On Fejér Type Inequalities via (p,q)-Calculus
Abstract
:1. Introduction
2. Preliminaries
3. Main Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jackson, F.H. On a q-definite integrals. Quart. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Jackson, F.H. q-difference equations. Am. J. Math. 1910, 32, 305–314. [Google Scholar] [CrossRef]
- Aslam, M.; Awan, M.U.; Noor, K.I. Quantum Ostrowski inequalities for q-differentiable convex function. J. Math. Inequal. 2016, 10, 1013–1018. [Google Scholar]
- Aral, A.; Gupta, V.; Agarwal, R.P. Applications of q-Calculus in Operator Theory; Springer Science + Business Media: New York, NY, USA, 2013. [Google Scholar]
- Gauchman, H. Integral inequalities in q-calculus. J. Comput. Appl. Math. 2002, 47, 281–300. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, B. Boundary-value problems for nonlinear third-order q-difference equations. Electron. J. Differ. Equ. 2011, 94, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, B.; Alsaedi, A.; Ntouyas, S.K. A study of second-order q-difference equations with boundary conditions. Adv. Differ. Equ. 2012, 2012, 35. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, B.; Ntouyas, S.K.; Purnaras, I.K. Existence results for nonlinear q-difference equations with nonlocal boundary conditions. Commun. Appl. Nonlinear Anal. 2012, 19, 59–72. [Google Scholar]
- Ahmad, B.; Nieto, J.J. On nonlocal boundary value problems of nonlinear q-difference equation. Adv. Differ. Equ. 2012, 2012, 81. [Google Scholar] [CrossRef] [Green Version]
- Bukweli-Kyemba, J.D.; Hounkonnou, M.N. Quantum deformed algebra: Coherent states and special functions. arXiv 2013, arXiv:1301.0116v1. [Google Scholar]
- Kac, V.; Cheung, P. Quantum Calculus; Springer: New York, NY, USA, 2002. [Google Scholar]
- Tariboon, J.; Ntouyas, S.K. Quantum calculus on finite intervals and applications to impulsive difference equations. Adv. Differ. Equ. 2013, 2013, 282. [Google Scholar] [CrossRef] [Green Version]
- Tariboon, J.; Ntouyas, S.K. Quantum integral inequalities on finite intervals. J. Inequal. Appl. 2014, 2014, 121. [Google Scholar] [CrossRef] [Green Version]
- Kunt, M.; Latif, M.A.; Iscan, I.; Dragomir, S.S. Quantum Hermite-Hadamard type inequality and some estimates of quantum midpoint type inequalities for double integrals. Sigma J. Eng. Nat. Sci. 2019, 37, 207–223. [Google Scholar]
- Bermudo, S.; Korus, P.; Valdes, J.E.N. On q-Hermite-Hadamard inequalities for general convex functions. Acta Math. Hung. 2020, 162, 364–374. [Google Scholar] [CrossRef]
- Jhanthanam, S.; Tariboon, J.; Ntouyas, S.K.; Nonlaopon, K. On q-Hermite-Hadamard inequalities for differentiable convex functions. Mathematics 2019, 7, 632. [Google Scholar] [CrossRef] [Green Version]
- Noor, M.A.; Noor, K.I.; Awan, M.U. Some quantum estimates for Hermite-Hadamard inequalities. Appl. Math. Comput. 2015, 251, 675–679. [Google Scholar] [CrossRef]
- Prabseang, J.; Nonlaopon, K.; Tariboon, J. Quantum Hermite-Hadamard inequalities for double integral and q-differentiable convex functions. J. Math. Inequal. 2019, 13, 675–686. [Google Scholar] [CrossRef]
- Sudsutad, W.; Ntouyas, S.K.; Tariboon, J. Quantum integral inequalities for convex functions. J. Math. Inequal. 2015, 9, 781–793. [Google Scholar] [CrossRef] [Green Version]
- Prabseang, J.; Nonlaopon, K.; Ntouyas, S.K. On refinement of quantum Hermite-Hadamard inequalities for convex functions. J. Math. Inequal. 2020, 14, 875–885. [Google Scholar] [CrossRef]
- Chakrabarti, R.; Jagannathan, R. A (p,q)-oscillator realization of two-parameter quantum algebras. J. Phys. A Math. Gen. 1991, 24, L711–L718. [Google Scholar] [CrossRef]
- Tunç, M.; Göv, E. Some integral inequalities via (p,q)-calculus on finite intervals. RGMIA Res. Rep. Coll 2016, 19, 1–12. [Google Scholar]
- Tunç, M.; Göv, E. (p,q)-integral inequalities. RGMIA Res. Rep. Coll 2016, 19, 1–13. [Google Scholar]
- Prabseang, J.; Nonlaopon, K.; Tariboon, J. (p,q)-Hermite-Hadamard inequalities for double integral and (p,q)-differentiable convex functions. Axioms 2019, 8, 68. [Google Scholar] [CrossRef] [Green Version]
- Kalsoom, H.; Amer, M.; Junjua, M.D.; Hassain, S.; Shahxadi, G. (p,q)-estimates of Hermite-Hadamard-type inequalities for coordinated convex and quasi convex function. Mathematics 2019, 7, 683. [Google Scholar] [CrossRef] [Green Version]
- Hounkonnou, M.N.; Désiré, J.; Kyemba, B.R. (p,q)-calculus: Differentiation and integration. SUT J. Math. 2013, 49, 145–167. [Google Scholar]
- Sadjang, P.N. On the fundamental theorem of (p,q)-calculus and some (p,q)-Taylor formulas. Results Math. 2018, 73, 39. [Google Scholar] [CrossRef]
- Chu, Y.M.; Awan, M.U.; Talib, S.; Noor, M.A.; Noor, K.I. New post quantum analogues of Ostrowski-type inequalities using new definitions of left-right (p,q)-derivatives and definite integrals. Adv. Differ. Equ. 2020, 2020, 634. [Google Scholar] [CrossRef]
- Kalsoom, H.; Rashid, S.; Tdrees, M.; Safdar, F.; Akram, S.; Baleanu, D.; Chu, Y.M. Post quantum inequalities of Hermite-Hadamard-type associated with co-ordinated higher-order generalized strongly pre-index and quasi-pre-index mappings. Symmetry 2020, 12, 443. [Google Scholar] [CrossRef] [Green Version]
- Kunt, M.; Iscan, I.; Alp, N.; Sarikaya, M.Z. (p,q)-Hermite-Hadamard and (p,q)-estimates for midpoint type inequalities via convex and quasi-convex functions. RACSAM 2018, 112, 969–992. [Google Scholar] [CrossRef]
- Ali, M.A.; Budak, H.; Kalsoom, H.; Chu, Y.M. Post-quantum Hermite-Hadamard inequalities involving newly defined (p,q)-integral. Authorea 2020. [Google Scholar] [CrossRef]
- Thongjob, S.; Nonlaopon, K.; Ntouyas, S.K. Some (p,q)-Hardy type inequalities for (p,q)-integrable functions. AIMS Math. 2020, 6, 77–89. [Google Scholar] [CrossRef]
- Wannalookkhee, F.S.; Nonlaopon, K.; Tariboon, J.; Ntouyas, S.K. On Hermite-Hadamard type inequalities for coordinated convex functions via (p,q)-calculus. Mathematics 2021, 9, 698. [Google Scholar] [CrossRef]
- Pečarić, J.; Proschan, F.; Tong, Y.L. Convex Functions, Partial Ordering and Statistical Applications; Academic Press: New York, NY, USA, 1991. [Google Scholar]
- Dragomir, S.S.; Cerone, P.; Sofo, A. Some remarks on the midpoint rule in numerical integration. Studia Univ. Babes. Bolyai. Math. 2000, XLV, 63–74. [Google Scholar]
- Dragomir, S.S.; Cerone, P.; Sofo, A. Some remarks on the trapezoid rule in numerical integration. Indian J. Pure Appl. Math. 2000, 31, 475–494. [Google Scholar]
- Sarikaya, M.Z. On new Hermite Hadamard Fejér type integral inequalities. Studia Univ. Babes. Bolyai. Math. 2012, 57, 377–386. [Google Scholar]
- Sarikaya, M.Z.; Budak, H. Generalized Ostrowski type inequalities for local fractional integrals. RGMIA Res. Rep. Collect. 2015, 62, 1–11. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Erden, S.; Budak, H. Some generalized Ostrowski type inequalities involving local fractional integrals and applications. Adv. Inequal. Appl. 2016, 2016, 1–6. [Google Scholar]
- Sarikaya, M.Z.; Budak, H. On generalized Hermite-Hadamard inequality for generalized convex function. RGMIA Res. Rep. Collect. 2015, 64, 1–15. [Google Scholar]
- Sarikaya, M.Z.; Erden, S.; Budak, H. Some integral inequalities for local fractional integrals. RGMIA Res. Rep. Collect. 2015, 65, 1–12. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Budak, H.; Erden, S. On new inequalities of Simpson’s type for generalized convex functions. RGMIA Res. Rep. Collect. 2015, 66, 1–13. [Google Scholar]
- Tseng, K.L.; Yang, G.S.; Hsu, K.C. Some inequalities for differentiable mappings and applications to Feje´r inequality and weighted trapozidal formula. Taiwan. J. Math. 2011, 15, 1737–1747. [Google Scholar] [CrossRef]
- Wang, C.L.; Wang, X.H. On an extension of Hadamard inequality for convex functions. Chin. Ann. Math. 1982, 3, 567–570. [Google Scholar]
- Wu, S.H. On the weighted generalization of the Hermite-Hadamard inequality and its applications. Rocky Mt. J. Math. 2009, 39, 1741–1749. [Google Scholar] [CrossRef]
- Xi, B.Y.; Qi, F. Some Hermite-Hadamard type inequalities for differentiable convex functions and applications. Hacet. J. Math. Stat. 2013, 42, 243–257. [Google Scholar]
- Xi, B.Y.; Qi, F. Hermite-Hadamard type inequalities for functions whose derivatives are of convexities. Nonlinear Funct. Anal. Appl. 2013, 18, 163–176. [Google Scholar]
- Fejér, L. Uber die Fourierreihen. II. Math. Naturwiss. Anz Ungar. Akad. Wiss. 1906, 24, 369–390. (In Hungarian) [Google Scholar]
- Minculete, N.; Mitroi, F.C. Fejér-type inequalities. Aust. J. Math. Anal. Appl. 2012, 9, 1–8. [Google Scholar]
- Yang, W. Some new Fejér type inequalities via quantum calculus on finite intervals. Sci. Asia 2017, 2017, 123–134. [Google Scholar] [CrossRef] [Green Version]
- Sarikaya, M.Z. On Fejér type inequalities via fractional integrals. J. Interdiscip. Math. 2018, 21, 143–155. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arunrat, N.; Nakprasit, K.M.; Nonlaopon, K.; Tariboon, J.; Ntouyas, S.K. On Fejér Type Inequalities via (p,q)-Calculus. Symmetry 2021, 13, 953. https://doi.org/10.3390/sym13060953
Arunrat N, Nakprasit KM, Nonlaopon K, Tariboon J, Ntouyas SK. On Fejér Type Inequalities via (p,q)-Calculus. Symmetry. 2021; 13(6):953. https://doi.org/10.3390/sym13060953
Chicago/Turabian StyleArunrat, Nuttapong, Keaitsuda Maneeruk Nakprasit, Kamsing Nonlaopon, Jessada Tariboon, and Sotiris K. Ntouyas. 2021. "On Fejér Type Inequalities via (p,q)-Calculus" Symmetry 13, no. 6: 953. https://doi.org/10.3390/sym13060953
APA StyleArunrat, N., Nakprasit, K. M., Nonlaopon, K., Tariboon, J., & Ntouyas, S. K. (2021). On Fejér Type Inequalities via (p,q)-Calculus. Symmetry, 13(6), 953. https://doi.org/10.3390/sym13060953