Mapping Topology of Skyrmions and Fractional Quantum Hall Droplets to Nuclear EFT for Ultra-Dense Baryonic Matter
Abstract
:1. Introduction
1.1. The Problem
1.2. The Motivation
1.3. The Objective
1.4. The Strategy
2. Topology in Baryonic Matter
2.1. Change of DoFs: Hidden Symmetries
2.2. Topology Change
- Skyrmion-half-skyrmion “transition”
- Soft-to-hard transition in the equation of state
- Parity-doubling
2.3. Quasi-Free Composite Fermions
3. Translating Topological Inputs into Effective Field Theory GnEFT
3.1. Density Functional via Fermi-Liquid Fixed-Point Theory
3.2. “Quenched ” as Precursor to Emergent Scale Symmetry at
4. Going toward Massive Compact-Star Matter
4.1. Dilaton-Limit Fixed Point
4.2. Emerging Pseudo-Conformal Symmetry
5. Hadron-Quark Duality and Cheshire Cat Phenomenon
5.1. “Infinite Hotel” for : Skyrmions
5.2. No Infinite Hotel for Baryons
5.3. Baryon for
Baryons for
5.4. Fermion Number and Hall Conductivity on Domain Wall
6. The Dichotomy Problem
6.1. Indispensable Role of Vector Mesons
6.2. Dense Matter as “Sheets” of Pancakes/Pitas
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weinberg, S. What is quantum field theory, and what did we think it is? In Conceptual Foundations of Quantum Field Theory; Cambridge University Press: Boston, MA, USA, 1996; pp. 241–251. [Google Scholar]
- Skyrme, T.H.R. A unified field theory of mesons and baryons. Nucl. Phys. 1962, 31, 556–569. [Google Scholar] [CrossRef]
- Adam, C.; Martin-Caro, A.G.; Huidobro, M.; Vazquez, R.; Wereszczynski, A. Dense matter equation of state and phase transitions from a Generalized Skyrme model. arXiv 2022, arXiv:2109.13946. [Google Scholar] [CrossRef]
- Tong, D. Lectures on the quantum Hall effect. arXiv 2016, arXiv:1606.06687. [Google Scholar]
- Ma, Y.L.; Rho, M. Topology change, emergent symmetries and compact star matter. AAPPS Bull. 2021, 31, 16. [Google Scholar] [CrossRef]
- Rho, M.; Ma, Y.L. Going from asymmetric nuclei to neutron stars to tidal polarizability in gravitational waves. Int. J. Mod. Phys. E 2018, 27, 1830006. [Google Scholar] [CrossRef]
- Ma, Y.L.; Rho, M. Towards the hadron-quark continuity via a topology change in compact stars. Prog. Part. Nucl. Phys. 2020, 113, 103791. [Google Scholar] [CrossRef]
- Rho, M.; Ma, Y.L. Manifestation of hidden symmetries in baryonic matter: From finite nuclei to neutron stars. Mod. Phys. Lett. A 2021, 36, 2130012. [Google Scholar] [CrossRef]
- Zhao, J.; Thakurathi, M.; Jain, M.; Sen, D.; Jain, J.K. Density-functional theory of the fractional quantum Hall effect. Phys. Rev. Lett. 2017, 118, 196802. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Jain, J.K. Kohn-Sham theory of the fractional quantum Hall effect. Phys. Rev. Lett. 2019, 123, 176802. [Google Scholar] [CrossRef] [Green Version]
- Kaplunovsky, V.; Melnikov, D.; Sonnenschein, J. Holgraphic baryons and instanton crystal. In Multifaceted Skyrmion, 2nd ed.; Rho, M., Zahed, I., Eds.; World Scientific: Singapore, 2017. [Google Scholar]
- Bando, M.; Kugo, T.; Uehara, S.; Yamawaki, K.; Yanagida, T. Is ρ meson a dynamical gauge boson of hidden local symmetry? Phys. Rev. Lett. 1985, 54, 1215–1218. [Google Scholar] [CrossRef]
- Harada, M.; Yamawaki, K. Hidden local symmetry at loop: A New perspective of composite gauge boson and chiral phase transition. Phys. Rep. 2003, 381, 1–233. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, M. Inevitable emergence of composite gauge bosons. Phys. Rev. D 2017, 96, 065010. [Google Scholar] [CrossRef] [Green Version]
- Crewther, R.J. Genuine dilatons in gauge theories. Universe 2020, 6, 96, arXiv:2003.11259. [Google Scholar] [CrossRef]
- Crewther, R.J.; Tunstall, L.C. ΔI = 1/2 rule for kaon decays derived from QCD infrared fixed point. Phys. Rev. D 2015, 91, 034016. [Google Scholar] [CrossRef] [Green Version]
- Debbio, L.D.; Zwicky, R. Dilaton and massive hadrons in a conformal phase. arXiv 2021, arXiv:2112.11363. [Google Scholar]
- Li, Y.L.; Ma, Y.L.; Rho, M. Chiral-scale effective theory including a dilatonic meson. Phys. Rev. D 2017, 95, 114011. [Google Scholar] [CrossRef] [Green Version]
- Rho, M.; Zahed, I. (Eds.) Multifaceted Skyrmion, 2nd ed.; World Scientific: Singapore, 2017. [Google Scholar]
- Rho, M.; Sin, S.J.; Zahed, I. Dense QCD: A holographic dyonic salt. Phys. Lett. B 2010, 689, 23–27. [Google Scholar] [CrossRef] [Green Version]
- Park, B.Y.; Vento, V. Skyrmion approach to finite density and temperature. arXiv 2009, arXiv:0906.3263. [Google Scholar]
- Harada, M.; Ma, Y.-L.; Lee, H.K.; Rho, M. Fractionized skyrmions in dense compact-star matter. arXiv 2016, arXiv:1601.00058. [Google Scholar]
- Lee, H.K.; Ma, Y.L.; Paeng, W.G.; Rho, M. Cusp in the symmetry energy, speed of sound in neutron stars and emergent pseudo-conformal symmetry. Mod. Phys. Lett. 2022, 37, 2230003. [Google Scholar] [CrossRef]
- Zarembo, K. Possible pseudogap phase in QCD. JETP Lett. 2002, 75, 59–62. [Google Scholar] [CrossRef] [Green Version]
- Gil, H.; Papakonstantinou, P.; Hyun, C.H. Constraints on the curvature of nuclear symmetry energy from recent astronomical data within the KIDS framework. Int. J. Mod. Phys. E 2022, 31, 2250013. [Google Scholar] [CrossRef]
- Park, B.Y.; Min, D.P.; Rho, M.; Vento, V. Atiyah-Manton approach to skyrmion matter. Nucl. Phys. A 2002, 707, 381–398. [Google Scholar] [CrossRef] [Green Version]
- Paeng, W.G.; Kuo, T.T.S.; Lee, H.K.; Ma, Y.L.; Rho, M. Scale-invariant hidden local symmetry, topology change, and dense baryonic matter. II. Phys. Rev. D 2017, 96, 014031. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Kimm, K.; Zou, L.; Cho, Y.M. Re-interpretation of Skyrme theory: New topological structures. arXiv 2017, arXiv:1704.05975. [Google Scholar]
- Rothstein, I.Z.; Shrivastava, P. Symmetry obstruction to Fermi liquid behavior in the unitary limit. Phys. Rev. B 2019, 99, 035101. [Google Scholar] [CrossRef] [Green Version]
- Canfora, F. Ordered arrays of baryonic tubes in the Skyrme model in (3 + 1) dimensions at finite density. Eur. Phys. C 2018, 78, 929. [Google Scholar] [CrossRef]
- Karasik, A. Vector dominance, one flavored baryons, and QCD domain walls from the “hidden” Wess-Zumino term. SciPost Phys. 2021, 10, 138. [Google Scholar] [CrossRef]
- Brown, G.E.; Rho, M. Scaling effective Lagrangians in a dense medium. Phys. Rev. Lett. 1991, 66, 2720–2723. [Google Scholar] [CrossRef]
- Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. 1964, 136, B864. [Google Scholar] [CrossRef] [Green Version]
- Walecka, J.D. A theory of highly condensed matter. Annals Phys. 1974, 83, 491–529. [Google Scholar] [CrossRef]
- Matsui, T. Fermi liquid properties of nuclear matter in a relativistic mean–field theory. Nucl. Phys. A 1981, 370, 365–388. [Google Scholar] [CrossRef]
- Friman, B.; Rho, M. From chiral Lagrangians to Landau Fermi liquid theory of nuclear matter. Nucl. Phys. A 1996, 606, 303–319. [Google Scholar] [CrossRef] [Green Version]
- Friman, B.; Rho, M.; Song, C. Scaling of chiral Lagrangians and Landau Fermi liquid theory for dense hadronic matter. Phys. Rev. C 1999, 59, 3357–3370. [Google Scholar] [CrossRef] [Green Version]
- Shankar, R. Renormalization group approach to interacting fermions. Rev. Mod. Phys. 1994, 66, 129. [Google Scholar] [CrossRef] [Green Version]
- Polchinski, J. Effective field theory and the Fermi surface. In Proceedings of the Recent Directions in Particle Theory, Boulder, CO, USA, 1–26 June 1992. [Google Scholar]
- Delacretaz, L.V.; Du, Y.H.; Mehta, U.; Son, D.T. Nonlinear bosonization of Fermi surfaces: The Method of coadjoint orbits. arXiv 2022, arXiv:2203.05004. [Google Scholar]
- Ma, Y.L.; Rho, M. Quenched gA in nuclei and emergent scale symmetry in baryonic matter. Phys. Rev. Lett. 2020, 125, 142501. [Google Scholar] [CrossRef]
- Rho, M. Multifarious roles of hidden chiral-scale symmetry: “Quenching” gA in nuclei. Symmetry 2021, 13, 1388. [Google Scholar] [CrossRef]
- Pastore, S.; Baroni, A.; Carlson, J.; Gandolfi, S.; Pieper, S.C.; Schiavilla, R.; Wiringa, R.B. Quantum Monte Carlo calculations of weak transitions in A = 6–10 nuclei. Phys. Rev. C 2018, 97, 022501. [Google Scholar] [CrossRef] [Green Version]
- Beane, S.R.; van Kolck, U. The dilated chiral quark model. Phys. Lett. B 1994, 328, 137–142. [Google Scholar] [CrossRef] [Green Version]
- McLerran, L.; Reddy, S. Quarkyonic matter and neutron stars. Phys. Rev. Lett 2019, 122, 122701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Annala, E.; Gorda, T.; Kurkela, A.; Nättilä, J.; Vuorinen, A. Evidence for quark-matter cores in massive neutron stars. Nat. Phys. 2020, 16, 907–910. [Google Scholar] [CrossRef]
- Ma, Y.L.; Rho, M. What’s in the core of massive neutron stars? arXiv 2020, arXiv:2006.14173. [Google Scholar]
- Komargodski, Z. Baryons as quantum Hall droplets. arXiv 2018, arXiv:1812.09253. [Google Scholar]
- Lee, H.J.; Min, D.P.; Park, B.Y.; Rho, M.; Vento, V. The proton spin in the chiral bag model: Casimir contribution and Cheshire Cat Principle. Nucl. Phys. A 1999, 657, 75–94. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, H.B.; Rho, M.; Wirzba, A.; Zahed, I. Color anomaly in a hybrid bag model. Phys. Lett. B 1991, 269, 389–393. [Google Scholar] [CrossRef]
- Nielsen, H.B.; Rho, M.; Wirzba, A.; Zahed, I. The tale of the eta-prime from the cheshire cat principle. Phys. Lett. B 1992, 281, 345–350. [Google Scholar] [CrossRef]
- Karasik, A. Skyrmions, quantum Hall droplets, and one current to rule them all. SciPost Phys. 2020, 9, 8. [Google Scholar] [CrossRef]
- Kitano, R.; Matsudo, R. Vector mesons on the wall. HEP 2021, 3, 23. [Google Scholar] [CrossRef]
- Nicola, A.G.; de Elvira, J.R.; Vioque-Rodríguez, A. Thermal hadron resonances in chiral and U(1)A restoration. arXiv 2022, arXiv:2203.02612. [Google Scholar]
- Lopes, L.L.; Biesdorf, C.; Marquez, K.D.; Menezes, D.P. Modified MIT bag models pt II: QCD phase diagram, hot quark stars and speed of sound. arXiv 2020, arXiv:2009.13552. [Google Scholar]
- Rather, I.A.; Rahaman, U.; Imran, M.; Das, H.C.; Usmani, A.A.; Patra, S.K. Rotating neutron stars with quark cores. arXiv 2021, arXiv:2102.04067. [Google Scholar] [CrossRef]
- Nadkarni, S.; Nielsen, H.B.; Zahed, I. Bosonization relations as bag boundary conditions. Nucl. Phys. B 1985, 253, 308–322. [Google Scholar] [CrossRef]
- Nadkarni, S.; Zahed, I. Nonabelian Cheshire Cat bag models in (1+1)-dimensions. Nucl. Phys. B 1986, 263, 23. [Google Scholar] [CrossRef]
- Rho, M. Cheshire cat hadrons. Phys. Rept. 1994, 240, 1–142. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, H.B.; Wirzba, A. The Cheshire Cat applied to hybrid bag models. In Springer Proceedings in Physics; Springer: Berlin, Germany, 1988; Volume 26. [Google Scholar]
- Damgaard, P.H.; Nielsen, H.B.; Sollacher, R. Smooth bosonization: The Cheshire cat revisited. Nucl. Phys. B 1992, 385, 227–250. [Google Scholar] [CrossRef] [Green Version]
- Goldstone, J.; Jaffe, R.L. The baryon number in chiral bag models. Phys. Rev. Lett. 1983, 51, 1518. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.L.; Rho, M. Dichotomy of baryons as quantum Hall droplets and skyrmions in compact-star matter. Symmetry 2021, 13, 1888. [Google Scholar] [CrossRef]
- Ma, Y.L.; Nowak, M.A.; Rho, M.; Zahed, I. Baryon as a quantum Hall droplet and the hadron-quark duality. Phys. Rev. Lett. 2019, 123, 172301. [Google Scholar] [CrossRef] [Green Version]
- Callan, C.G., Jr.; Harvey, J.A. Anomalies and fermion zero modes on strings and domain walls. Nucl. Phys. B 1985, 250, 427–436. [Google Scholar] [CrossRef]
- Guilarte, J.M.; Vassilevich, D. Fractional fermion number and Hall conductivity of domain walls. Phys. Lett. B 2019, 797, 134935. [Google Scholar] [CrossRef]
- Goldstone, J.; Wilczek, F. Fractional quantum numbers on solitons. Phys. Rev. Lett. 1981, 47, 986. [Google Scholar] [CrossRef] [Green Version]
- Kan, N.; Kitano, R.; Yankielowicz, S.; Yokokura, R. From 3d dualities to hadron physics. arXiv 2019, arXiv:1909.04082. [Google Scholar] [CrossRef]
- Ma, Y.L.; Rho, M. Scale-chiral symmetry, ω meson and dense baryonic matter. Phys. Rev. D 2018, 97, 094017. [Google Scholar] [CrossRef] [Green Version]
- Park, B.Y.; Paeng, W.G.; Vento, V. The Inhomogeneous phase of dense skyrmion matter. Nucl. Phys. A 2019, 989, 231–245. [Google Scholar] [CrossRef] [Green Version]
- Fontana, W.B.; Gomes, P.R.S.; Hernaski, C.A. From quantum wires to the Chern-Simons description of the fractional quantum Hall effect. Phys. Rev. B 2019, 99, 201113. [Google Scholar] [CrossRef] [Green Version]
- Sarti, V.M.; Vento, V. The half-skyrmion phase in a chiral-quark model. Phys. Lett. B 2014, 728, 323–327. [Google Scholar] [CrossRef] [Green Version]
- Sulejmanpasic, T.; Shao, H.; Sandvik, A.; Unsal, M. Confinement in the bulk, deconfinement on the wall: Infrared equivalence between compactified QCD and quantum magnets. Phys. Rev. Lett. 2017, 119, 091601. [Google Scholar] [CrossRef] [Green Version]
- Baym, G.; Hatsuda, T.; Kojo, T.; Powell, P.D.; Song, Y.; Takatsuka, T. From hadrons to quarks in neutron stars: A review. Rept. Prog. Phys. 2018, 81, 056902. [Google Scholar] [CrossRef] [Green Version]
- Alford, M.G.; Sedrakian, A. Compact stars with sequential QCD phase transitions. Phys. Rev. Lett. 2017, 119, 161104. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rho, M. Mapping Topology of Skyrmions and Fractional Quantum Hall Droplets to Nuclear EFT for Ultra-Dense Baryonic Matter. Symmetry 2022, 14, 994. https://doi.org/10.3390/sym14050994
Rho M. Mapping Topology of Skyrmions and Fractional Quantum Hall Droplets to Nuclear EFT for Ultra-Dense Baryonic Matter. Symmetry. 2022; 14(5):994. https://doi.org/10.3390/sym14050994
Chicago/Turabian StyleRho, Mannque. 2022. "Mapping Topology of Skyrmions and Fractional Quantum Hall Droplets to Nuclear EFT for Ultra-Dense Baryonic Matter" Symmetry 14, no. 5: 994. https://doi.org/10.3390/sym14050994
APA StyleRho, M. (2022). Mapping Topology of Skyrmions and Fractional Quantum Hall Droplets to Nuclear EFT for Ultra-Dense Baryonic Matter. Symmetry, 14(5), 994. https://doi.org/10.3390/sym14050994