A Novel Analog Circuit Soft Fault Diagnosis Method Based on Convolutional Neural Network and Backward Difference
Abstract
:1. Introduction
- (1)
- A feature extraction method, i.e., backward difference, is introduced for preprocessing the raw signals of analog circuit. The purpose of introducing this strategy is to extract the signal variation and the rate of variation feature, which may be more discriminative than the features contained in the original signal sequences.
- (2)
- By integrating the GAP technique, the designed CNN-GAP could deal with different lengths of input sequences, which is more practical and promising for different circuits fault diagnosis problems.
- (1)
- Multi-scale signals are directly fed into the CNN-GAP network, which automatically extracted the circuit fault features and adaptively fused the learned features, without any manual operations. In addition, experimental results demonstrate that the presented solution is more effective for analog circuit fault diagnosis.
2. The Basic Architecture of 1DCNN
2.1. Convolutional Layers
2.2. Batch Normalization and Activation Function
2.3. Pooling Layer
2.4. Fully Connected Layer
3. The Proposed Method
3.1. Backward Difference Preprocessing Method
3.2. Convolutional Neural Network with Global Average Pooling (CNN-GAP)
3.3. General Procedure of the Proposed Method for Fault Diagnosis
4. Case Studies Using the Proposed Method
4.1. Validation Setup and the Structure of the CNN-GAP
4.2. Case 1: Sallen–Key Band-Pass Filter Circuit
4.2.1. Simulation Settings and Data Collection
4.2.2. Experimental Results and Analyses
4.2.3. Fault Diagnosis of Incipient Faults
4.3. Fault Diagnosis of Four-Opamp Biquad High-Pass Filter Circuit
4.3.1. Simulation Settings and Data Collection
4.3.2. Experimental Results and Analyses
4.3.3. Fault Diagnosis of Incipient Faults
5. Conclusions and Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gao, T.; Yang, J.; Jiang, S. A Novel Incipient Fault Diagnosis Method for Analog Circuits Based on GMKL-SVM and Wavelet Fusion Features. IEEE Trans. Instrum. Meas. 2021, 70, 1–15. [Google Scholar] [CrossRef]
- Zhang, C.; He, Y.; Yuan, L.; Xiang, S. Analog Circuit Incipient Fault Diagnosis Method Using DBN Based Features Extraction. IEEE Access 2018, 6, 23053–23064. [Google Scholar] [CrossRef]
- Li, F.; Woo, P.-Y. Fault detection for linear analog IC-the method of short-circuit admittance parameters. IEEE Trans. Circuits Syst. I Regul. Pap. 2002, 49, 105–108. [Google Scholar] [CrossRef]
- Yang, H.; Meng, C.; Wang, C. Data-Driven Feature Extraction for Analog Circuit Fault Diagnosis Using 1-D Convolutional Neural Network. IEEE Access 2020, 8, 18305–18315. [Google Scholar] [CrossRef]
- Vasan, A.S.S.; Long, B.; Pecht, M. Diagnostics and Prognostics Method for Analog Electronic Circuits. IEEE Trans. Ind. Electron. 2013, 60, 5277–5291. [Google Scholar] [CrossRef]
- Long, B.; Xian, W.; Li, M.; Wang, H. Improved diagnostics for the incipient faults in analog circuits using LSSVM based on PSO algorithm with Mahalanobis distance. Neurocomputing 2014, 133, 237–248. [Google Scholar] [CrossRef]
- Deng, Y.; Shi, Y.; Zhang, W. An Approach to Locate Parametric Faults in Nonlinear Analog Circuits. IEEE Trans. Instrum. Meas. 2011, 61, 358–367. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, T.; Han, J.; Bu, S.; Tang, X.; Pecht, M. Signal Model-Based Fault Coding for Diagnostics and Prognostics of Analog Electronic Circuits. IEEE Trans. Ind. Electron. 2017, 64, 605–614. [Google Scholar] [CrossRef]
- Kim, K.; Choi, H. High-efficiency high-voltage class F amplifier for high-frequency wireless ultrasound systems. PLoS ONE 2021, 16, e0249034. [Google Scholar] [CrossRef]
- He, W.; He, Y.; Li, B. Generative Adversarial Networks With Comprehensive Wavelet Feature for Fault Diagnosis of Analog Circuits. IEEE Trans. Instrum. Meas. 2020, 69, 6640–6650. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, A. Fuzzy classifier for fault diagnosis in analog electronic circuits. ISA Trans. 2013, 52, 816–824. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; He, Y.; Huang, J.; Sun, Y. A New Neural-Network-Based Fault Diagnosis Approach for Analog Circuits by Using Kurtosis and Entropy as a Preprocessor. IEEE Trans. Instrum. Meas. 2009, 59, 586–595. [Google Scholar] [CrossRef]
- Xiao, Y.; He, Y. A novel approach for analog fault diagnosis based on neural networks and improved kernel PCA. Neurocomputing 2011, 74, 1102–1115. [Google Scholar] [CrossRef]
- Chen, P.; Yuan, L.; He, Y.; Luo, S. An improved SVM classifier based on double chains quantum genetic algorithm and its application in analogue circuit diagnosis. Neurocomputing 2016, 211, 202–211. [Google Scholar] [CrossRef]
- Song, P.; He, Y.; Cui, W. Statistical property feature extraction based on FRFT for fault diagnosis of analog circuits. Analog. Integr. Circuits Signal Process. 2016, 87, 427–436. [Google Scholar] [CrossRef]
- Luo, H.; Wang, Y.; Cui, J. A SVDD approach of fuzzy classification for analog circuit fault diagnosis with FWT as preprocessor. Expert Syst. Appl. 2011, 38, 10554–10561. [Google Scholar] [CrossRef]
- Yuan, X.; Miao, Z.; Liu, Z.; Yan, Z.; Zhou, F. Multi-Strategy Ensemble Whale Optimization Algorithm and Its Application to Analog Circuits Intelligent Fault Diagnosis. Appl. Sci. 2020, 10, 3667. [Google Scholar] [CrossRef]
- Zhang, A.; Chen, C.; Jiang, B. Analog circuit fault diagnosis based UCISVM. Neurocomputing 2016, 173, 1752–1760. [Google Scholar] [CrossRef]
- Cui, Y.; Shi, J.; Wang, Z. Analog circuits fault diagnosis using multi-valued Fisher’s fuzzy decision tree (MFFDT). Int. J. Circ. Theor. App. 2016, 44, 240–260. [Google Scholar] [CrossRef]
- Luo, H.; Lu, W.; Wang, Y.; Wang, L.; Zhao, X. A novel approach for analog fault diagnosis based on stochastic signal analysis and improved GHMM. Measurement 2016, 81, 26–35. [Google Scholar] [CrossRef]
- Xu-Sheng, G.; Wen-Ming, G.; Zhe, D.; Wei-Dong, L. Research on WNN soft fault diagnosis for analog circuit based on adaptive UKF algorithm. Appl. Soft Comput. 2017, 50, 252–259. [Google Scholar] [CrossRef]
- Binu, D.; Kariyappa, B.S. RideNN: A New Rider Optimization Algorithm-Based Neural Network for Fault Diagnosis in Analog Circuits. IEEE Trans. Instrum. Meas. 2019, 68, 2–26. [Google Scholar] [CrossRef]
- Li, S.; Song, W.; Fang, L.; Chen, Y.; Ghamisi, P.; Benediktsson, J.A. Deep Learning for Hyperspectral Image Classification: An Overview. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6690–6709. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Wang, Z.; Liu, X.; Zeng, N.; Liu, Y.; Alsaadi, F.E. A survey of deep neural network architectures and their applications. Neurocomputing 2017, 234, 11–26. [Google Scholar] [CrossRef]
- Zhao, G.; Liu, X.; Zhang, B.; Liu, Y.; Niu, G.; Hu, C. A novel approach for analog circuit fault diagnosis based on Deep Belief Network. Measurement 2018, 121, 170–178. [Google Scholar] [CrossRef]
- Shokrolahi, S.M.; Karimiziarani, M. A deep network solution for intelligent fault detection in analog circuit. Analog. Integr. Circuits Signal Process. 2021, 107, 597–604. [Google Scholar] [CrossRef]
- Deng, Y.; Zhou, Y. Fault Diagnosis of an Analog Circuit Based on Hierarchical DVS. Symmetry 2020, 12, 1901. [Google Scholar] [CrossRef]
- Liu, Z.; Jia, Z.; Vong, C.-M.; Bu, S.; Han, J.; Tang, X. Capturing High-Discriminative Fault Features for Electronics-Rich Analog System via Deep Learning. IEEE Trans. Ind. Inform. 2017, 13, 1213–1226. [Google Scholar] [CrossRef]
- Wang, B.; Lei, Y.; Li, N.; Yan, T. Deep separable convolutional network for remaining useful life prediction of machinery. Mech. Syst. Signal Process. 2019, 134, 106330. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2012, 60, 1097–1105. [Google Scholar] [CrossRef]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv 2015, arXiv:1502.03167. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Zhong, S.; Fu, X.; Tang, B.; Pecht, M. Deep Residual Shrinkage Networks for Fault Diagnosis. IEEE Trans. Ind. Inform. 2019, 16, 4681–4690. [Google Scholar] [CrossRef]
- Peng, D.; Wang, H.; Liu, Z.; Zhang, W.; Zuo, M.J.; Chen, J. Multibranch and Multiscale CNN for Fault Diagnosis of Wheelset Bearings under Strong Noise and Variable Load Condition. IEEE Trans. Ind. Inform. 2020, 16, 4949–4960. [Google Scholar] [CrossRef]
- Zhang, D.; Stewart, E.; Ye, J.; Entezami, M.; Roberts, C. Roller Bearing Degradation Assessment Based on a Deep MLP Convolution Neural Network Considering Outlier Regions. IEEE Trans. Instrum. Meas. 2020, 69, 2996–3004. [Google Scholar] [CrossRef]
- Li, S.; Wang, H.; Song, L.; Wang, P.; Cui, L.; Lin, T. An adaptive data fusion strategy for fault diagnosis based on the convolutional neural network. Measurement 2020, 165, 108122. [Google Scholar] [CrossRef]
- Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. J. Mach. Learn. Res. 2010, 9, 249–256. [Google Scholar]
CNN-GAP-R | CNN-GAP-MS |
---|---|
Input (1 × L) | Input (3 × L) |
Conv(32, 7), BN, ReLU | Conv(32, 7), BN, ReLU |
Conv(64, 3), BN, ReLU | Conv(64, 3), BN, ReLU |
Conv(64, 3), BN, ReLU | Conv(64, 3), BN, ReLU |
Conv(64, 3), BN, ReLU | Conv(64, 3), BN, ReLU |
GAP | GAP |
FC(64, NFM) | FC(64, NFM) |
Fault Model | Method in [15] | Method in [25] | CNN-GAP-R | CNN-GAP-MS |
---|---|---|---|---|
Non-fault | 97.20 | 100.00 | 100.00 | 100.00 |
C1↑ | 99.00 | 100.00 | 100.00 | 100.00 |
C1↓ | 100.00 | 100.00 | 100.00 | 100.00 |
C2↑ | 96.00 | 100.00 | 100.00 | 100.00 |
C2↓ | 97.00 | 100.00 | 100.00 | 100.00 |
R2↑ | 98.00 | 100.00 | 100.00 | 100.00 |
R2↓ | 100.00 | 100.00 | 100.00 | 100.00 |
R3↑ | 100.00 | 100.00 | 100.00 | 100.00 |
R3↓ | 98.57 | 100.00 | 100.00 | 100.00 |
Average | 98.41 | 100.00 | 100.00 | 100.00 |
S.D. | - | - | 0.00 | 0.00 |
Fault Model | Method in [25] | CNN-GAP-R | CNN-GAP-MS |
---|---|---|---|
Non-fault | 96.74 | 94.30 | 99.92 |
C1↑20 | 100.00 | 99.45 | 100.00 |
C1↓20 | 95.24 | 96.60 | 99.99 |
C2↑20 | 99.45 | 99.98 | 100.00 |
C2↓20 | 99.67 | 100.00 | 100.00 |
R2↑20 | 100.00 | 99.40 | 100.00 |
R2↓20 | 98.31 | 93.42 | 99.85 |
R3↑20 | 97.44 | 99.95 | 100.00 |
R3↓20 | 96.00 | 100.00 | 100.00 |
Average | 98.09 | 98.12 | 99.96 |
S.D. | - | 0.091 | 0.014 |
Fault Model | Method in [15] | Method in [25] | CNN-GAP-R | CNN-GAP-MS |
---|---|---|---|---|
Non-fault | 98.20 | 98.44 | 94.70 | 99.75 |
C1↑ | 81.00 | 99.08 | 100.00 | 100.00 |
C1↓ | 100.00 | 100.00 | 99.82 | 99.96 |
C2↑ | 89.70 | 100.00 | 99.23 | 99.95 |
C2↓ | 90.00 | 99.23 | 95.67 | 99.75 |
R1↑ | 98.00 | 100.00 | 99.91 | 100.00 |
R1↓ | 100.00 | 99.57 | 99.51 | 99.93 |
R2↑ | 89.60 | 99.50 | 99.95 | 100.00 |
R2↓ | 100.00 | 99.52 | 99.67 | 100.00 |
R3↑ | 90.00 | 99.41 | 99.93 | 100.00 |
R3↓ | 100.00 | 100.00 | 99.75 | 100.00 |
R4↑ | 100.00 | 99.21 | 99.90 | 100.00 |
R4↓ | 100.00 | 98.58 | 99.57 | 100.00 |
Average | 95.12 | 99.43 | 99.05 | 99.95 |
S.D. | - | - | 0.047 | 0.013 |
Fault Model | CNN-GAP-R | CNN-GAP-MS |
---|---|---|
Non-fault | 37.41 | 67.57 |
C1↑20 | 99.97 | 99.82 |
C1↓20 | 74.47 | 93.98 |
C2↑20 | 70.02 | 74.85 |
C2↓20 | 64.98 | 87.07 |
R1↑20 | 87.37 | 97.57 |
R1↓20 | 77.65 | 90.15 |
R2↑20 | 85.25 | 97.63 |
R2↓20 | 71.88 | 89.50 |
R3↑20 | 94.82 | 93.07 |
R3↓20 | 100.00 | 99.56 |
R4↑20 | 87.28 | 48.72 |
R4↓20 | 99.98 | 99.85 |
Average | 80.85 | 87.64 |
S.D. | 0.97 | 0.21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Zha, D.; Wang, L.; Mu, N. A Novel Analog Circuit Soft Fault Diagnosis Method Based on Convolutional Neural Network and Backward Difference. Symmetry 2021, 13, 1096. https://doi.org/10.3390/sym13061096
Zhang C, Zha D, Wang L, Mu N. A Novel Analog Circuit Soft Fault Diagnosis Method Based on Convolutional Neural Network and Backward Difference. Symmetry. 2021; 13(6):1096. https://doi.org/10.3390/sym13061096
Chicago/Turabian StyleZhang, Chenggong, Daren Zha, Lei Wang, and Nan Mu. 2021. "A Novel Analog Circuit Soft Fault Diagnosis Method Based on Convolutional Neural Network and Backward Difference" Symmetry 13, no. 6: 1096. https://doi.org/10.3390/sym13061096
APA StyleZhang, C., Zha, D., Wang, L., & Mu, N. (2021). A Novel Analog Circuit Soft Fault Diagnosis Method Based on Convolutional Neural Network and Backward Difference. Symmetry, 13(6), 1096. https://doi.org/10.3390/sym13061096