Comparative Study of Univariate and Multivariate Long Short-Term Memory for Very Short-Term Forecasting of Global Horizontal Irradiance
Abstract
:1. Introduction
- We have developed two categories of models that include univariate LSTM and multivariate LSTM to predict GHI one to 24 steps ahead.
- We have proposed a univariate model that uses only GHI data for the prediction task. We also have proposed seven multivariate LSTM models in which we examine whether any combination of three other meteorological variables such as temperature, wind direction, and humidity together with GHI variable can improve the forecasting performance.
- We have compared the performance of all models in very short-term GHI forecasting. Experimental results demonstrate the effectiveness of the multivariate LSTM models over the univariate model, meaning that inclusion of additional meteorological variables can improve prediction models. In addition, among the multivariate models, two models have far outperformed others.
2. Literature Review
3. Long Short-Term Memory (LSTM)
4. Methodology
4.1. Data Collection
4.2. Data Prepossessing
4.3. Data Partitioning
4.4. Proposed Univariate vs. Multivariate LSTM Models
5. Result Analysis and Discussion
6. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANN | Artificial neural network |
ARIMA | Autoregressive integrated moving average |
CNN | Convolutional neural network |
DHI | Diffuse horizontal irradiance |
DNI | Direct normal irradiance |
DNN | Deep neural network |
ETS | Exponential smoothing |
GA | Genetic algorithm |
GARCH | Generalized autoregressive conditional heteroskedasticity |
GBR | Gradient boosting regression |
GHI | Global horizontal irradiance |
GPR | Gaussian process regression |
GRU | Gated recurrent units |
KNN | K-nearest neighbour |
LSTM | Long short-term memory |
MAE | Mean absolute error |
MSE | Mean squared error |
MLP | Multilayer perceptron |
NSGA II | Non-dominated sorting genetic algorithm II |
PV | Photovoltaic |
PSO | Particle swarm optimization |
ReLU | Rectified linear unit |
RF | Random forest |
RMSE | Root mean square error |
RNN | Recurrent neural network |
SRRA | Solar radiation resource assessment |
SVM | Support vector machine |
SVR | Support vector regression |
XGBoost | Extreme gradient boosting |
References
- Bot, K.; Ruano, A.; Ruano, M.D.G. Short-Term Forecasting Photovoltaic Solar Power for Home Energy Management Systems. Inventions 2021, 6, 12. [Google Scholar] [CrossRef]
- Kallio-Myers, V.; Riihelä, A.; Lahtinen, P.; Lindfors, A. Global horizontal irradiance forecast for Finland based on geostationary weather satellite data. Sol. Energy 2020, 198, 68–80. [Google Scholar] [CrossRef]
- Panda, M.; Das, B.; Pati, B.B. A Hybrid Approach for Path Planning of Multiple AUVs. In Innovation in Electrical Power Engineering, Communication, and Computing Technology; Springer: Berlin, Germany, 2020; pp. 327–338. [Google Scholar]
- Nespoli, L.; Medici, V. An unsupervised method for estimating the global horizontal irradiance from photovoltaic power measurements. Sol. Energy 2017, 158, 701–710. [Google Scholar] [CrossRef] [Green Version]
- Alsharif, M.H.; Younes, M.K.; Kim, J. Time Series ARIMA Model for Prediction of Daily and Monthly Average Global Solar Radiation: The Case Study of Seoul, South Korea. Symmetry 2019, 12, 240. [Google Scholar] [CrossRef] [Green Version]
- Kumar Barik, A.; Malakar, S.; Goswami, S.; Ganguli, B.; Sen Roy, S.; Chakrabarti, A. Analysis of GHI Forecasting Using Seasonal ARIMA. In Data Management, Analytics and Innovation; Sharma, N., Chakrabarti, A., Balas, V.E., Martinovic, J., Eds.; Springer: Singapore, 2021; pp. 55–69. [Google Scholar]
- Dong, Z.; Yang, D.; Reindl, T.; Walsh, W.M. Short-term solar irradiance forecasting using exponential smoothing state space model. Energy 2013, 55, 1104–1113. [Google Scholar] [CrossRef]
- Sun, H.; Yan, D.; Zhao, N.; Zhou, J. Empirical investigation on modeling solar radiation series with ARMA–GARCH models. Energy Convers. Manag. 2015, 92, 385–395. [Google Scholar] [CrossRef]
- Mellit, A.; Pavan, A.M. A 24-h forecast of solar irradiance using artificial neural network: Application for performance prediction of a grid-connected PV plant at Trieste, Italy. Sol. Energy 2010, 84, 807–821. [Google Scholar] [CrossRef]
- Zendehboudi, A.; Baseer, M.; Saidur, R. Application of support vector machine models for forecasting solar and wind energy resources: A review. J. Clean. Prod. 2018, 199, 272–285. [Google Scholar] [CrossRef]
- Chen, C.R.; Kartini, U.T. K-Nearest neighbor neural network models for very short-term global solar irradiance forecasting based on meteorological data. Energies 2017, 10, 186. [Google Scholar] [CrossRef] [Green Version]
- Benali, L.; Notton, G.; Fouilloy, A.; Voyant, C.; Dizene, R. Solar radiation forecasting using artificial neural network and random forest methods: Application to normal beam, horizontal diffuse and global components. Renew. Energy 2019, 132, 871–884. [Google Scholar] [CrossRef]
- Alzahrani, A.; Shamsi, P.; Dagli, C.; Ferdowsi, M. Solar irradiance forecasting using deep neural networks. Procedia Comput. Sci. 2017, 114, 304–313. [Google Scholar] [CrossRef]
- Dong, N.; Chang, J.F.; Wu, A.G.; Gao, Z.K. A novel convolutional neural network framework based solar irradiance prediction method. Int. J. Electr. Power Energy Syst. 2020, 114, 105411. [Google Scholar] [CrossRef]
- Li, G.; Wang, H.; Zhang, S.; Xin, J.; Liu, H. Recurrent Neural Networks Based Photovoltaic Power Forecasting Approach. Energies 2019, 12, 2538. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Ho, H.; Hung, V.; Lee, G.; Jung, S. Application of Long Short-Term Memory (LSTM) Neural Network for Flood Forecasting. Water 2019, 11, 1387. [Google Scholar] [CrossRef] [Green Version]
- Brahma, B.; Wadhvani, R. Solar Irradiance Forecasting Based on Deep Learning Methodologies and Multi-Site Data. Symmetry 2020, 12, 1830. [Google Scholar] [CrossRef]
- Jeon, B.k.; Kim, E.J. Next-Day Prediction of Hourly Solar Irradiance Using Local Weather Forecasts and LSTM Trained with Non-Local Data. Energies 2020, 13, 5258. [Google Scholar] [CrossRef]
- Wang, F.; Mi, Z.; Su, S.; Zhao, H. Short-Term Solar Irradiance Forecasting Model Based on Artificial Neural Network Using Statistical Feature Parameters. Energies 2012, 5, 1355–1370. [Google Scholar] [CrossRef] [Green Version]
- Notton, G.; Voyant, C.; Fouilloy, A.; Duchaud, J.L.; Nivet, M.L. Some Applications of ANN to Solar Radiation Estimation and Forecasting for Energy Applications. Appl. Sci. 2019, 9, 209. [Google Scholar] [CrossRef] [Green Version]
- Nalina, U.; Prema, V.; Smitha, K.; Rao, K.U. Multivariate regression for prediction of solar irradiance. In Proceedings of the 2014 International Conference on Data Science Engineering (ICDSE), Kochi, India, 26–28 August 2014; pp. 177–181. [Google Scholar] [CrossRef]
- Mujabar, S.; Chintaginjala Venkateswara, R. Empirical models for estimating the global solar radiation of Jubail Industrial City, the Kingdom of Saudi Arabia. SN Appl. Sci. 2021, 3, 95. [Google Scholar] [CrossRef]
- Jadidi, A.; Menezes, R.; De Souza, N.; De Castro Lima, A.C. A Hybrid GA–MLPNN Model for One-Hour-Ahead Forecasting of the Global Horizontal Irradiance in Elizabeth City, North Carolina. Energies 2018, 11, 2641. [Google Scholar] [CrossRef] [Green Version]
- Dash, S.; Satpathy, P.R.; Panda, S.; Sharma, R. Global Horizontal Irradiance Prediction Using Deep Neural Network Framework. In Innovation in Electrical Power Engineering, Communication, and Computing Technology; Springer: Berlin, Germany, 2020; pp. 317–326. [Google Scholar]
- Kumari, P.; Toshniwal, D. Extreme gradient boosting and deep neural network based ensemble learning approach to forecast hourly solar irradiance. J. Clean. Prod. 2021, 279, 123285. [Google Scholar] [CrossRef]
- Yadav, A.P.; Kumar, A.; Behera, L. RNN based solar radiation forecasting using adaptive learning rate. In International Conference on Swarm, Evolutionary, and Memetic Computing; Springer: Berlin, Germany, 2013; pp. 442–452. [Google Scholar]
- Husein, M.; Chung, I.Y. Day-Ahead Solar Irradiance Forecasting for Microgrids Using a Long Short-Term Memory Recurrent Neural Network: A Deep Learning Approach. Energies 2019, 12, 1856. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Nasser, M.; Mahmoud, K.; Lehtonen, M. Reliable Solar Irradiance Forecasting Approach Based on Choquet Integral and Deep LSTMs. IEEE Trans. Ind. Inform. 2021, 17, 1873–1881. [Google Scholar] [CrossRef]
- Srivastava, S.; Lessmann, S. A comparative study of LSTM neural networks in forecasting day-ahead global horizontal irradiance with satellite data. Sol. Energy 2018, 162, 232–247. [Google Scholar] [CrossRef]
- Yu, Y.; Cao, J.; Zhu, J. An LSTM Short-Term Solar Irradiance Forecasting Under Complicated Weather Conditions. IEEE Access 2019, 7, 145651–145666. [Google Scholar] [CrossRef]
- Boubaker, S.; Benghanem, M.; Mellit, A.; Lefza, A.; Kahouli, O.; Kolsi, L. Deep Neural Networks for Predicting Solar Radiation at Hail Region, Saudi Arabia. IEEE Access 2021, 9, 36719–36729. [Google Scholar] [CrossRef]
- Hosseini, M.; Katragadda, S.; Wojtkiewicz, J.; Gottumukkala, R.; Maida, A.; Chambers, T.L. Direct Normal Irradiance Forecasting Using Multivariate Gated Recurrent Units. Energies 2020, 13, 3914. [Google Scholar] [CrossRef]
- Zang, H.; Liu, L.; Sun, L.; Cheng, L.; Wei, Z.; Sun, G. Short-term global horizontal irradiance forecasting based on a hybrid CNN-LSTM model with spatiotemporal correlations. Renew. Energy 2020, 160, 26–41. [Google Scholar] [CrossRef]
- Yu, Y.; Si, X.; Hu, C.; Zhang, J. A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput. 2019, 31, 1235–1270. [Google Scholar] [CrossRef]
- Kratzert, F.; Klotz, D.; Brenner, C.; Schulz, K.; Herrnegger, M. Rainfall–Runoff modelling using Long Short-Term Memory (LSTM) networks. Hydrol. Earth Syst. Sci. 2018, 22, 6005–6022. [Google Scholar] [CrossRef] [Green Version]
- Jo, J.; Kung, J.; Lee, Y. Approximate LSTM Computing for Energy-Efficient Speech Recognition. Electronics 2020, 9, 2004. [Google Scholar] [CrossRef]
- Su, C.; Huang, H.; Shi, S.; Jian, P.; Shi, X. Neural machine translation with Gumbel Tree-LSTM based encoder. J. Vis. Commun. Image Represent. 2020, 71, 102811. [Google Scholar] [CrossRef]
- Chimmula, V.K.R.; Zhang, L. Time series forecasting of COVID-19 transmission in Canada using LSTM networks. Chaos Solitons Fractals 2020, 135, 109864. [Google Scholar] [CrossRef]
- Sezer, O.B.; Gudelek, M.U.; Ozbayoglu, A.M. Financial time series forecasting with deep learning: A systematic literature review: 2005–2019. Appl. Soft Comput. 2020, 90, 106181. [Google Scholar] [CrossRef] [Green Version]
- Huang, F.; Li, X.; Yuan, C.; Zhang, S.; Zhang, J.; Qiao, S. Attention-Emotion-Enhanced convolutional LSTM for sentiment analysis. IEEE Trans. Neural Netw. Learn. Syst. 2021. [Google Scholar] [CrossRef] [PubMed]
- Hochreiter, S.; Schmidhuber, J. Long short-Term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Gers, F.A.; Schmidhuber, J.; Cummins, F. Learning to forget: Continual prediction with LSTM. Neural Comput. 2000, 12, 2451–2471. [Google Scholar] [CrossRef]
- Li, T.; Hua, M.; Wu, X. A Hybrid CNN-LSTM Model for Forecasting Particulate Matter (PM2.5). IEEE Access 2020, 8, 26933–26940. [Google Scholar] [CrossRef]
- Kumar, A.; Gomathinayagam, S.; Giridhar, G.; Mitra, I.; Vashistha, R.; Meyer, R.; Schwandt, M.; Chhatbar, K. Field Experiences with the Operation of Solar Radiation Resource Assessment Stations in India. Energy Procedia 2014, 49, 2351–2361. [Google Scholar] [CrossRef] [Green Version]
- Malakar, S.; Goswami, S.; Ganguli, B.; Chakrabarti, A.; Roy, S.S.; Boopathi, K.; Rangaraj, A.G. Designing a long short-term network for short-term forecasting of global horizontal irradiance. SN Appl. Sci. 2021, 3, 477. [Google Scholar] [CrossRef]
Month | Period of Data | No. of Samples | No. of Variables |
---|---|---|---|
January | 01 January 2016 to 31 January 2016 | 4083 | 4 |
February | 01 February 2016 to 29 February 2016 | 4064 | 4 |
March | 01 March 2016 to 31 March 2016 | 4331 | 4 |
April | 01 April 2016 to 30 April 2016 | 4497 | 4 |
May | 01 May 2016 to 31 May 2016 | 5019 | 4 |
June | 01 June 2016 to 30 June 2016 | 4669 | 4 |
July | 01 July 2016 to 31 July 2016 | 4949 | 4 |
August | 01 August 2016 to 31 August 2016 | 4827 | 4 |
September | 01 September 2016 to 30 September 2016 | 4378 | 4 |
October | 01 October 2016 to 31 October 2016 | 4370 | 4 |
November | 01 November 2016 to 30 November 2016 | 4086 | 4 |
December | 01 December 2016 to 31 December 2016 | 4379 | 4 |
Model Name | Model Type | Input Vector | Output Vector |
---|---|---|---|
uLSTM | Univariate | ||
mLSTM1 | Multivariate | ||
mLSTM2 | Multivariate | ||
mLSTM3 | Multivariate | ||
mLSTM4 | Multivariate | ||
mLSTM5 | Multivariate | ||
mLSTM6 | Multivariate | ||
mLSTM7 | Multivariate |
Hyper-Parameter | Values |
---|---|
Optimizer | |
Activation function | |
Number of hidden layer | 50 |
Batch size | 32 |
Epoch | 100 |
Loss function | mean squared error (MSE) |
Learning rate | 0.01 |
Window size | 35 |
Month | Metrics | Model Name | |||||||
---|---|---|---|---|---|---|---|---|---|
uLSTM | mLSTM1 | mLSTM2 | mLSTM3 | mLSTM4 | mLSTM5 | mLSTM6 | mLSTM7 | ||
January | Average | 56.28 | 10.61 | 1.24 | 8.63 | 8.95 | 24.59 | 1.19 | 8.32 |
Minimum | 54.65 | 9.64 | 1.21 | 7.44 | 8.01 | 24.11 | 1.14 | 7.82 | |
Maximum | 59.8 | 11.67 | 1.37 | 9.21 | 9.56 | 25.87 | 1.32 | 8.79 | |
February | Average | 53.60 | 6.46 | 1.07 | 6.67 | 5.85 | 19.06 | 1.01 | 6.11 |
Minimum | 51.63 | 6.18 | 1.03 | 6.54 | 5.51 | 18.14 | 0.96 | 6.02 | |
Maximum | 54.12 | 7.18 | 1.21 | 6.85 | 6.66 | 19.65 | 1.09 | 6.21 | |
March | Average | 56.19 | 14.65 | 1.39 | 7.17 | 8.39 | 17.83 | 1.50 | 6.64 |
Minimum | 52.12 | 14.07 | 1.16 | 6.51 | 7.96 | 17.37 | 1.48 | 5.84 | |
Maximum | 58.53 | 15.13 | 1.65 | 7.48 | 9.21 | 18.57 | 1.97 | 6.82 | |
April | Average | 38.69 | 5.67 | 0.91 | 4.53 | 4.66 | 11.96 | 0.74 | 4.21 |
Minimum | 36.75 | 4.55 | 0.80 | 4.29 | 4.60 | 11.53 | 0.53 | 4.10 | |
Maximum | 42.18 | 5.98 | 0.97 | 5.06 | 5.25 | 13.52 | 0.83 | 4.89 | |
May | Average | 67.09 | 9.23 | 1.53 | 8.57 | 8.82 | 19.26 | 1.48 | 6.94 |
Minimum | 63.72 | 8.52 | 1.14 | 7.20 | 7.51 | 18.98 | 1.13 | 5.38 | |
Maximum | 68.71 | 9.38 | 1.90 | 8.89 | 9.66 | 21.84 | 2.10 | 9.37 | |
June | Average | 63.41 | 9.18 | 1.46 | 6.69 | 7.14 | 19.73 | 1.24 | 7.17 |
Minimum | 56.66 | 7.71 | 1.33 | 5.89 | 6.45 | 19.19 | 1.10 | 6.33 | |
Maximum | 67.57 | 10.07 | 1.76 | 8.30 | 8.99 | 21.12 | 1.40 | 7.92 | |
July | Average | 51.69 | 7.46 | 1.14 | 7.66 | 6.48 | 19.09 | 0.86 | 6.01 |
Minimum | 50.48 | 6.75 | 1.04 | 6.66 | 5.96 | 17.49 | 0.85 | 5.59 | |
Maximum | 55.89 | 8.32 | 1.34 | 8.70 | 7.70 | 20.94 | 0.95 | 7.27 | |
August | Average | 67.91 | 8.22 | 1.08 | 8.73 | 8.30 | 23.04 | 0.96 | 7.77 |
Minimum | 64.60 | 8.06 | 1.01 | 7.74 | 7.50 | 21.82 | 0.86 | 7.13 | |
Maximum | 69.46 | 8.57 | 1.22 | 10.10 | 8.49 | 24.92 | 1.04 | 8.20 | |
September | Average | 62.39 | 7.74 | 0.97 | 7.32 | 7.57 | 21.33 | 0.80 | 6.81 |
Minimum | 59.34 | 6.89 | 0.83 | 6.63 | 7.45 | 19.20 | 0.74 | 6.49 | |
Maximum | 65.19 | 8.26 | 1.02 | 8.28 | 7.78 | 23.60 | 0.86 | 7.30 | |
October | Average | 65.78 | 9.73 | 1.01 | 8.67 | 7.84 | 25.56 | 0.96 | 7.14 |
Minimum | 61.32 | 9.04 | 0.89 | 8.14 | 7.15 | 22.19 | 0.88 | 6.12 | |
Maximum | 68.24 | 10.02 | 1.20 | 8.92 | 8.53 | 26.31 | 1.01 | 7.84 | |
November | Average | 41.38 | 6.05 | 0.93 | 6.98 | 7.31 | 15.40 | 0.78 | 7.89 |
Minimum | 35.98 | 5.08 | 0.88 | 5.61 | 6.67 | 14.85 | 0.70 | 6.27 | |
Maximum | 42.89 | 7.39 | 1.08 | 7.25 | 8.01 | 16.05 | 0.86 | 8.54 | |
December | Average | 43.16 | 5.64 | 0.87 | 5.34 | 5.43 | 15.68 | 0.83 | 5.00 |
Minimum | 41.81 | 4.69 | 0.77 | 5.04 | 5.10 | 14.33 | 0.78 | 4.94 | |
Maximum | 45.77 | 6.30 | 0.91 | 5.72 | 5.97 | 16.42 | 0.88 | 5.20 |
Month | Metrics | Model Name | |||||||
---|---|---|---|---|---|---|---|---|---|
uLSTM | mLSTM1 | mLSTM2 | mLSTM3 | mLSTM4 | mLSTM5 | mLSTM6 | mLSTM7 | ||
January | Average | 39.01 | 8.15 | 0.94 | 6.20 | 6.83 | 17.71 | 0.83 | 6.04 |
Minimum | 37.52 | 7.13 | 0.88 | 6.01 | 6.27 | 17.44 | 0.79 | 5.29 | |
Maximum | 43.25 | 8.95 | 1.04 | 6.45 | 7.01 | 18.10 | 0.91 | 6.65 | |
February | Average | 36.77 | 4.63 | 0.72 | 4.84 | 3.93 | 14.17 | 0.67 | 4.33 |
Minimum | 35.16 | 4.04 | 0.69 | 4.56 | 3.46 | 13.42 | 0.62 | 3.98 | |
Maximum | 37.34 | 5.16 | 0.85 | 5.05 | 4.61 | 14.47 | 0.70 | 4.53 | |
March | Average | 36.67 | 8.87 | 0.99 | 5.11 | 5.88 | 11.72 | 1.01 | 4.70 |
Minimum | 32.99 | 8.14 | 0.94 | 4.69 | 5.52 | 11.46 | 0.95 | 3.82 | |
Maximum | 40.16 | 9.17 | 1.06 | 5.54 | 6.06 | 12.28 | 1.20 | 5.23 | |
April | Average | 22.78 | 3.88 | 0.64 | 2.97 | 3.12 | 7.09 | 0.45 | 2.64 |
Minimum | 20.74 | 3.55 | 0.52 | 2.15 | 2.99 | 6.48 | 0.41 | 2.49 | |
Maximum | 24.92 | 4.01 | 0.78 | 3.40 | 3.64 | 7.84 | 0.53 | 2.92 | |
May | Average | 43.99 | 6.61 | 1.11 | 5.53 | 5.83 | 12.91 | 0.96 | 4.60 |
Minimum | 39.7 | 6.43 | 1.01 | 4.81 | 5.13 | 11.62 | 0.91 | 4.11 | |
Maximum | 45.11 | 6.70 | 1.29 | 6.10 | 6.31 | 13.40 | 0.98 | 5.13 | |
June | Average | 41.13 | 7.15 | 1.03 | 4.81 | 5.15 | 13.88 | 0.87 | 4.78 |
Minimum | 39.78 | 6.39 | 0.94 | 4.1 | 4.87 | 11.96 | 0.77 | 4.39 | |
Maximum | 43.56 | 7.58 | 1.18 | 5.64 | 5.81 | 14.55 | 0.94 | 5.21 | |
July | Average | 33.04 | 4.88 | 0.68 | 5.09 | 4.36 | 12.21 | 0.57 | 4.13 |
Minimum | 31.12 | 3.98 | 0.64 | 4.41 | 4.04 | 11.33 | 0.52 | 3.59 | |
Maximum | 36.36 | 5.75 | 0.73 | 5.98 | 4.85 | 14.41 | 0.60 | 4.54 | |
August | Average | 47.31 | 5.99 | 0.77 | 6.31 | 5.86 | 16.01 | 0.65 | 5.50 |
Minimum | 43.78 | 5.72 | 0.69 | 5.91 | 5.25 | 15.44 | 0.59 | 5.16 | |
Maximum | 49.58 | 7.00 | 0.87 | 7.32 | 6.01 | 16.49 | 0.73 | 5.78 | |
September | Average | 40.54 | 5.74 | 0.70 | 5.18 | 5.12 | 14.40 | 0.53 | 4.85 |
Minimum | 38.70 | 5.49 | 0.67 | 4.62 | 4.80 | 11.89 | 0.43 | 4.09 | |
Maximum | 42.29 | 6.09 | 0.76 | 6.11 | 5.46 | 17.17 | 0.60 | 5.07 | |
October | Average | 46.89 | 6.89 | 0.72 | 6.43 | 5.61 | 17.48 | 0.70 | 5.02 |
Minimum | 43.87 | 6.54 | 0.68 | 5.98 | 5.14 | 17.01 | 0.59 | 4.75 | |
Maximum | 47.79 | 6.97 | 0.76 | 6.82 | 6.24 | 17.92 | 0.75 | 5.21 | |
November | Average | 23.64 | 4.43 | 0.68 | 4.97 | 4.92 | 11.14 | 0.54 | 5.58 |
Minimum | 21.99 | 4.05 | 0.51 | 4.30 | 4.51 | 10.47 | 0.51 | 4.63 | |
Maximum | 24.43 | 4.78 | 0.75 | 5.18 | 5.57 | 12.11 | 0.59 | 6.03 | |
December | Average | 29.31 | 3.87 | 0.56 | 3.67 | 3.77 | 10.81 | 0.54 | 3.31 |
Minimum | 27.78 | 3.56 | 0.43 | 3.07 | 3.48 | 9.16 | 0.49 | 3.11 | |
Maximum | 31.31 | 4.15 | 0.64 | 4.99 | 3.92 | 11.61 | 0.60 | 3.55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mandal, A.K.; Sen, R.; Goswami, S.; Chakraborty, B. Comparative Study of Univariate and Multivariate Long Short-Term Memory for Very Short-Term Forecasting of Global Horizontal Irradiance. Symmetry 2021, 13, 1544. https://doi.org/10.3390/sym13081544
Mandal AK, Sen R, Goswami S, Chakraborty B. Comparative Study of Univariate and Multivariate Long Short-Term Memory for Very Short-Term Forecasting of Global Horizontal Irradiance. Symmetry. 2021; 13(8):1544. https://doi.org/10.3390/sym13081544
Chicago/Turabian StyleMandal, Ashis Kumar, Rikta Sen, Saptarsi Goswami, and Basabi Chakraborty. 2021. "Comparative Study of Univariate and Multivariate Long Short-Term Memory for Very Short-Term Forecasting of Global Horizontal Irradiance" Symmetry 13, no. 8: 1544. https://doi.org/10.3390/sym13081544
APA StyleMandal, A. K., Sen, R., Goswami, S., & Chakraborty, B. (2021). Comparative Study of Univariate and Multivariate Long Short-Term Memory for Very Short-Term Forecasting of Global Horizontal Irradiance. Symmetry, 13(8), 1544. https://doi.org/10.3390/sym13081544