The Generalized Inverse Sum Indeg Index of Some Graph Operations
Abstract
:1. Introduction
2. Bounds on for Some Graph Operations
2.1. Kronecker Product of Graphs
- (1).
- Ifand, then.
- (2).
- Ifand, then.
2.2. Join of Graphs
- (1).
- If, then
- (2).
- Ifand, then
- (3).
- Ifand, then
- (4).
- If, then
- (1).
- If,m then
- (2).
- Ifand, then
- (3).
- Ifand, then
- (4).
- If, then
2.3. Corona Product of Graphs
- (1).
- If, then
- (2).
- Ifand, then
- (3).
- If and , then
- (4).
- If, then
2.4. Cartesian Product of Graphs
- (1).
- If, then
- (2).
- Ifand, then
- (3).
- Ifand, then
- (4).
- If, then
2.5. Disjunction of Graphs
- (1).
- If, then
- (2).
- Ifand, then
- (3).
- Ifand, then
- (4).
- If, then
2.6. Symmetric Difference of Graphs
- (1).
- If , then
- (2).
- If and , then
- (3).
- If and , then
- (4).
- If, then
3. Exact Formulas of for Some Graph Operations
3.1. Disjoint Union
3.2. Splicing of Graphs
3.3. Linking of Graphs
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Engel, T. Basic overview of chemoinformatics. J. Chem. Inf. Model. 2006, 46, 2267–2277. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Hagler, A. Chemoinformatics and drug discovery. Molecules 2002, 7, 566–600. [Google Scholar] [CrossRef]
- Basak, S.C.; Grunwald, G.D. Molecular similarity and estimation of molecular properties. J. Chem. Inf. Comput. Sci. 1995, 35, 366–372. [Google Scholar] [CrossRef]
- Basak, S.C.; Magnuson, V.R.; Niemi, G.J.; Regal, R.R.; Veith, G.D. Topological indices: Their nature, mutual relatedness, and applications. Math. Model. 1987, 8, 300–305. [Google Scholar] [CrossRef] [Green Version]
- Basak, S.C.; Niemi, G.J.; Veith, G.D. Predicting properties of molecules using graph invariants. J. Math. Chem. 1991, 7, 243–272. [Google Scholar] [CrossRef]
- Ivanciuc, O. Chemical graphs, molecular matrices and topological indices in chemoinformatics and quantitative structure-activity relationships. Curr.-Comput.-Aided Drug Des. 2013, 9, 153–163. [Google Scholar] [CrossRef]
- Akhter, S.; Imran, M.; Iqbal, Z. Mostar indices of SiO2 nanostructures and melem chain nanostructures. Int. J. Quantum Chem. 2021, 121, e26520. [Google Scholar] [CrossRef]
- Buragohain, J.; Deka, B.; Bharali, A. A generalized ISI index of some chemical structures. J. Mol. 2020, 1208, 127843. [Google Scholar] [CrossRef]
- Chen, S.B.; Asghar, S.S.; Binyamin, M.A.; Iqbal, Z.; Mahmood, T.; Aslam, A. On the First Three Extremum Values of Variable Sum Exdeg Index of Trees. Complexity 2021, 2021, 6491886. [Google Scholar] [CrossRef]
- Gutman, I. Degree-based topological indices. Croat. Chem. Acta 2013, 86, 351–361. [Google Scholar] [CrossRef]
- Gutman, I.; Ruščić, B.; Trinajstić, N.; Wilcox, C.F. Graph theory and molecular orbitals. XII Acyclic polyenes. J. Chem. Phys. 1975, 62, 3399–3405. [Google Scholar] [CrossRef]
- Gutman, I.; Trinajstić, N. Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons. Chem. Phys. Lett. 1972, 17, 535–538. [Google Scholar] [CrossRef]
- Hui, W.; Siddiqui, M.K.; Akhter, S.; Hafeez, S.; Ali, Y. On Degree Based Topological Aspects of Some Dendrimers. Polycycl. Aromat. Compd. 2022. [Google Scholar] [CrossRef]
- Iqbal, Z.; Ishaq, M.; Aslam, A.; Aamir, M.; Gao, W. The measure of irregularities of nanosheets. Open Phys. 2020, 18, 419–431. [Google Scholar] [CrossRef]
- Randić, M. Characterization of molecular branching. J. Am. Chem. Soc. 1975, 97, 6609–6615. [Google Scholar] [CrossRef]
- Sedlar, J.; Stevanović, D.; Vasilyev, A. On the inverse sum indeg index. Discrete Appl. Math. 2015, 184, 202–212. [Google Scholar] [CrossRef]
- Vukičević, D.; Furtula, B. Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges. J. Math. Chem. 2009, 46, 1369–1376. [Google Scholar] [CrossRef]
- Zheng, J.; Akhter, S.; Iqbal, Z.; Shafiq, M.K.; Aslam, A.; Ishaq, M.; Aamir, M. Irregularity measures of subdivision vertex-edge join of Graphs. J. Chem. 2021, 2021, 6673221. [Google Scholar] [CrossRef]
- Diudea, M.V. QSPR/QSAR Studies by Molecular Descriptors; NOVA: New York, NY, USA, 2001. [Google Scholar]
- Gutman, I.; Polansky, O.E. Mathematical Concepts in Organic Chemistry; Springer: Berlin/Heidelberg, Germany, 1986. [Google Scholar]
- Todeschini, R.; Consonni, V. Handbook of Molecular Descriptors for Chemoinformatics; Wiley VCH: Weinheim, Germany, 2009. [Google Scholar]
- Wiener, H. Structural determination of paraffin boiling points. J. Am. Chem. Soc. 1947, 69, 17–20. [Google Scholar] [CrossRef]
- Bollobäs, B.; Erdös, P. Graphs of extremal weights. Ars Comb. 1998, 50, 225–233. [Google Scholar] [CrossRef]
- Estrada, E.; Torres, L.; Rodriguez, L.; Gutman, I. 1998. An Atom-Bond Connectivity Index: Modelling the Enthalpy of Formation of Alkanes. Indian J. Chem. 1998, 37A, 849–855. [Google Scholar]
- Vukičević, D.; Gašperov, M. Bond additive modelling I. Adriatic indices. Croat. Chem. Acta 2010, 83, 261–273. [Google Scholar]
- Hafeez, S.; Farooq, R. On generalized inverse sum indeg index and energy of graphs. AIMS Math. 2020, 5, 2388–2411. [Google Scholar] [CrossRef]
- Li, X.; Zhao, H. Trees with the first three smallest and largest generalized topological indices. MATCH Commun. Math. Comput. Chem. 2004, 50, 57–62. [Google Scholar]
- Li, X.; Gutman, I. Mathematical Aspects of Randic Type Molecular Structure Descriptors; University Kragujevac: Kragujevac, Serbia, 2006. [Google Scholar]
- Zhou, B. Trinajstić, N.: On general sum-connectivity index. J. Math. Chem. 2010, 47, 210–218. [Google Scholar] [CrossRef]
- Hammack, R.; Imrich, W.; Klavžar, S. Handbook of Product Graphs, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Akhter, S.; Imran, M. The sharp bounds on general sum-connectivity index of four operations on graphs. J. Inequal. Appl. 2016, 2016, 241. [Google Scholar] [CrossRef] [Green Version]
- Akhter, S.; Farooq, R. Computing bounds for the general sum-connectivity index of some graph operations. Algebra Discrete Math. 2020, 29, 147–160. [Google Scholar] [CrossRef]
- Akhter, S.; Farooq, R.; Pirzada, S. Exact formulae of general sum-connectivity index for some graph operations. Mat. Vesn. 2018, 70, 267–282. [Google Scholar]
- Akhter, S.; Iqbal, Z.; Aslam, A.; Gao, W. Computation of Mostar index for some graph operations. Int. J. Quantum Chem. 2021, 121, e26674. [Google Scholar] [CrossRef]
- Ashrafi, A.R.; Došlić, T.; Hamzeh, A. The Zagreb coindices of graph operations. Discrete Appl. Math. 2010, 158, 1571–1578. [Google Scholar] [CrossRef] [Green Version]
- Azeem, M.; Aslam, A.; Iqbal, Z.; Binyamin, M.A.; Gao, W. Topological aspects of 2D structures of trans-Pd (NH2) S lattice and a metal-organic superlattice. Arab. J. Chem. 2021, 14, 102963. [Google Scholar] [CrossRef]
- De, N.; Nayeem, S.M.A.; Pal, A. F-index of some graph operations. Discrete Math. Algorithms Appl. 2016, 8, 1650025. [Google Scholar] [CrossRef] [Green Version]
- De, N.; Pal, A.; Nayeem, S.M.A. On some bounds and exact formulae for connective eccentric indices of graphs under some graph operations. Int. J. Comb. 2014, 2014, 579257. [Google Scholar] [CrossRef] [Green Version]
- Eskender, B.; Vumar, E. Eccentric connectivity index and eccentric distance sum of some graph operations. Trans. Comb. 2013, 2, 103–111. [Google Scholar]
- Gao, W.; Iqbal, Z.; Akhter, S.; Ishaq, M.; Aslam, A. On irregularity descriptors of derived graphs. AIMS Math. 2020, 5, 4085–4107. [Google Scholar] [CrossRef]
- Gao, W.; Iqbal, Z.; Ishaq, M.; Aslam, A.; Aamir, M.; Binyamin, M.A. Bounds on Topological Descriptors of the Corona Product of F-Sum of Connected Graphs. IEEE Access 2019, 7, 26788–26796. [Google Scholar] [CrossRef]
- Ghorbani, M.; Hosseinzadeh, M.A.; Diudea, M.V.; Ashrafi, A.R. Modified eccentric connectivity polynomial of some graph operations. Carpathian J. Math. 2012, 28, 247–256. [Google Scholar] [CrossRef]
- Imran, M.; Akhter, S.; Iqbal, Z. Edge Mostar index of chemical structures and nanostructures using graph operations. Int. J. Quantum Chem. 2020, 120, e26259. [Google Scholar] [CrossRef]
- Imran, M.; Akhter, S.; Iqbal, Z. On the eccentric connectivity polynomial of F-sum of connected graphs. Complexity 2020, 2020, 5061682. [Google Scholar] [CrossRef]
- Khalifeha, M.H.; Yousefi-Azaria, H.; Ashrafi, A.R. The first and second Zagreb indices of some graph operations. Discrete Appl. Math. 2009, 157, 804–811. [Google Scholar] [CrossRef] [Green Version]
- Malik, M.A. Two degree-distance based topological descriptors of some product graphs. Discrete Appl. Math. 2018, 236, 315–328. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Hafeez, S.; Akhter, S.; Iqbal, Z.; Aslam, A. The Generalized Inverse Sum Indeg Index of Some Graph Operations. Symmetry 2022, 14, 2349. https://doi.org/10.3390/sym14112349
Wang Y, Hafeez S, Akhter S, Iqbal Z, Aslam A. The Generalized Inverse Sum Indeg Index of Some Graph Operations. Symmetry. 2022; 14(11):2349. https://doi.org/10.3390/sym14112349
Chicago/Turabian StyleWang, Ying, Sumaira Hafeez, Shehnaz Akhter, Zahid Iqbal, and Adnan Aslam. 2022. "The Generalized Inverse Sum Indeg Index of Some Graph Operations" Symmetry 14, no. 11: 2349. https://doi.org/10.3390/sym14112349
APA StyleWang, Y., Hafeez, S., Akhter, S., Iqbal, Z., & Aslam, A. (2022). The Generalized Inverse Sum Indeg Index of Some Graph Operations. Symmetry, 14(11), 2349. https://doi.org/10.3390/sym14112349