Quantum Heat Engines with Singular Interactions
Abstract
:1. Introduction
2. The Two-Particle Singular Oscillator
3. Singular Oscillator Thermal State
4. Singular Oscillator Dynamics
5. The Quantum Otto Cycle
6. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Kondepudi, D.; Prigogine, I. Modern Thermodynamics; Wiley: New York, NY, USA, 1998. [Google Scholar] [CrossRef]
- Deffner, S.; Campbell, S. Quantum Thermodynamics; Morgan and Claypool: Bristol, UK, 2019. [Google Scholar] [CrossRef]
- Scully, M.O.; Zubairy, M.S.; Agarwal, G.S.; Walther, H. Extracting Work from a Single Heat Bath via Vanishing Quantum Coherence. Science 2003, 299, 862. [Google Scholar] [CrossRef]
- Scully, M.O.; Chapin, K.R.; Dorfman, K.E.; Kim, M.B.; Svidzinsky, A. Quantum heat engine power can be increased by noise-induced coherence. Proc. Natl. Acad. Sci. USA 2011, 108, 15097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uzdin, R. Coherence-Induced Reversibility and Collective Operation of Quantum Heat Machines via Coherence Recycling. Phys. Rev. Appl. 2016, 6, 024004. [Google Scholar] [CrossRef]
- Watanabe, G.; Venkatesh, B.P.; Talkner, P.; del Campo, A. Quantum Performance of Thermal Machines over Many Cycles. Phys. Rev. Lett. 2017, 118, 050601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dann, R.; Kosloff, R. Quantum signatures in the quantum Carnot cycle. New J. Phys. 2020, 22, 013055. [Google Scholar] [CrossRef]
- Feldmann, T.; Kosloff, R. Short time cycles of purely quantum refrigerators. Phys. Rev. E 2012, 85, 051114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hardal, A.U.C.; Müstecaplioglu, O.E. Superradiant Quantum Heat Engine. Sci. Rep. 2015, 5, 12953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hammam, K.; Hassouni, Y.; Fazio, R.; Manzano, G. Optimizing autonomous thermal machines powered by energetic coherence. New J. Phys. 2021, 23, 043024. [Google Scholar] [CrossRef]
- Barrios, G.A.; Albarrán-Arriagada, F.; Peña, F.J.; Solano, E.; Retamal, J.C. Light-matter quantum Otto engine in finite time. arXiv 2021, arXiv:2102.10559. [Google Scholar]
- Beau, M.; Jaramillo, J.; del Campo, A. Scaling-Up Quantum Heat Engines Efficiently via Shortcuts to Adiabaticity. Entropy 2016, 18, 168. [Google Scholar] [CrossRef]
- Li, J.; Fogarty, T.; Campbell, S.; Chen, X.; Busch, T. An efficient nonlinear Feshbach engine. New J. Phys. 2018, 20, 015005. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Watanabe, G.; Yu, Y.C.; Guan, X.W.; del Campo, A. An interaction-driven many-particle quantum heat engine and its universal behavior. NPJ Quantum Inf. 2019, 5, 88. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, G.; Venkatesh, B.P.; Talkner, P.; Hwang, M.J.; del Campo, A. Quantum Statistical Enhancement of the Collective Performance of Multiple Bosonic Engines. Phys. Rev. Lett. 2020, 124, 210603. [Google Scholar] [CrossRef] [PubMed]
- Kerremans, T.; Samuelsson, P.; Potts, P. Probabilistically Violating the First Law of Thermodynamics in a Quantum Heat Engine. arXiv 2021, arXiv:2102.01395. [Google Scholar]
- Muñoz, E.; Peña, F.J. Quantum heat engine in the relativistic limit: The case of a Dirac particle. Phys. Rev. E 2012, 86, 061108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peña, F.J.; Ferré, M.; Orellana, P.A.; Rojas, R.G.; Vargas, P. Optimization of a relativistic quantum mechanical engine. Phys. Rev. E 2016, 94, 022109. [Google Scholar] [CrossRef] [Green Version]
- Papadatos, N. The Quantum Otto Heat Engine with a relativistically moving thermal bath. arXiv 2021, arXiv:2104.06611. [Google Scholar]
- Peña, F.J.; González, A.; Nunez, A.; Orellana, P.; Rojas, R.; Vargas, P. Magnetic Engine for the Single-Particle Landau Problem. Entropy 2017, 19, 639. [Google Scholar] [CrossRef] [Green Version]
- Barrios, G.; Peña, F.J.; Albarrán-Arriagada, F.; Vargas, P.; Retamal, J. Quantum Mechanical Engine for the Quantum Rabi Model. Entropy 2018, 20, 767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deffner, S. Efficiency of Harmonic Quantum Otto Engines at Maximal Power. Entropy 2018, 20, 875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, Z.; Pal, P.S.; Deffner, S. Endoreversible Otto Engines at Maximal Power. J. Non-Equilib. Thermodyn. 2020, 45, 305. [Google Scholar] [CrossRef]
- Myers, N.M.; Deffner, S. Thermodynamics of Statistical Anyons. arXiv 2021, arXiv:2102.02181. [Google Scholar]
- Cavina, V.; Mari, A.; Giovannetti, V. Slow Dynamics and Thermodynamics of Open Quantum Systems. Phys. Rev. Lett. 2017, 119, 050601. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Hänggi, P.; Poletti, D. Occurrence of discontinuities in the performance of finite-time quantum Otto cycles. Phys. Rev. E 2016, 94, 012137. [Google Scholar] [CrossRef] [Green Version]
- Raja, S.H.; Maniscalco, S.; Paraoanu, G.S.; Pekola, J.P.; Gullo, N.L. Finite-time quantum Stirling heat engine. arXiv 2020, arXiv:2009.10038. [Google Scholar]
- Singh, S.; Abah, O. Energy optimization of two-level quantum Otto machines. arXiv 2020, arXiv:2008.05002. [Google Scholar]
- Abah, O.; Lutz, E. Energy efficient quantum machines. Europhys. Lett. 2017, 118, 40005. [Google Scholar] [CrossRef] [Green Version]
- Abah, O.; Lutz, E. Performance of shortcut-to-adiabaticity quantum engines. Phys. Rev. E 2018, 98, 032121. [Google Scholar] [CrossRef] [Green Version]
- Abah, O.; Paternostro, M. Shortcut-to-adiabaticity Otto engine: A twist to finite-time thermodynamics. Phys. Rev. E 2019, 99, 022110. [Google Scholar] [CrossRef] [Green Version]
- Del Campo, A.; Goold, J.; Paternostro, M. More bang for your buck: Super-adiabatic quantum engines. Sci. Rep. 2014, 4, 6208. [Google Scholar] [CrossRef] [Green Version]
- Funo, K.; Lambert, N.; Karimi, B.; Pekola, J.P.; Masuyama, Y.; Nori, F. Speeding up a quantum refrigerator via counterdiabatic driving. Phys. Rev. B 2019, 100, 035407. [Google Scholar] [CrossRef] [Green Version]
- Bonança, M.V.S. Approaching Carnot efficiency at maximum power in linear response regime. J. Stat. Mech. Theory Exp. 2019, 2019, 123203. [Google Scholar] [CrossRef] [Green Version]
- Çakmak, B.; Müstecaplıoğlu, O.E. Spin quantum heat engines with shortcuts to adiabaticity. Phys. Rev. E 2019, 99, 032108. [Google Scholar] [CrossRef] [Green Version]
- Denzler, T.; Lutz, E. Efficiency large deviation function of quantum heat engines. arXiv 2020, arXiv:2008.00778. [Google Scholar]
- Denzler, T.; Lutz, E. Power fluctuations in a finite-time quantum Carnot engine. arXiv 2020, arXiv:2007.01034. [Google Scholar]
- Denzler, T.; Lutz, E. Efficiency fluctuations of a quantum heat engine. Phys. Rev. Res. 2020, 2, 032062. [Google Scholar] [CrossRef]
- Quan, H.T.; Liu, Y.; Sun, C.P.; Nori, F. Quantum thermodynamic cycles and quantum heat engines. Phys. Rev. E 2007, 76, 031105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gardas, B.; Deffner, S. Thermodynamic universality of quantum Carnot engines. Phys. Rev. E 2015, 92, 042126. [Google Scholar] [CrossRef] [Green Version]
- Friedenberger, A.; Lutz, E. When is a quantum heat engine quantum? Europhys. Lett. 2017, 120, 10002. [Google Scholar] [CrossRef]
- Abah, O.; Roßnagel, J.; Jacob, G.; Deffner, S.; Schmidt-Kaler, F.; Singer, K.; Lutz, E. Single-Ion Heat Engine at Maximum Power. Phys. Rev. Lett. 2012, 109, 203006. [Google Scholar] [CrossRef]
- Peña, F.J.; Muñoz, E. Magnetostrain-driven quantum engine on a graphene flake. Phys. Rev. E 2015, 91, 052152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niedenzu, W.; Mazets, I.; Kurizki, G.; Jendrzejewski, F. Quantized refrigerator for an atomic cloud. Quantum 2019, 3, 155. [Google Scholar] [CrossRef] [Green Version]
- Cherubim, C.; Brito, F.; Deffner, S. Non-Thermal Quantum Engine in Transmon Qubits. Entropy 2019, 21, 545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, K.; Bariani, F.; Meystre, P. Quantum Optomechanical Heat Engine. Phys. Rev. Lett. 2014, 112, 150602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dechant, A.; Kiesel, N.; Lutz, E. All-Optical Nanomechanical Heat Engine. Phys. Rev. Lett. 2015, 114, 183602. [Google Scholar] [CrossRef] [Green Version]
- Peña, F.J.; Negrete, O.; Alvarado Barrios, G.; Zambrano, D.; González, A.; Nunez, A.S.; Orellana, P.A.; Vargas, P. Magnetic Otto Engine for an Electron in a Quantum Dot: Classical and Quantum Approach. Entropy 2019, 21, 512. [Google Scholar] [CrossRef] [Green Version]
- Peña, F.J.; Zambrano, D.; Negrete, O.; De Chiara, G.; Orellana, P.A.; Vargas, P. Quasistatic and quantum-adiabatic Otto engine for a two-dimensional material: The case of a graphene quantum dot. Phys. Rev. E 2020, 101, 012116. [Google Scholar] [CrossRef] [Green Version]
- Klaers, J.; Faelt, S.; Imamoglu, A.; Togan, E. Squeezed Thermal Reservoirs as a Resource for a Nanomechanical Engine beyond the Carnot Limit. Phys. Rev. X 2017, 7, 031044. [Google Scholar] [CrossRef]
- Bouton, Q.; Nettersheim, J.; Burgardt, S.; Adam, D.; Lutz, E.; Widera, A. A quantum heat engine driven by atomic collisions. Nat. Commun. 2021, 12, 2063. [Google Scholar] [CrossRef]
- Van Horne, N.; Yum, D.; Dutta, T.; Hänggi, P.; Gong, J.; Poletti, D.; Mukherjee, M. Single-atom energy-conversion device with a quantum load. NPJ Quantum Inf. 2020, 6, 37. [Google Scholar] [CrossRef]
- Griffiths, D.J. Introduction to Quantum Mechanics; Cambridge University Press: New York, NY, USA, 2017. [Google Scholar]
- Yadin, B.; Morris, B.; Adesso, G. Mixing indistinguishable systems leads to a quantum Gibbs paradox. Nat. Commun. 2021, 12, 1471. [Google Scholar] [CrossRef]
- Jaramillo, J.; Beau, M.; del Campo, A. Quantum supremacy of many-particle thermal machines. New J. Phys. 2016, 18, 075019. [Google Scholar] [CrossRef]
- Huang, X.L.; Guo, D.Y.; Wu, S.L.; Yi, X.X. Multilevel quantum Otto heat engines with identical particles. Quantum Inf. Process. 2017, 17, 27. [Google Scholar] [CrossRef] [Green Version]
- Myers, N.M.; Deffner, S. Bosons outperform fermions: The thermodynamic advantage of symmetry. Phys. Rev. E 2020, 101, 012110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nogueira, P.H.F.; de Castro, A.S. From the generalized Morse potential to a unified treatment of the D-dimensional singular harmonic oscillator and singular Coulomb potentials. J. Math. Chem. 2016, 54, 1783. [Google Scholar] [CrossRef] [Green Version]
- Weissman, Y.; Jortner, J. The isotonic oscillator. Phys. Lett. A 1979, 70, 177. [Google Scholar] [CrossRef]
- Calogero, F. Solution of a Three-Body Problem in One Dimension. J. Math. Phys. 1969, 10, 2191. [Google Scholar] [CrossRef]
- Sutherland, B. Exact solution of a lattice band problem related to an exactly soluble many-body problem: The missing-states problem. Phys. Rev. B 1988, 38, 6689. [Google Scholar] [CrossRef]
- Haldane, F.D.M. “Fractional statistics” in arbitrary dimensions: A generalization of the Pauli principle. Phys. Rev. Lett. 1991, 67, 937. [Google Scholar] [CrossRef]
- Murthy, M.V.N.; Shankar, R. Thermodynamics of a One-Dimensional Ideal Gas with Fractional Exclusion Statistics. Phys. Rev. Lett. 1994, 73, 3331. [Google Scholar] [CrossRef] [Green Version]
- Ballhausen, C. A note on the V = A/x2 + Bx2 potential. Chem. Phys. Lett. 1988, 146, 449. [Google Scholar] [CrossRef]
- Goldstein, H.; Poole, C.; Safko, J. Classical Mechanics; Addison-Wesley: San Francisco, CA, USA, 2001. [Google Scholar]
- Ballhausen, C. Step-up and step-down operators for the pseudo-harmonic potential V = 12r2 + B/2r2 in one and two dimensions. Chem. Phys. Lett. 1988, 151, 428. [Google Scholar] [CrossRef]
- Abramowitz, M.; Stegun, I. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; Applied Mathematics Series; U.S. Government Printing Office: Washington, DC, USA, 1964.
- Szegő, G. Orthogonal Polynomials; American Mathematical Society: Providence, RI, USA, 1939. [Google Scholar] [CrossRef]
- Greiner, W.; Neise, L.; Stöcker, H. Thermodynamics and Statistical Mechanics; Springer: New York, NY, USA, 1995. [Google Scholar] [CrossRef] [Green Version]
- Bateman, H.; Erdelyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Higher Transcendental Functions Volume I; McGraw-Hill Book Company: New York, NY, USA, 1953. [Google Scholar]
- Husimi, K. Miscellanea in Elementary Quantum Mechanics, II. Prog. Theor. Phys. 1953, 9, 381. [Google Scholar] [CrossRef]
- Dodonov, V.; Malkin, I.; Man’ko, V. Green function and excitation of a singular oscillator. Phys. Lett. A 1972, 39, 377. [Google Scholar] [CrossRef]
- Dodonov, V.V.; Malkin, I.A.; Man’ko, V.I. Integrals of the motion, green functions, and coherent states of dynamical systems. Int. J. Theor. Phys. 1975, 14, 37. [Google Scholar] [CrossRef]
- Khandekar, D.; Lawande, S. Feynman path integrals: Some exact results and applications. Phys. Rep. 1986, 137, 115. [Google Scholar] [CrossRef]
- Dodonov, V.; Man’ko, V.; Nikonov, D. Exact propagators for time-dependent Coulomb, delta and other potentials. Phys. Lett. A 1992, 162, 359. [Google Scholar] [CrossRef]
- Deffner, S.; Lutz, E. Nonequilibrium work distribution of a quantum harmonic oscillator. Phys. Rev. E 2008, 77, 021128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deffner, S.; Abah, O.; Lutz, E. Quantum work statistics of linear and nonlinear parametric oscillators. Chem. Phys. 2010, 375, 200–208. [Google Scholar] [CrossRef] [Green Version]
- Deffner, S.; Lutz, E. Thermodynamic length for far-from-equilibrium quantum systems. Phys. Rev. E 2013, 87, 022143. [Google Scholar] [CrossRef] [Green Version]
- Kosloff, R. A quantum mechanical open system as a model of a heat engine. J. Chem. Phys. 1984, 80, 1625. [Google Scholar] [CrossRef]
- Rezek, Y.; Kosloff, R. Irreversible performance of a quantum harmonic heat engine. New J. Phys. 2006, 8, 83. [Google Scholar] [CrossRef]
- Lévy Leblond, J.M. Electron Capture by Polar Molecules. Phys. Rev. 1967, 153, 1. [Google Scholar] [CrossRef]
- Jaramillo, B.; Núñez-Yépez, H.N.; Salas-Brito, A.L. Critical electric dipole moment in one dimension. Phys. Lett. A 2010, 374, 2707. [Google Scholar] [CrossRef]
- Stefanatos, D. Minimum-Time Transitions Between Thermal Equilibrium States of the Quantum Parametric Oscillator. IEEE Trans. Autom. Control 2017, 62, 4290. [Google Scholar] [CrossRef] [Green Version]
- Torrontegui, E.; Ibáñez, S.; Martínez-Garaot, S.; Modugno, M.; del Campo, A.; Guéry-Odelin, D.; Ruschhaupt, A.; Chen, X.; Muga, J.G. Chapter 2—Shortcuts to Adiabaticity. In Advances in Atomic, Molecular, and Optical Physics; Arimondo, E., Berman, P.R., Lin, C.C., Eds.; Academic Press: Cambridge, MA, USA, 2013; Volume 62, pp. 117–169. [Google Scholar] [CrossRef] [Green Version]
- Guéry-Odelin, D.; Ruschhaupt, A.; Kiely, A.; Torrontegui, E.; Martínez-Garaot, S.; Muga, J.G. Shortcuts to adiabaticity: Concepts, methods, and applications. Rev. Mod. Phys. 2019, 91, 045001. [Google Scholar] [CrossRef]
- Campbell, S.; Deffner, S. Trade-Off Between Speed and Cost in Shortcuts to Adiabaticity. Phys. Rev. Lett. 2017, 118, 100601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torrontegui, E.; Lizuain, I.; González-Resines, S.; Tobalina, A.; Ruschhaupt, A.; Kosloff, R.; Muga, J.G. Energy consumption for shortcuts to adiabaticity. Phys. Rev. A 2017, 96, 022133. [Google Scholar] [CrossRef]
- Tobalina, A.; Lizuain, I.; Muga, J.G. Vanishing efficiency of a speeded-up ion-in-Paul-trap Otto engine. Europhys. Lett. 2019, 127, 20005. [Google Scholar] [CrossRef]
- Haldane, F.D.M. Exact Jastrow-Gutzwiller resonating-valence-bond ground state of the spin-½ antiferromagnetic Heisenberg chain with 1/r2 exchange. Phys. Rev. Lett. 1988, 60, 635. [Google Scholar] [CrossRef]
- Shastry, B.S. Exact solution of an S = 1/2 Heisenberg antiferromagnetic chain with long-ranged interactions. Phys. Rev. Lett. 1988, 60, 639. [Google Scholar] [CrossRef]
- Polychronakos, A.P. Lattice integrable systems of Haldane-Shastry type. Phys. Rev. Lett. 1993, 70, 2329. [Google Scholar] [CrossRef] [Green Version]
- Haldane, F.D.M. Physics of the Ideal Semion Gas: Spinons and Quantum Symmetries of the Integrable Haldane-Shastry Spin Chain. In Correlation Effects in Low-Dimensional Electron Systems; Okiji, A., Kawakami, N., Eds.; Springer: Berlin/Heidelberg, Germany, 1994; p. 3. [Google Scholar]
- Graß, T.; Lewenstein, M. Trapped-ion quantum simulation of tunable-range Heisenberg chains. EPJ Quantum Technol. 2014, 1, 8. [Google Scholar] [CrossRef] [Green Version]
- Britton, J.W.; Sawyer, B.C.; Keith, A.C.; Wang, C.C.J.; Freericks, J.K.; Uys, H.; Biercuk, M.J.; Bollinger, J.J. Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins. Nature 2012, 484, 489–492. [Google Scholar] [CrossRef] [PubMed]
- Bohnet, J.G.; Sawyer, B.C.; Britton, J.W.; Wall, M.L.; Rey, A.M.; Foss-Feig, M.; Bollinger, J.J. Quantum spin dynamics and entanglement generation with hundreds of trapped ions. Science 2016, 352, 1297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Labuhn, H. Creating arbitrary 2D arrays of single atoms for the simulation of spin systems with Rydberg states. Eur. Phys. J. Spec. Top. 2016, 225, 2817. [Google Scholar] [CrossRef]
- Moore, G.; Read, N. Nonabelions in the fractional quantum Hall effect. Nucl. Phys. B 1991, 360, 362. [Google Scholar] [CrossRef]
- Bartolomei, H.; Kumar, M.; Bisognin, R.; Marguerite, A.; Berroir, J.M.; Bocquillon, E.; Plaçais, B.; Cavanna, A.; Dong, Q.; Gennser, U.; et al. Fractional statistics in anyon collisions. Science 2020, 368, 173–177. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Myers, N.M.; McCready, J.; Deffner, S. Quantum Heat Engines with Singular Interactions. Symmetry 2021, 13, 978. https://doi.org/10.3390/sym13060978
Myers NM, McCready J, Deffner S. Quantum Heat Engines with Singular Interactions. Symmetry. 2021; 13(6):978. https://doi.org/10.3390/sym13060978
Chicago/Turabian StyleMyers, Nathan M., Jacob McCready, and Sebastian Deffner. 2021. "Quantum Heat Engines with Singular Interactions" Symmetry 13, no. 6: 978. https://doi.org/10.3390/sym13060978
APA StyleMyers, N. M., McCready, J., & Deffner, S. (2021). Quantum Heat Engines with Singular Interactions. Symmetry, 13(6), 978. https://doi.org/10.3390/sym13060978