee, H.M. A deterministic lot-size inventory model for deteriorating items with shortages and a declining market. Comput. Oper. Res. 1995, 22, 345–356. [Google Scholar]
- Hariga, M.; Benkherouf, L. Optimal and heuristic inventory replenishment models for deteriorating items with exponential time-varying demand. Eur. J. Oper. Res. 1994, 79, 123–137. [Google Scholar] [CrossRef]
- Benkherouf, L. On an inventory model with deteriorating items and decreasing time-varying demand and shortages. Eur. J. Oper. Res. 1995, 86, 293–299. [Google Scholar] [CrossRef]
- Benkherouf, L.; Mahmoud, M.G. On an Inventory Model for Deteriorating Items with Increasing Time-varying Demand and Shortages. J. Oper. Res. Soc. 1996, 47, 188–200. [Google Scholar] [CrossRef]
- Aggarwal, S.P.; Jaggi, C.K. Ordering Policies of Deteriorating Items under Permissible Delay in Payments. J. Oper. Res. Soc. 1995, 46, 658–662. [Google Scholar] [CrossRef]
- Chu, P.; Chung, K.; Lan, S. Economic order quantity of deteriorating items under permissible delay in payments. Comput. Oper. Res. 1998, 25, 817–824. [Google Scholar] [CrossRef]
- Khakzad, A.; Gholamian, M.R. The effect of inspection on deterioration rate: An inventory model for deteriorating items with advanced payment. J. Clean. Prod. 2020, 254, 120117. [Google Scholar] [CrossRef]
- Tiwari, S.; Cárdenas-Barrón, L.E.; Shaikh, A.A.; Goh, M. Retailer’s optimal ordering policy for deteriorating items under order-size dependent trade credit and complete backlogging. Comput. Ind. Eng. 2020, 139, 105559. [Google Scholar] [CrossRef]
- Khan, M.A.A.; Ahmed, S.; Babu, M.S.; Sultana, N. Optimal lot-size decision for deteriorating items with price-sensitive demand, linearly time-dependent holding cost under all-units discount environment. Int. J. Syst. Sci. Oper. Logist. 2020, 1–14. [Google Scholar] [CrossRef]
- Rezagholifam, M.; Sadjadi, S.J.; Heydari, M.; Karimi, M. Optimal pricing and ordering strategy for non-instantaneous deteriorating items with price and stock sensitive demand and capacity constraint. Int. J. Syst. Sci. Oper. Logist. 2020, 1–12. [Google Scholar] [CrossRef]
- Hadley, G. A Comparison of Order Quantities Computed Using the Average Annual Cost and the Discounted Cost. Manag. Sci. 1964, 10, 472–476. [Google Scholar] [CrossRef]
- Porteus, E. Undiscounted approximations of discounted regenerative models. Oper. Res. Lett. 1985, 3, 293–300. [Google Scholar] [CrossRef]
- Teunter, R.; Van der Laan, E.; Inderfurth, K. How to set the holding cost rates in average cost inventory models with reverse logistics? Omega 2000, 28, 409–415. [Google Scholar] [CrossRef]
- Van der Laan, E.; Teunter, R. Average Costs versus Net Present Value: A Comparison for Multi-source Inventory Models. In Quantitative Approaches to Distribution Logistics and Supply Chain Management; Klose, A., Speranza, M.G., Van Wassenhove, L.N., Eds.; Springer: Berlin/Heidelberg, Germany, 2002; pp. 359–378. [Google Scholar]
- Teunter, R.; Van der Laan, E. On the non-optimality of the average cost approach for inventory models with remanufacturing. Int. J. Prod. Econ. 2002, 79, 67–73. [Google Scholar] [CrossRef]
- Van der Laan, E. An NPV and AC analysis of a stochastic inventory system with joint manufacturing and remanufacturing. Int. J. Prod. Econ. 2003, 81–82, 317–331. [Google Scholar] [CrossRef] [Green Version]
- Çorbacıoğlu, U.; van der Laan, E. Setting the holding cost rates in a two-product system with remanufacturing. Int. J. Prod. Econ. 2007, 109, 185–194. [Google Scholar] [CrossRef]
- Sun, D.; Queyranne, M. Production and Inventory Model Using Net Present Value. Oper. Res. 2002, 50, 528–537. [Google Scholar] [CrossRef] [Green Version]
- Haneveld, W.K.K.; Teunter, R.H. Effects of discounting and demand rate variability on the EOQ. Int. J. Prod. Econ. 1998, 54, 173–192. [Google Scholar] [CrossRef]
- Bartmann, D.; Beckmann, M.F. Inventory Control: Models and Methods. In Lecture Notes in Economics and Mathematical Systems; Springer: Berlin/Heidelberg, Germany, 1992; Volume 388. [Google Scholar]
- Çalışkan, C. The Economic Order Quantity Model with Compounding. Omega 2020, 102, 102307. [Google Scholar] [CrossRef]
- Çalışkan, C. On the Economic Order Quantity Model with Compounding. Am. J. Math. Manag. Sci. 2020. [Google Scholar] [CrossRef]
- Zipkin, P.H. Foundations of Inventory Management, 1st ed.; McGraw-Hill: New York, NY, USA, 2000. [Google Scholar]
- Lin, R.; Lin, J.S.J.; Chen, K.; Julian, P.C. Note on inventory model with net present value. J. Interdiscip. Math. 2007, 10, 587–592. [Google Scholar] [CrossRef]
- Grubbström, R.W. Transform methodology applied to some inventory problems. Z. FÜR Betriebswirtschaft 2007, 77, 297–324. [Google Scholar] [CrossRef]
- Mahajan, S.; Diatha, K. Minimizing the Discounted Average Cost Under Continuous Compounding in the EOQ Models with a Regular Product and a Perishable Product. Am. J. Oper. Manag. Inf. Syst. 2018, 3, 52–60. [Google Scholar] [CrossRef] [Green Version]
- Rachamadugu, R. Effect of Delayed Payments (Trade Credit) on Order Quantities. J. Oper. Res. Soc. 1989, 40, 805–813. [Google Scholar] [CrossRef]
- Van Delft, C.; Vial, J. Discounted costs, obsolescence and planned stockouts with the EOQ formula. Int. J. Prod. Econ. 1996, 44, 255–265. [Google Scholar] [CrossRef]
- Alım, M.; Beullens, P. Joint inventory and distribution strategy for online sales with a flexible delivery option. Int. J. Prod. Econ. 2020, 222, 107487. [Google Scholar] [CrossRef]
- Sarkar, S.; Giri, B.C.; Sarkar, A.K. A vendor-buyer inventory model with lot-size and production rate dependent lead time under time value of money. RAIRO-Oper. Res. 2020, 54, 961–979. [Google Scholar] [CrossRef] [Green Version]
- Sundararajan, R.; Vaithyasubramanian, S.; Nagarajan, A. Impact of delay in payment, shortage and inflation on an EOQ model with bivariate demand. J. Manag. Anal. 2021, 8, 267–294. [Google Scholar]
D | the demand of the item in number of units per year |
S | the cost of ordering per order |
δ | the rate of deterioration for one unit of the item per year |
i | the cost of warehousing per year as a fraction of the unit price of the item |
r | the annual interest rate (or opportunity cost) as a fraction |
c | the unit cost of the item |
T | the length of an ordering cycle (order interval) |
TI | the length of time the demand is fulfilled in a cycle (fulfillment interval) |
Q | the number of units to order in each ordering cycle |
B | the number of units to backorder in each ordering cycle |
t | the elapsed time since the beginning of an ordering cycle |
I(t) | the number of units in the inventory at time t |
D = 10,000 | D = 500 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
δ | r | Exact | App. | Exact | App. | Exact | App. | % Diff. | Exact | App. | Exact | App. | Exact | App. | % Diff. |
5.00 | 0.05 | 264.65 | 265.61 | 189.59 | 189.26 | 3791.75 | 3791.91 | 0.0042 | 59.51 | 60.56 | 42.63 | 42.32 | 852.69 | 853.38 | 0.0808 |
5.00 | 0.10 | 264.25 | 265.19 | 189.87 | 189.54 | 3797.34 | 3797.49 | 0.0041 | 59.42 | 60.44 | 42.69 | 42.38 | 853.88 | 854.55 | 0.0790 |
5.00 | 0.15 | 263.83 | 264.76 | 190.15 | 189.83 | 3803.12 | 3803.27 | 0.0040 | 59.32 | 60.33 | 42.75 | 42.45 | 855.11 | 855.77 | 0.0773 |
5.00 | 0.20 | 263.40 | 264.31 | 190.45 | 190.14 | 3809.10 | 3809.25 | 0.0039 | 59.21 | 60.20 | 42.82 | 42.52 | 856.38 | 857.03 | 0.0756 |
5.00 | 0.25 | 262.95 | 263.85 | 190.76 | 190.45 | 3815.28 | 3815.42 | 0.0038 | 59.10 | 60.08 | 42.88 | 42.59 | 857.71 | 858.34 | 0.0740 |
3.75 | 0.05 | 276.80 | 277.96 | 181.37 | 181.00 | 3627.42 | 3627.58 | 0.0044 | 62.30 | 63.56 | 40.83 | 40.47 | 816.51 | 817.21 | 0.0860 |
3.75 | 0.10 | 276.11 | 277.25 | 181.80 | 181.44 | 3636.05 | 3636.21 | 0.0043 | 62.14 | 63.37 | 40.92 | 40.57 | 818.36 | 819.04 | 0.0837 |
3.75 | 0.15 | 275.42 | 276.53 | 182.24 | 181.89 | 3644.95 | 3645.10 | 0.0042 | 61.97 | 63.18 | 41.01 | 40.67 | 820.26 | 820.93 | 0.0814 |
3.75 | 0.20 | 274.70 | 275.79 | 182.70 | 182.36 | 3654.11 | 3654.25 | 0.0041 | 61.80 | 62.98 | 41.11 | 40.78 | 822.23 | 822.88 | 0.0793 |
3.75 | 0.25 | 273.97 | 275.03 | 183.17 | 182.83 | 3663.52 | 3663.67 | 0.0040 | 61.62 | 62.77 | 41.21 | 40.88 | 824.27 | 824.90 | 0.0773 |
2.50 | 0.05 | 299.37 | 300.83 | 167.81 | 167.42 | 3356.29 | 3356.44 | 0.0044 | 67.47 | 69.04 | 37.82 | 37.44 | 756.41 | 757.07 | 0.0871 |
2.50 | 0.10 | 297.98 | 299.40 | 168.57 | 168.18 | 3371.46 | 3371.60 | 0.0043 | 67.14 | 68.67 | 37.98 | 37.61 | 759.68 | 760.32 | 0.0840 |
2.50 | 0.15 | 296.57 | 297.96 | 169.34 | 168.97 | 3386.96 | 3387.10 | 0.0041 | 66.80 | 68.28 | 38.15 | 37.78 | 763.04 | 763.66 | 0.0811 |
2.50 | 0.20 | 295.15 | 296.49 | 170.13 | 169.76 | 3402.81 | 3402.94 | 0.0040 | 66.46 | 67.90 | 38.32 | 37.96 | 766.48 | 767.08 | 0.0784 |
2.50 | 0.25 | 293.71 | 295.02 | 170.94 | 170.58 | 3418.97 | 3419.11 | 0.0039 | 66.11 | 67.51 | 38.49 | 38.14 | 770.01 | 770.59 | 0.0759 |
1.25 | 0.05 | 357.12 | 359.09 | 140.77 | 140.39 | 2815.36 | 2815.47 | 0.0037 | 80.58 | 82.67 | 31.76 | 31.39 | 635.28 | 635.73 | 0.0720 |
1.25 | 0.10 | 352.73 | 354.61 | 142.48 | 142.11 | 2849.62 | 2849.72 | 0.0035 | 79.55 | 81.53 | 32.13 | 31.78 | 642.80 | 643.23 | 0.0682 |
1.25 | 0.15 | 348.43 | 350.22 | 144.19 | 143.84 | 2884.09 | 2884.18 | 0.0033 | 78.53 | 80.42 | 32.51 | 32.16 | 650.38 | 650.80 | 0.0648 |
1.25 | 0.20 | 344.20 | 345.92 | 145.91 | 145.58 | 2918.71 | 2918.80 | 0.0031 | 77.53 | 79.34 | 32.88 | 32.55 | 658.03 | 658.44 | 0.0620 |
1.25 | 0.25 | 340.06 | 341.72 | 147.64 | 147.32 | 2953.47 | 2953.56 | 0.0030 | 76.54 | 78.28 | 33.26 | 32.94 | 665.73 | 666.12 | 0.0595 |
0.01 | 0.05 | 1296.04 | 1297.75 | 38.53 | 38.55 | 771.55 | 771.55 | 0.0001 | 289.08 | 290.80 | 8.60 | 8.62 | 172.92 | 172.93 | 0.0018 |
0.01 | 0.10 | 956.98 | 958.68 | 52.12 | 52.18 | 1044.50 | 1044.50 | 0.0002 | 212.97 | 214.69 | 11.61 | 11.67 | 234.29 | 234.29 | 0.0033 |
0.01 | 0.15 | 793.48 | 795.22 | 62.81 | 62.90 | 1259.32 | 1259.33 | 0.0002 | 176.29 | 178.03 | 13.97 | 14.06 | 282.67 | 282.68 | 0.0049 |
0.01 | 0.20 | 692.80 | 694.56 | 71.89 | 72.01 | 1442.01 | 1442.02 | 0.0003 | 153.71 | 155.46 | 15.98 | 16.10 | 323.87 | 323.89 | 0.0066 |
0.01 | 0.25 | 622.94 | 624.73 | 79.91 | 80.05 | 1603.39 | 1603.39 | 0.0004 | 138.04 | 139.81 | 17.76 | 17.90 | 360.31 | 360.34 | 0.0084 |
D = 10,000 | D = 500 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Parameters | |||||||||||
δ | r | Exact | App. | Exact | App | % Diff. | Exact | App. | Exact | App | % Diff. |
5.00 | 0.05 | 142.34 | 145.77 | 7190.09 | 7192.05 | 0.0273 | 33.07 | 36.97 | 1670.54 | 1679.55 | 0.5394 |
5.00 | 0.10 | 141.58 | 144.97 | 7227.92 | 7229.88 | 0.0271 | 32.89 | 36.75 | 1679.02 | 1687.98 | 0.5339 |
5.00 | 0.15 | 140.79 | 144.14 | 7267.49 | 7269.43 | 0.0268 | 32.70 | 36.51 | 1687.89 | 1696.81 | 0.5283 |
5.00 | 0.20 | 139.97 | 143.29 | 7308.86 | 7310.80 | 0.0265 | 32.50 | 36.27 | 1697.18 | 1706.05 | 0.5227 |
5.00 | 0.25 | 139.13 | 142.41 | 7352.11 | 7354.03 | 0.0262 | 32.30 | 36.02 | 1706.89 | 1715.72 | 0.5171 |
3.75 | 0.05 | 163.83 | 167.23 | 6227.64 | 6228.91 | 0.0205 | 37.88 | 41.68 | 1439.82 | 1445.63 | 0.4040 |
3.75 | 0.10 | 162.67 | 166.02 | 6271.22 | 6272.48 | 0.0202 | 37.60 | 41.35 | 1449.58 | 1455.36 | 0.3986 |
3.75 | 0.15 | 161.47 | 164.78 | 6316.71 | 6317.97 | 0.0199 | 37.31 | 41.00 | 1459.79 | 1465.53 | 0.3932 |
3.75 | 0.20 | 160.24 | 163.50 | 6364.19 | 6365.44 | 0.0196 | 37.02 | 40.65 | 1470.44 | 1476.15 | 0.3878 |
3.75 | 0.25 | 158.98 | 162.19 | 6413.74 | 6414.98 | 0.0194 | 36.72 | 40.29 | 1481.57 | 1487.24 | 0.3825 |
2.50 | 0.05 | 199.61 | 202.96 | 5092.52 | 5093.21 | 0.0136 | 45.87 | 49.55 | 1170.39 | 1173.53 | 0.2682 |
2.50 | 0.10 | 197.51 | 200.80 | 5145.62 | 5146.30 | 0.0133 | 45.38 | 48.98 | 1182.29 | 1185.40 | 0.2630 |
2.50 | 0.15 | 195.38 | 198.60 | 5200.87 | 5201.55 | 0.0130 | 44.87 | 48.39 | 1194.68 | 1197.76 | 0.2580 |
2.50 | 0.20 | 193.21 | 196.36 | 5258.34 | 5259.02 | 0.0128 | 44.36 | 47.80 | 1207.58 | 1210.64 | 0.2531 |
2.50 | 0.25 | 191.00 | 194.09 | 5318.10 | 5318.77 | 0.0126 | 43.83 | 47.20 | 1221.01 | 1224.04 | 0.2483 |
1.25 | 0.05 | 278.81 | 282.07 | 3628.10 | 3628.35 | 0.0067 | 63.57 | 67.05 | 827.21 | 828.30 | 0.1321 |
1.25 | 0.10 | 273.17 | 276.31 | 3702.10 | 3702.34 | 0.0064 | 62.25 | 65.60 | 843.80 | 844.87 | 0.1275 |
1.25 | 0.15 | 267.59 | 270.62 | 3778.36 | 3778.59 | 0.0062 | 60.95 | 64.17 | 860.91 | 861.98 | 0.1233 |
1.25 | 0.20 | 262.07 | 264.99 | 3856.91 | 3857.15 | 0.0060 | 59.66 | 62.76 | 878.56 | 879.62 | 0.1196 |
1.25 | 0.25 | 256.62 | 259.44 | 3937.83 | 3938.06 | 0.0059 | 58.38 | 61.37 | 896.76 | 897.81 | 0.1162 |
0.01 | 0.05 | 1276.67 | 1278.35 | 783.27 | 783.27 | 0.0001 | 284.81 | 286.48 | 175.54 | 175.55 | 0.0017 |
0.01 | 0.10 | 930.64 | 932.25 | 1074.10 | 1074.11 | 0.0001 | 207.20 | 208.79 | 240.89 | 240.90 | 0.0029 |
0.01 | 0.15 | 761.59 | 763.15 | 1312.20 | 1312.20 | 0.0002 | 169.33 | 170.87 | 294.45 | 294.46 | 0.0041 |
0.01 | 0.20 | 656.08 | 657.59 | 1522.95 | 1522.95 | 0.0003 | 145.72 | 147.21 | 341.89 | 341.91 | 0.0052 |
0.01 | 0.25 | 581.88 | 583.36 | 1716.89 | 1716.90 | 0.0003 | 129.13 | 130.57 | 385.58 | 385.60 | 0.0063 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Çalışkan, C. An Inventory Ordering Model for Deteriorating Items with Compounding and Backordering. Symmetry 2021, 13, 1078. https://doi.org/10.3390/sym13061078
Çalışkan C. An Inventory Ordering Model for Deteriorating Items with Compounding and Backordering. Symmetry. 2021; 13(6):1078. https://doi.org/10.3390/sym13061078
Chicago/Turabian StyleÇalışkan, Cenk. 2021. "An Inventory Ordering Model for Deteriorating Items with Compounding and Backordering" Symmetry 13, no. 6: 1078. https://doi.org/10.3390/sym13061078
APA StyleÇalışkan, C. (2021). An Inventory Ordering Model for Deteriorating Items with Compounding and Backordering. Symmetry, 13(6), 1078. https://doi.org/10.3390/sym13061078