Solution for Convergence Problem in DEMATEL Method: DEMATEL of Finite Sum of Influences
Abstract
:1. Introduction
2. Methods
2.1. DEMATEL
2.2. Fuzzy Sets
2.3. Fuzzy DEMATEL
3. DEMATEL of a Finite Sum of Influences
3.1. Convergence Problem in DEMATEL
3.1.1. Example 1
3.1.2. Example 2
3.2. New Approach—DEMATEL of a Finite Sum of Influences (FSI DEMATEL)
3.2.1. Example 3
3.2.2. Example 4
- (direct first-level influence),
- (indirect second-level influence of factor 1 through factor 2 on factor 4),
- (indirect second-level influence of factor 1 through factor 3 on factor 4),
- (indirect third-level influence of factor 1 through factor 2 and factor 3 on factor 4).
3.3. Algorithm of FSI DEMATEL
3.4. Evaluation of FSI DEMATEL
3.4.1. Example 5 (Continuation of Example 1)
3.4.2. Example 6 (Continuation of Example 2)
3.4.3. Example 7
3.4.4. Example 8
3.4.5. Example 9
4. Discussion
4.1. Comparison of DEMATEL and FSI DEMATEL
4.2. Comparison of FSI DEMATEL with Other MCDM Methods
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
A list of acronyms used in the paper | |
DEMATEL | Decision-making Trial and Evaluation Laboratory |
FSI DEMATEL | DEMATEL of a finite sum of influences |
MCDM | Multicriteria decision-making |
AHP | Analytic Hierarchical Process |
TOPSIS | Technique for Order Performance by Similarity to Ideal Solutions |
VIKOR | VIse Kriterijumska Optimizacija I Kompromisno Resenje |
ELECTRE | Elimination Et Choix Traduisant la RElalite |
TFNs | Triangular fuzzy numbers |
DPSIR | Driver–Pressure–State–Impact–Response model |
WINGS method | Weighted Influence Nonlinear Gauge System |
A list of variables used in the paper | |
T | Total relation matrix |
D | Direct-influence matrix |
X | Normalized direct-relation matrix |
I | Identity matrix |
Ri | Sum of row i |
Cj | Sum of column j |
Ri + Ci | Prominence value of factor i |
Ri − Ci | Relations value of factor i |
Tl | The total relation matrix for the lower bounds |
Tm | The total relation matrix for the middle values |
Tu | The total relation matrix for the upper bounds |
References
- Li, Y.; Li, Y.; Liu, J.; Deng, Y. Defuzzify firstly orfinally: Dose it matter in fuzzy DEMATEL under uncertain environment? arXiv 2018, arXiv:1403.5169. [Google Scholar]
- Eggers, J.; Holmgren, S.; Nordström, E.-M.; Lämås, T.; Lind, T.; Öhman, K. Balancing different forest values: Evaluation of forest management scenarios in a multi-criteria decision analysis framework. For. Policy Econ. 2019, 103, 55–69. [Google Scholar] [CrossRef]
- Zhu, G.-N.; Hu, J.; Qi, J.; Gu, C.-C.; Peng, Y.-H. An integrated AHP and VIKOR for design concept evaluation based on rough number. Adv. Eng. Inform. 2015, 29, 408–418. [Google Scholar] [CrossRef]
- Basílio, M.P.; Pereira, V.; Costa, H.G.; Santos, M.; Ghosh, A. A Systematic Review of the Applications of Multi-Criteria Decision Aid Methods (1977–2022). Electronics 2022, 11, 1720. [Google Scholar] [CrossRef]
- Rezaei, J. Best-worst multi-criteria decision-making method. Omega 2015, 53, 49–57. [Google Scholar] [CrossRef]
- Ayan, B.; Abacıoğlu, S.; Basilio, M.P. A Comprehensive Review of the Novel Weighting Methods for Multi-Criteria Decision-Making. Information 2023, 14, 285. [Google Scholar] [CrossRef]
- Kazimieras Zavadskas, E.; Podvezko, V. Integrated Determination of Objective Criteria Weights in MCDM. Int. J. Inf. Technol. Decis. Mak. 2016, 15, 267–283. [Google Scholar] [CrossRef]
- Si, S.-L.; You, X.-Y.; Liu, H.-C.; Zhang, P. DEMATEL Technique: A Systematic Review of the State-of-the-Art Literature on Methodologies and Applications. Math. Probl. Eng. 2018, 2018, 3696457. [Google Scholar] [CrossRef] [Green Version]
- Michnik, J. Weighted Influence Non-linear Gauge System (WINGS)—An analysis method for the systems of interrelated components. Eur. J. Oper. Res. 2013, 228, 536–544. [Google Scholar] [CrossRef]
- Gabus, A.; Fontela, E. World Problems, An Invitation to Further Thought within the Framework of DEMATEL; Battelle Geneva Research Center: Geneva, Switzerland, 1972. [Google Scholar]
- Asadi, S.; Nilashi, M.; Iranmanesh, M.; Ghobakhloo, M.; Samad, S.; Alghamdi, A.; Almulihi, A.; Mohd, S. Drivers and barriers of electric vehicle usage in Malaysia: A DEMATEL approach. Resour. Conserv. Recycl. 2022, 177, 64–71. [Google Scholar] [CrossRef]
- Çelik, M.T.; Arslankaya, S. Analysis of quality control criteria in an business with the fuzzy DEMATEL method: Glass business example. J. Eng. Res. 2023, 11, 100039. [Google Scholar] [CrossRef]
- Madhavan, M.; Sharafuddin, M.A.; Wangtueai, S. Assessing Trade Attractiveness Using International Marketing Environmental Factors and Fuzzy DEMATEL. Glob. Bus. Rev. 2021. [Google Scholar] [CrossRef]
- Sun, J.; Wang, H.; Cui, Z. Alleviating the Bauxite Maritime Supply Chain Risks through Resilient Strategies: QFD-MCDM with Intuitionistic Fuzzy Decision Approach. Sustainability 2023, 15, 8244. [Google Scholar] [CrossRef]
- Sharifian, R.; Ghasemi, F.; Kharazmi, E.; Farhadi, P.; Monem, H.; Shokrpour, N. An evaluation of the risk factors associated with implementing projects of health information technology by fuzzy combined ANP-DEMATEL. PLoS ONE 2023, 18, e0279819. [Google Scholar] [CrossRef] [PubMed]
- Torbacki, W. Achieving Sustainable Mobility in the Szczecin Metropolitan Area in the Post-COVID-19 Era: The DEMATEL and PROMETHEE II Approach. Sustainability 2021, 13, 12672. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X. Key factors influencing paediatric COVID-19 vaccine hesitancy: A brief overview and Decision-making Trial and Evaluation Laboratory analysis. Public Health 2023, 218, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Karuppiah, K.; Sankaranarayanan, B.; Ali, S.M. Modeling Impacts of COVID-19 in Supply Chain Activities: A Grey-DEMATEL Approach. Sustainability 2022, 14, 14141. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, F.; Wu, J.; He, J.; Xu, M.; Zhou, J. Barrier identification and analysis framework to the development of offshore wind-to-hydrogen projects. Energy 2022, 239, 122077. [Google Scholar] [CrossRef]
- Mondal, A.; Giri, B.K.; Roy, S.K. An integrated sustainable bio-fuel and bio-energy supply chain: A novel approach based on DEMATEL and fuzzy-random robust flexible programming with Me measure. Appl. Energy 2023, 343, 107068. [Google Scholar] [CrossRef]
- Hanine, M.; Boutkhoum, O.; El Barakaz, F.; Lachgar, M.; Assad, N.; Rustam, F.; Ashraf, I. An Intuitionistic Fuzzy Approach for Smart City Development Evaluation for Developing Countries: Moroccan Context. Mathematics 2021, 9, 2668. [Google Scholar] [CrossRef]
- Tayebi, S.; Alavi, S.A.; Esfandi, S.; Meshkani, L.; Shamsipour, A. Evaluation of Land Use Efficiency in Tehran’s Expansion between 1986 and 2021: Developing an Assessment Framework Using DEMATEL and Interpretive Structural Modeling Methods. Sustainability 2023, 15, 3824. [Google Scholar] [CrossRef]
- Xu, D.; Lu, C.; Zhang, X. An Ecological Development Level Evaluation of the Forestry Industry in China Based on a Hybrid Ensemble Approach. Forests 2021, 12, 1288. [Google Scholar] [CrossRef]
- Yang, L.; Zou, K.; Gao, K.; Jiang, Z. A fuzzy DRBFNN-based information security risk assessment method in improving the efficiency of urban development. Math. Biosci. Eng. 2022, 19, 14232–14250. [Google Scholar] [CrossRef] [PubMed]
- Awang, A.; Abdullah, L.; Ab Ghani, A.T.; Aizam, N.A.H.; Ahmad, M.F. A fusion of decision-making method and neutrosophic linguistic considering multiplicative inverse matrix for coastal erosion problem. Soft Comput. 2019, 24, 9595–9609. [Google Scholar] [CrossRef]
- Kumar, G.; Bhujel, R.C.; Aggarwal, A.; Gupta, D.; Yadav, A.; Asjad, M. Analyzing the barriers for aquaponics adoption using integrated BWM and fuzzy DEMATEL approach in Indian context. Env. Sci. Pollut. Res. Int. 2023, 30, 47800–47821. [Google Scholar] [CrossRef]
- Mohammed, A.; Naghshineh, B.; Spiegler, V.; Carvalho, H. Conceptualising a supply and demand resilience methodology: A hybrid DEMATEL-TOPSIS-possibilistic multi-objective optimization approach. Comput. Ind. Eng. 2021, 160, 107589. [Google Scholar] [CrossRef]
- Raj, A.; Dan, A.; Vrinda; Kumar, P. A Comparative Study of the Feasibility of Alternative Fuel Vehicles for Sustainable Transportation in India: A Hybrid Approach of DEMATEL and TOPSIS. Transp. Dev. Econ. 2022, 9, 2. [Google Scholar] [CrossRef]
- Sharma, A.; Sharma, S.K. Analyzing the role of multiagent technology in preventing airplane crash using AHP and DEMATEL approach. Int. J. Crashworthiness 2021, 27, 1753–1769. [Google Scholar] [CrossRef]
- Cheng, M.; Liu, L.; Cheng, X.; Tao, L. Risk analysis of public-private partnership waste-to-energy incineration projects in China: A hybrid fuzzy DEMATEL-ISM approach. Eng. Constr. Archit. Manag. 2023; ahead-of-print. [Google Scholar] [CrossRef]
- Wu, W.-W. Segmenting critical factors for successful knowledge management implementation using the fuzzy DEMATEL method. Appl. Soft Comput. 2012, 12, 527–535. [Google Scholar] [CrossRef]
- Tseng, M.-L. A causal and effect decision making model of service quality expectation using grey-fuzzy DEMATEL approach. Expert. Syst. Appl. 2009, 36, 7738–7748. [Google Scholar] [CrossRef]
- Liu, H.; Long, H.; Li, X. Identification of critical factors in construction and demolition waste recycling by the grey-DEMATEL approach: A Chinese perspective. Environ. Sci. Pollut. Res. Int. 2020, 27, 8507–8525. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, J.; He, J.; Huang, Y.; Liu, X.; Dai, J.; Shen, Q. What are the key factors of enterprises’ greenwashing behaviors under multi-agent interaction? A grey-DEMATEL analysis from Chinese construction materials enterprises. Eng. Constr. Archit. Manag. 2023; ahead-of-print. [Google Scholar] [CrossRef]
- Al-Quran, A.; Hashim, H.; Abdullah, L. A Hybrid Approach of Interval Neutrosophic Vague Sets and DEMATEL with New Linguistic Variable. Symmetry 2020, 12, 275. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Basset, M.; Manogaran, G.; Gamal, A.; Smarandache, F. A hybrid approach of neutrosophic sets and DEMATEL method for developing supplier selection criteria. Des. Autom. Embed. Syst. 2018, 22, 257–278. [Google Scholar] [CrossRef] [Green Version]
- Govindan, K.; Khodaverdi, R.; Vafadarnikjoo, A. Intuitionistic fuzzy based DEMATEL method for developing green practices and performances in a green supply chain. Expert. Syst. Appl. 2015, 42, 7207–7220. [Google Scholar] [CrossRef]
- Liou, J.J.H.; Yen, L.; Tzeng, G.-H. Building an effective safety management system for airlines. J. Air Transp. Manag. 2008, 14, 20–26. [Google Scholar] [CrossRef]
- Dytczak, M.; Ginda, G. Is explicit processing of fuzzy direct influence evaluations in DEMATEL indispensable? Expert. Syst. Appl. 2013, 40, 5027–5032. [Google Scholar] [CrossRef]
- Šmidovnik, T.; Grošelj, P. Inclusion of uncertainty with different types of fuzzy numbers into DEMATEL. Serb. J. Manag. 2021, 16, 49–59. [Google Scholar] [CrossRef]
- Wu, W.-W.; Lee, Y.-T. Developing global managers’ competencies using the fuzzy DEMATEL method. Expert. Syst. Appl. 2007, 32, 499–507. [Google Scholar] [CrossRef]
- Bronson, R. Schaum’s Outline of Theory and Problems of Matrix Operations; McGraw Hill: New York, NY, USA, 1989. [Google Scholar]
- Chen, C.-Y.; Tzeng, G.-H.; Huang, J.-J. Generalized Dematel Technique with Centrality Measurements. Technol. Econ. Dev. Econ. 2017, 24, 600–614. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Huang, J.-J. A Novel DEMATEL Approach by Considering Normalization and Invertibility. Symmetry 2022, 14, 1109. [Google Scholar] [CrossRef]
- Lee, H.-S.; Tzeng, G.-H.; Yeih, W.; Wang, Y.-J.; Yang, S.-C. Revised DEMATEL: Resolving the Infeasibility of DEMATEL. Appl. Math. Model. 2013, 37, 6746–6757. [Google Scholar] [CrossRef]
- Grošelj, P.; Šmidovnik, T. Theoretical Issues in Dematel. Int. Ser. Publ. Theory Pract. Manag. Sci. 2022, 18, 56–65. [Google Scholar]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Aouag, H.; Soltani, M.; Mouss, M.D. Enhancement of value stream mapping application process through using fuzzy DEMATEL and fuzzy QFD approaches: A case study considering economic and environmental perspectives. J. Model. Manag. 2020, 16, 1002–1023. [Google Scholar] [CrossRef]
- Chen, S.-H.; Hsieh, C.H. Representation, Ranking, Distance, and Similarity of L-R type fuzzy number and Application. Aust. J. Intell. Process. Syst. 2019, 6, 217–229. [Google Scholar]
- Chen, S.; Wang, S.T.; Chang, S.M. Some Properties of Graded Mean Integration Representation of L-R Type Fuzzy Numbers. Tamsui Oxf. J. Math. Sci. 2006, 22, 185–208. [Google Scholar]
- Tavana, M.; Mousavi, H.; Khalili Nasr, A.; Mina, H. A fuzzy weighted influence non-linear gauge system with application to advanced technology assessment at NASA. Expert. Syst. Appl. 2021, 182, 115274. [Google Scholar] [CrossRef]
- Zhou, F.; Wang, X.; Lim, M.K.; He, Y.; Li, L. Sustainable recycling partner selection using fuzzy DEMATEL-AEW-FVIKOR: A case study in small-and-medium enterprises (SMEs). J. Clean. Prod. 2018, 196, 489–504. [Google Scholar] [CrossRef]
- Ecer, F.; Torkayesh, A. A Stratified Fuzzy Decision-Making Approach for Sustainable Circular Supplier Selection. IEEE Trans. Eng. Manag. 2022; early access. [Google Scholar] [CrossRef]
- Banihashemi, S.A.; Khalilzadeh, M.; Antucheviciene, J.; Edalatpanah, S.A. Identifying and Prioritizing the Challenges and Obstacles of the Green Supply Chain Management in the Construction Industry Using the Fuzzy BWM Method. Buildings 2022, 13, 38. [Google Scholar] [CrossRef]
- Šmidovnik, T.; Grošelj, P. Razvoj Modela za Načrtovanje Gospodarjenja z Gozdovi z Uporabo Sivih Števil v DEMATELu (Development of a Model for Forest Management Planning Using Gray Numbers in DEMATEL). In Proceedings of the Drugi Doktorski dan Bi(o)znanosti, Online, 26 May 2021; pp. 185–191. [Google Scholar]
- Prakash, S.; Jasti, N.V.K.; Chan, F.T.S.; Nilaish; Sharma, V.P.; Sharma, L.K. Decision modelling of critical success factors for cold chains using the DEMATEL approach: A case study. Meas. Bus. Excell. 2021, 26, 263–287. [Google Scholar] [CrossRef]
- Pamučar, D.; Stević, Ž.; Sremac, S. A New Model for Determining Weight Coefficients of Criteria in MCDM Models: Full Consistency Method (FUCOM). Symmetry 2018, 10, 393. [Google Scholar] [CrossRef] [Green Version]
- Žižović, M.; Pamučar, D. New model for determining criteria weights: Level Based Weight Assessment (LBWA) model. Decis. Mak. Appl. Manag. Eng. 2019, 2, 126–137. [Google Scholar] [CrossRef]
Linguistic Terms | Abbreviation | Corresponding Scalar Number | Corresponding Triangular Fuzzy Number |
---|---|---|---|
No influence | NI | 0 | (0, 0, 0.25) |
Very low influence | VLI | 1 | (0, 0.25, 0.5) |
Low influence | LI | 2 | (0.25, 0.5, 0.75) |
High influence | HI | 3 | (0.5, 0.75, 1) |
Very high influence | VHI | 4 | (0.75, 1, 1) |
X | A | B | C | D | Row Sums |
---|---|---|---|---|---|
A | 0.00 | 0.17 | 0.33 | 0.50 | 1.00 |
B | 0.33 | 0.00 | 0.58 | 0.08 | 1.00 |
C | 0.33 | 0.25 | 0.00 | 0.42 | 1.00 |
D | 0.33 | 0.42 | 0.25 | 0.00 | 1.00 |
Xu | A | B | C | D | Row Sums |
---|---|---|---|---|---|
A | 0.083 | 0.333 | 0.250 | 0.333 | 1.00 |
B | 0.333 | 0.083 | 0.333 | 0.250 | 1.00 |
C | 0.333 | 0.250 | 0.083 | 0.333 | 1.00 |
D | 0.250 | 0.333 | 0.333 | 0.083 | 1.00 |
X | D | P | S | R | I | X2 | D | P | S | R | I |
---|---|---|---|---|---|---|---|---|---|---|---|
D | 0.000 | 0.238 | 0.000 | 0.000 | 0.000 | D | 0.000 | 0.000 | 0.113 | 0.000 | 0.000 |
P | 0.000 | 0.000 | 0.476 | 0.000 | 0.000 | P | 0.000 | 0.000 | 0.000 | 0.000 | 0.204 |
S | 0.000 | 0.000 | 0.000 | 0.000 | 0.429 | S | 0.000 | 0.000 | 0.000 | 0.122 | 0.000 |
R | 0.381 | 0.190 | 0.143 | 0.000 | 0.286 | R | 0.000 | 0.091 | 0.091 | 0.082 | 0.061 |
I | 0.000 | 0.000 | 0.000 | 0.286 | 0.000 | I | 0.109 | 0.054 | 0.041 | 0.000 | 0.082 |
X3 | D | P | S | R | I | X4 | D | P | S | R | I |
D | 0.000 | 0.000 | 0.000 | 0.000 | 0.049 | D | 0.000 | 0.000 | 0.000 | 0.014 | 0.000 |
P | 0.000 | 0.000 | 0.000 | 0.058 | 0.000 | P | 0.022 | 0.011 | 0.008 | 0.000 | 0.017 |
S | 0.047 | 0.023 | 0.017 | 0.000 | 0.035 | S | 0.000 | 0.011 | 0.011 | 0.010 | 0.007 |
R | 0.031 | 0.016 | 0.055 | 0.017 | 0.062 | R | 0.007 | 0.011 | 0.010 | 0.018 | 0.029 |
I | 0.000 | 0.026 | 0.026 | 0.023 | 0.017 | I | 0.009 | 0.004 | 0.016 | 0.005 | 0.018 |
X5 | D | P | S | R | I | ||||||
D | 0.005 | 0.003 | 0.002 | 0.000 | 0.004 | ||||||
P | 0.000 | 0.005 | 0.005 | 0.005 | 0.004 | ||||||
S | 0.004 | 0.002 | 0.007 | 0.002 | 0.008 | ||||||
R | 0.007 | 0.005 | 0.008 | 0.008 | 0.009 | ||||||
I | 0.002 | 0.003 | 0.003 | 0.005 | 0.008 |
T (FSI) | A | B | C | D | R | C | Ri + Ci | Ri − Ci | Weights |
---|---|---|---|---|---|---|---|---|---|
A | 0.56 | 0.63 | 0.88 | 0.94 | 3.00 | 3.00 | 6.00 | 0.00 | 0.250 |
B | 0.81 | 0.48 | 1.03 | 0.68 | 3.00 | 2.58 | 5.58 | 0.42 | 0.233 |
C | 0.81 | 0.68 | 0.62 | 0.88 | 3.00 | 3.34 | 6.34 | −0.34 | 0.264 |
D | 0.81 | 0.79 | 0.82 | 0.57 | 3.00 | 3.07 | 6.07 | −0.07 | 0.253 |
T (FSI) | A | B | C | D | R | C | Ri + Ci | Ri − Ci | Weights |
---|---|---|---|---|---|---|---|---|---|
A | 0.57 | 0.76 | 0.78 | 0.88 | 3 | 3.01 | 6.01 | −0.01 | 0.250 |
B | 0.82 | 0.52 | 0.92 | 0.75 | 3 | 2.74 | 5.74 | 0.26 | 0.239 |
C | 0.88 | 0.69 | 0.61 | 0.82 | 3 | 3.23 | 6.23 | −0.23 | 0.260 |
D | 0.75 | 0.76 | 0.92 | 0.57 | 3 | 3.02 | 6.02 | −0.02 | 0.251 |
T | A | B | C | D | R | C | Ri + Ci | Ri − Ci | Weights |
---|---|---|---|---|---|---|---|---|---|
A | 12,500.03 | 12,500.40 | 12,499.82 | 12,499.75 | 50,000 | 50,000 | 100,000 | 0.00 | 0.250 |
B | 12,500.52 | 12,500.03 | 12,499.75 | 12,499.70 | 50,000 | 50,000 | 100,000 | 0.00 | 0.250 |
C | 12,499.73 | 12,499.72 | 12,500.03 | 12,500.52 | 50,000 | 50,000 | 100,000 | 0.00 | 0.250 |
D | 12,499.72 | 12,499.86 | 12,500.40 | 12,500.03 | 50,000 | 50,000 | 100,000 | 0.00 | 0.250 |
T | A | B | C | D | R | C | Ri + Ci | Ri − Ci | Weights |
---|---|---|---|---|---|---|---|---|---|
A | 125,000.03 | 125,000.40 | 124,999.82 | 124,999.75 | 500,000 | 500,000 | 1,000,000 | 0.00 | 0.250 |
B | 125,000.52 | 125,000.03 | 124,999.75 | 124,999.70 | 500,000 | 500,000 | 1,000,000 | 0.00 | 0.250 |
C | 124,999.73 | 124,999.72 | 125,000.03 | 125,000.52 | 500,000 | 500,000 | 1,000,000 | 0.00 | 0.250 |
D | 124,999.72 | 124,999.86 | 125,000.40 | 125,000.03 | 500,000 | 500,000 | 1,000,000 | 0.00 | 0.250 |
T | A | B | C | D | R | C | Ri + Ci | Ri − Ci | Weights |
---|---|---|---|---|---|---|---|---|---|
A | 0.65 | 1.22 | 0.62 | 0.51 | 3.00 | 3.00 | 6.00 | 0.00 | 0.250 |
B | 1.34 | 0.65 | 0.51 | 0.51 | 3.00 | 3.00 | 6.00 | 0.00 | 0.250 |
C | 0.62 | 0.39 | 0.65 | 1.34 | 3.00 | 3.00 | 6.00 | 0.00 | 0.250 |
D | 0.39 | 0.74 | 1.22 | 0.65 | 3.00 | 3.00 | 6.00 | 0.00 | 0.250 |
T | F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | R | C | Ri + Ci | Ri − Ci | Weights |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F1 | 0.55 | 0.67 | 0.64 | 0.65 | 0.70 | 0.60 | 0.72 | 0.68 | 5.20 | 5.59 | 10.79 | −0.38 | 0.117 |
F2 | 0.79 | 0.68 | 0.86 | 0.81 | 0.88 | 0.81 | 0.95 | 0.86 | 6.65 | 5.45 | 12.10 | 1.19 | 0.132 |
F3 | 0.74 | 0.72 | 0.65 | 0.75 | 0.78 | 0.77 | 0.86 | 0.74 | 6.00 | 5.73 | 11.73 | 0.26 | 0.128 |
F4 | 0.69 | 0.67 | 0.76 | 0.60 | 0.73 | 0.67 | 0.82 | 0.73 | 5.66 | 5.64 | 11.31 | 0.02 | 0.123 |
F5 | 0.68 | 0.69 | 0.71 | 0.71 | 0.62 | 0.67 | 0.79 | 0.69 | 5.56 | 5.95 | 11.50 | −0.39 | 0.125 |
F6 | 0.64 | 0.63 | 0.64 | 0.66 | 0.69 | 0.53 | 0.76 | 0.67 | 5.23 | 5.43 | 10.66 | −0.20 | 0.116 |
F7 | 0.72 | 0.66 | 0.68 | 0.67 | 0.73 | 0.63 | 0.66 | 0.69 | 5.44 | 6.42 | 11.86 | −0.99 | 0.129 |
F8 | 0.78 | 0.73 | 0.80 | 0.79 | 0.83 | 0.74 | 0.87 | 0.67 | 6.21 | 5.73 | 11.94 | 0.48 | 0.130 |
T (FSI) | F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | R | C | Ri + Ci | Ri − Ci | Weights |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F1 | 0.34 | 0.46 | 0.43 | 0.44 | 0.48 | 0.40 | 0.48 | 0.47 | 3.51 | 3.77 | 7.28 | −0.26 | 0.117 |
F2 | 0.53 | 0.43 | 0.59 | 0.55 | 0.60 | 0.56 | 0.65 | 0.59 | 4.49 | 3.68 | 8.17 | 0.81 | 0.132 |
F3 | 0.50 | 0.49 | 0.40 | 0.52 | 0.52 | 0.54 | 0.59 | 0.50 | 4.05 | 3.87 | 7.93 | 0.18 | 0.128 |
F4 | 0.47 | 0.45 | 0.53 | 0.38 | 0.49 | 0.45 | 0.56 | 0.50 | 3.82 | 3.81 | 7.63 | 0.01 | 0.123 |
F5 | 0.46 | 0.47 | 0.48 | 0.49 | 0.39 | 0.46 | 0.54 | 0.47 | 3.75 | 4.02 | 7.77 | −0.26 | 0.125 |
F6 | 0.44 | 0.43 | 0.43 | 0.45 | 0.47 | 0.33 | 0.53 | 0.46 | 3.53 | 3.67 | 7.19 | −0.14 | 0.116 |
F7 | 0.50 | 0.45 | 0.46 | 0.45 | 0.50 | 0.42 | 0.41 | 0.47 | 3.67 | 4.34 | 8.01 | −0.67 | 0.129 |
F8 | 0.54 | 0.49 | 0.55 | 0.54 | 0.57 | 0.50 | 0.59 | 0.42 | 4.20 | 3.87 | 8.07 | 0.33 | 0.130 |
T | C1 | C2 | C3 | C4 | C5 | R | C | Ri + Ci | Ri − Ci | Weights |
---|---|---|---|---|---|---|---|---|---|---|
C1 | 0.21 | 0.38 | 0.27 | 0.46 | 0.25 | 1.57 | 1.49 | 3.06 | 0.08 | 0.189 |
C2 | 0.30 | 0.23 | 0.26 | 0.40 | 0.21 | 1.40 | 1.83 | 3.23 | −0.42 | 0.202 |
C3 | 0.37 | 0.44 | 0.23 | 0.48 | 0.31 | 1.83 | 1.33 | 3.15 | 0.50 | 0.198 |
C4 | 0.19 | 0.25 | 0.20 | 0.19 | 0.13 | 0.97 | 2.12 | 3.09 | −1.14 | 0.204 |
C5 | 0.41 | 0.53 | 0.37 | 0.58 | 0.21 | 2.09 | 1.11 | 3.20 | 0.98 | 0.207 |
T (FSI) | C1 | C2 | C3 | C4 | C5 | R | C | Ri + Ci | Ri − Ci | Weights |
---|---|---|---|---|---|---|---|---|---|---|
C1 | 0.17 | 0.37 | 0.24 | 0.47 | 0.23 | 1.48 | 1.39 | 2.88 | 0.09 | 0.184 |
C2 | 0.28 | 0.20 | 0.24 | 0.40 | 0.18 | 1.30 | 1.80 | 3.10 | −0.50 | 0.201 |
C3 | 0.36 | 0.44 | 0.19 | 0.49 | 0.30 | 1.78 | 1.21 | 2.99 | 0.58 | 0.195 |
C4 | 0.16 | 0.23 | 0.17 | 0.15 | 0.10 | 0.81 | 2.15 | 2.96 | −1.34 | 0.208 |
C5 | 0.42 | 0.56 | 0.37 | 0.63 | 0.18 | 2.15 | 0.98 | 3.13 | 1.17 | 0.213 |
DEMATEL | Fuzzy DEMATEL | FSI DEMATEL | |
---|---|---|---|
Example 1 | X | NA | √ |
Example 2 | NA | X | √ |
Example 3 | √ | NA | √ |
Example 7 | X | NA | √ |
Example 8 | √ | NA | √ |
Example 9 | NA | √ | √ |
FSI DEMATEL | Revised DEMATEL | DEMATEL | WINGS | AHP | TOPSIS | ANP | FUCOM | LBWA | |
---|---|---|---|---|---|---|---|---|---|
Pairwise comparisons | Yes | Yes | Yes | Yes | Yes | No | Yes | Yes | Yes |
Weights calculation | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Fuzzy extension | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Easy to use | Yes | Yes | Yes | Yes | Yes | Yes | No | No | Yes |
Influences between criteria | Yes | Yes | Yes | Yes | No | No | Yes | No | No |
Consistency measure | No | No | No | No | Yes | No | Yes | Yes | No |
Without convergence problem | Yes | Yes | No | No | NA | NA | NA | NA | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šmidovnik, T.; Grošelj, P. Solution for Convergence Problem in DEMATEL Method: DEMATEL of Finite Sum of Influences. Symmetry 2023, 15, 1357. https://doi.org/10.3390/sym15071357
Šmidovnik T, Grošelj P. Solution for Convergence Problem in DEMATEL Method: DEMATEL of Finite Sum of Influences. Symmetry. 2023; 15(7):1357. https://doi.org/10.3390/sym15071357
Chicago/Turabian StyleŠmidovnik, Tjaša, and Petra Grošelj. 2023. "Solution for Convergence Problem in DEMATEL Method: DEMATEL of Finite Sum of Influences" Symmetry 15, no. 7: 1357. https://doi.org/10.3390/sym15071357
APA StyleŠmidovnik, T., & Grošelj, P. (2023). Solution for Convergence Problem in DEMATEL Method: DEMATEL of Finite Sum of Influences. Symmetry, 15(7), 1357. https://doi.org/10.3390/sym15071357