Toward Three-Loop Feynman Massive Diagram Calculations
Abstract
:1. Introduction
2. Progress in Three-Loop Calculations for Z-Boson Observables
2.1. Three Loop Z-Boson Self-Energy Integrals
2.2. Three Loop Z-Boson Vertices
3. Current Status of Numerical Results—Examples
3.1. PySecDec
3.2. Differential Equations and IBP Methods
3.3. Mellin–Barnes Method
3.4. Reduction of Scales Using Taylor Expansion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Electroweak; The SLD; Heavy Flavour Groups; ALEPH Collaboration; DELPHI Collaboration; L3 Collaboration; OPAL Collaboration; SLD Collaboration; LEP Electroweak Working Group; The SLD Electroweak; et al. Precision electroweak measurements on the Z resonance. Phys. Rept. 2006, 427, 257–454. [Google Scholar] [CrossRef] [Green Version]
- Bardin, D.; Hollik, W.; Passarino, G. (Eds.) Reports of the Working Group on Precision Calculations for the Z Resonance; Yellow Report CERN 95-03 (1995), Parts I to III; CERN: Geneva, Switzerland, 1995; 410p, Available online: http://cds.cern.ch/record/280836/files/CERN-95-03.pdf (accessed on 30 May 2021). [CrossRef]
- Djouadi, A.; Lykken, J.; Mönig, K.; Okada, Y.; Oreglia, M.; Yamashita, S. International Linear Collider Reference Design Report Volume 2: Physics at the ILC. arXiv 2007, arXiv:0709.1893. [Google Scholar]
- Kiyo, Y.; Olive, K.; Simon, F.; Uwer, P.; Wackeroth, D.; Zerwas, P.M.; Arbey, A.; Asano, M.; Bagger, J.; Bechtle, P.; et al. Physics at the e+e- Linear Collider. Eur. Phys. J. C 2015, 75, 371. [Google Scholar] [CrossRef] [Green Version]
- Linssen, L.; Miyamoto, A.; Stanitzki, M.; Weerts, H. Physics and Detectors at CLIC: CLIC Conceptual Design Report; CERN: Meyrin, Switzerland, 2012. [Google Scholar] [CrossRef]
- CLIC. Compact Linear International Collider Project, CERN. Available online: https://clicdp.web.cern.ch (accessed on 30 May 2021).
- CEPC Study Group. CEPC Conceptual Design Report: Volume 1—Accelerator. arXiv 2018, arXiv:1809.00285. [Google Scholar]
- CEPC. Circular Electron Positron Collider Project, China. Available online: http://cepc.ihep.ac.cn/ (accessed on 30 May 2021).
- Abada, A. FCC-ee: The Lepton Collider. Eur. Phys. J. ST 2019, 228, 261–623. [Google Scholar] [CrossRef]
- Blondel, A.; Freitas, A.; Gluza, J.; Riemann, T.; Heinemeyer, S.; Jadach, S.; Janot, P. Theory Requirements and Possibilities for the FCC-ee and other Future High Energy and Precision Frontier Lepton Colliders. arXiv 2019, arXiv:1901.02648. [Google Scholar]
- Blondel, A. Standard Model Theory for the FCC-ee Tera-Z Stage: Mini Workshop on Precision EW and QCD Calculations for the FCC Studies: Methods and Techniques; CERN Yellow Reports: Monographs; CERN: Geneva, Switzerland, 2018; Volume 3. [Google Scholar] [CrossRef]
- Blondel, A.; Gluza, J.; Jadach, S.; Janot, P.; Riemann, T. Theory for the FCC-ee: Report on the 11th FCC-ee Workshop Theory and Experiments; Blondel, A., Gluza, J., Jadach, S., Janot, P., Riemann, T., Eds.; CERN Yellow Reports: Monographs; CERN: Geneva, Switzerland, 2019; Volume 3/2020. [Google Scholar] [CrossRef]
- FCC. Future Circular Collider, Conceptual Design Report. Available online: https://fcc-cdr.web.cern.ch/ (accessed on 30 May 2021).
- Dubovyk, I.; Freitas, A.; Gluza, J.; Riemann, T.; Usovitsch, J. The two-loop electroweak bosonic corrections to sin2. Phys. Lett. B 2016, 762, 184–189. [Google Scholar] [CrossRef] [Green Version]
- Dubovyk, I.; Freitas, A.; Gluza, J.; Riemann, T.; Usovitsch, J. Complete electroweak two-loop corrections to Z boson production and decay. Phys. Lett. B 2018, 783, 86–94. [Google Scholar] [CrossRef]
- Dubovyk, I.; Freitas, A.; Gluza, J.; Riemann, T.; Usovitsch, J. Electroweak pseudo-observables and Z-boson form factors at two-loop accuracy. J. High Energy Phys. 2019, 8, 113. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Freitas, A. Leading fermionic three-loop corrections to electroweak precision observables. J. High Energy Phys. 2020, 7, 210. [Google Scholar] [CrossRef]
- Chen, L.; Freitas, A. Mixed EW-QCD leading fermionic three-loop corrections at O(αsα2) to electroweak precision observables. J. High Energy Phys. 2021, 3, 215. [Google Scholar] [CrossRef]
- Bauberger, S.; Freitas, A.; Wiegand, D. TVID 2: Evaluation of planar-type three-loop self-energy integrals with arbitrary masses. J. High Energy Phys. 2020, 1, 24. [Google Scholar] [CrossRef] [Green Version]
- Borowka, S.; Heinrich, G.; Jahn, S.; Jones, S.P.; Kerner, M.; Schlenk, J.; Zirke, T. pySecDec: A toolbox for the numerical evaluation of multi-scale integrals. Comput. Phys. Commun. 2018, 222, 313–326. [Google Scholar] [CrossRef] [Green Version]
- Borowka, S.; Heinrich, G.; Jahn, S.; Jones, S.P.; Kerner, M.; Schlenk, J. A GPU compatible quasi-Monte Carlo integrator interfaced to pySecDec. Comput. Phys. Commun. 2018. [Google Scholar] [CrossRef]
- Bielas, K.; Dubovyk, I.; Gluza, J.; Riemann, T. Some Remarks on Non-planar Feynman Diagrams. Acta Phys. Polon. B 2013, 44, 2249–2255. [Google Scholar] [CrossRef]
- AMBRE. Available online: http://prac.us.edu.pl/~gluza/ambre (accessed on 30 May 2021).
- Hahn, T. CUBA: A library for multidimensional numerical integration. Comput. Phys. Commun. 2005, 168, 78–95. [Google Scholar] [CrossRef] [Green Version]
- Chetyrkin, K.; Tkachov, F. Integration by Parts: The Algorithm to Calculate β Functions in 4 Loops. Nucl. Phys. B 1981, 192, 159–204. [Google Scholar] [CrossRef]
- Kotikov, A. Differential equations method: New technique for massive Feynman diagrams calculation. Phys. Lett. B 1991, 254, 158–164. [Google Scholar] [CrossRef]
- Kotikov, A. Differential equations method: The Calculation of vertex type Feynman diagrams. Phys. Lett. B 1991, 259, 314–322. [Google Scholar] [CrossRef]
- Kotikov, A.V. Differential equation method: The Calculation of N point Feynman diagrams. Phys. Lett. B 1991, 267, 123–127. [Google Scholar] [CrossRef]
- Gehrmann, T.; Remiddi, E. Differential equations for two-loop four-point functions. Nucl. Phys. B 2000, 580, 485–518. [Google Scholar] [CrossRef] [Green Version]
- Maierhöfer, P.; Usovitsch, J.; Uwer, P. Kira—A Feynman integral reduction program. Comput. Phys. Commun. 2018, 230, 99–112. [Google Scholar] [CrossRef] [Green Version]
- Klappert, J.; Lange, F.; Maierhöfer, P.; Usovitsch, J. Integral Reduction with Kira 2.0 and Finite Field Methods. Comput. Phys. Commun. 2021, 266. [Google Scholar] [CrossRef]
- Laporta, S. High precision calculation of multiloop Feynman integrals by difference equations. Int. J. Mod. Phys. A 2000, 15, 5087–5159. [Google Scholar] [CrossRef]
- Hidding, M. DiffExp, a Mathematica package for computing Feynman integrals in terms of one-dimensional series expansions. arXiv 2020, arXiv:2006.05510. [Google Scholar]
- Panzer, E. Feynman integrals and hyperlogarithms. arXiv 2015, arXiv:1506.07243. [Google Scholar]
- Von Manteuffel, A.; Panzer, E.; Schabinger, R.M. A quasi-finite basis for multi-loop Feynman integrals. J. High Energy Phys. 2015, 2015. [Google Scholar] [CrossRef] [Green Version]
- Von Manteuffel, A.; Panzer, E.; Schabinger, R.M. Computation of form factors in massless QCD with finite master integrals. Phys. Rev. D 2016, 93. [Google Scholar] [CrossRef] [Green Version]
- Von Manteuffel, A.; Studerus, C. Reduze 2-Distributed Feynman Integral Reduction. arXiv 2012, arXiv:1201.4330. [Google Scholar]
- Borowka, S.; Heinrich, G.; Jones, S.; Kerner, M.; Schlenk, J.; Zirke, T. SecDec-3.0: Numerical evaluation of multi-scale integrals beyond one loop. Comput. Phys. Commun. 2015, 196, 470–491. [Google Scholar] [CrossRef] [Green Version]
- Tarasov, O.V. Connection between Feynman integrals having different values of the space-time dimension. Phys. Rev. D 1996, 54, 6479–6490. [Google Scholar] [CrossRef] [Green Version]
- Lee, R.N. Calculating multiloop integrals using dimensional recurrence relation and D-analyticity. Nucl. Phys. B Proc. Suppl. 2010, 205–206, 135–140. [Google Scholar] [CrossRef] [Green Version]
- Lee, R.N. LiteRed 1.4: A powerful tool for reduction of multiloop integrals. J. Phys. Conf. Ser. 2014, 523, 012059. [Google Scholar] [CrossRef]
- Gluza, J.; Kajda, K.; Riemann, T. AMBRE—A Mathematica package for the construction of Mellin–Barnes representations for Feynman integrals. Comput. Phys. Commun. 2007, 177, 879–893. [Google Scholar] [CrossRef] [Green Version]
- Gluza, J.; Kajda, K.; Riemann, T.; Yundin, V. Numerical Evaluation of Tensor Feynman Integrals in Euclidean Kinematics. Eur. Phys. J. C 2011, 71, 1516. [Google Scholar] [CrossRef] [Green Version]
- Czakon, M. Automatized analytic continuation of Mellin–Barnes integrals. Comput. Phys. Commun. 2006, 175, 559–571. [Google Scholar] [CrossRef] [Green Version]
- Kosower, D. Mathematica Program Barnesroutines.m, Version 1.1.1. July 2009. Available online: http://projects.hepforge.org/mbtools/ (accessed on 30 May 2021).
- Usovitsch, J. Numerical Evaluation of Mellin–Barnes Integrals in Minkowskian Regions and Their Application to Two-Loop Bosonic Electroweak Contributions to the Weak Mixing Angle of the Zb-vertex. Ph.D. Thesis, Humboldt-Universität, Berlin, Germany, 2018. [Google Scholar] [CrossRef]
- Dubovyk, I.; Gluza, J.; Riemann, T.; Usovitsch, J. Numerical integration of massive two-loop Mellin–Barnes integrals in Minkowskian regions. PoS 2016, LL2016, 34. [Google Scholar] [CrossRef] [Green Version]
- Usovitsch, J.; Dubovyk, I.; Riemann, T. MBnumerics: Numerical integration of Mellin–Barnes integrals in physical regions. PoS 2018, LL2018, 46. [Google Scholar] [CrossRef] [Green Version]
- Smirnov, V.A. Asymptotic expansions in momenta and masses and calculation of Feynman diagrams. Mod. Phys. Lett. A 1995, 10, 1485–1500. [Google Scholar] [CrossRef] [Green Version]
- Misiak, M.; Steinhauser, M. Three loop matching of the dipole operators for b→sγ and b→sg. Nucl. Phys. B 2004, 683, 277–305. [Google Scholar] [CrossRef] [Green Version]
Z → | ||
---|---|---|
Number of topologies | 2 loops | 3 loops |
14 | 211 | |
Number of diagrams | 2012 | 397,690 |
Bosonic | 1711 | 305,293 |
Fermionic | 301 (4) | 92,397 (82) |
QCD | 1 | 1228 |
EW | 2011 | 396,462 |
Planar | 1914 (13) | 350,709 (183) |
Non-planar | 98 (1) | 46,981 (28) |
Integrator | Result | Absolute Error |
---|---|---|
QMC [21] | 8.62988528 | 4.99 |
Divonne [24] | 8.62995472 | 5.31 |
Vegas [24] | 8.62990260 | 2.17 |
MB | 8.62995364 | 9.77 |
Method | Result | Absolute Error |
---|---|---|
SD + QMC | i | 0.0093 + 0.0097 i |
MBnumerics | i | i |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dubovyk, I.; Usovitsch, J.; Grzanka, K. Toward Three-Loop Feynman Massive Diagram Calculations. Symmetry 2021, 13, 975. https://doi.org/10.3390/sym13060975
Dubovyk I, Usovitsch J, Grzanka K. Toward Three-Loop Feynman Massive Diagram Calculations. Symmetry. 2021; 13(6):975. https://doi.org/10.3390/sym13060975
Chicago/Turabian StyleDubovyk, Ievgen, Johann Usovitsch, and Krzysztof Grzanka. 2021. "Toward Three-Loop Feynman Massive Diagram Calculations" Symmetry 13, no. 6: 975. https://doi.org/10.3390/sym13060975
APA StyleDubovyk, I., Usovitsch, J., & Grzanka, K. (2021). Toward Three-Loop Feynman Massive Diagram Calculations. Symmetry, 13(6), 975. https://doi.org/10.3390/sym13060975