A Bridge between Trace Anomalies and Deconfinement Phase Transitions
Abstract
:1. Introduction
2. Trace Anomaly and the Polyakov Loop
3. Qualitative Analysis
4. Trace Anomaly in Effective Models
5. Summary and Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coleman, S. Aspects of Symmetry: Selected Erice Lectures; Cambridge University Press: Cambridge, UK, 1985. [Google Scholar] [CrossRef]
- Schechter, J. Effective Lagrangian with Two Color Singlet Gluon Fields. Phys. Rev. D 1980, 21, 3393–3400. [Google Scholar] [CrossRef]
- Meissner, U.G.; Rakhimov, A.; Yakhshiev, U.T. The Nucleon-nucleon interaction and properties of the nucleon in a pi rho omega soliton model including a dilaton field with anomalous dimension. Phys. Lett. B 2000, 473, 200–208. [Google Scholar] [CrossRef]
- Goldberger, W.D.; Grinstein, B.; Skiba, W. Distinguishing the Higgs boson from the dilaton at the Large Hadron Collider. Phys. Rev. Lett. 2008, 100, 111802. [Google Scholar] [CrossRef] [PubMed]
- Campbell, B.A.; Ellis, J.; Olive, K.A. Phenomenology and Cosmology of an Electroweak Pseudo-Dilaton and Electroweak Baryons. JHEP 2012, 3, 026. [Google Scholar] [CrossRef]
- Matsuzaki, S.; Yamawaki, K. Dilaton Chiral Perturbation Theory: Determining the Mass and Decay Constant of the Technidilaton on the Lattice. Phys. Rev. Lett. 2014, 113, 082002. [Google Scholar] [CrossRef] [PubMed]
- Gasperini, M. Dilaton cosmology and phenomenology. Lect. Notes Phys. 2008, 737, 787–844. [Google Scholar]
- Sasaki, C.; Lee, H.K.; Paeng, W.G.; Rho, M. Conformal anomaly and the vector coupling in dense matter. Phys. Rev. D 2011, 84, 034011. [Google Scholar] [CrossRef]
- Crewther, R.J.; Tunstall, L.C. ΔI = 1/2 rule for kaon decays derived from QCD infrared fixed point. Phys. Rev. D 2015, 91, 034016. [Google Scholar] [CrossRef]
- Ma, Y.L.; Rho, M. Quenched gA in Nuclei and Emergent Scale Symmetry in Baryonic Matter. Phys. Rev. Lett. 2020, 125, 142501. [Google Scholar] [CrossRef]
- Fujimoto, Y.; Fukushima, K.; McLerran, L.D.; Praszalowicz, M. Trace Anomaly as Signature of Conformality in Neutron Stars. Phys. Rev. Lett. 2022, 129, 252702. [Google Scholar] [CrossRef]
- Fukushima, K.; Hatsuda, T. The phase diagram of dense QCD. Rept. Prog. Phys. 2011, 74, 014001. [Google Scholar] [CrossRef]
- Fukushima, K. QCD matter in extreme environments. J. Phys. G 2012, 39, 013101. [Google Scholar] [CrossRef]
- Petreczky, P. Lattice QCD at non-zero temperature. J. Phys. G 2012, 39, 093002. [Google Scholar] [CrossRef]
- Adams, A.; Carr, L.D.; Schäfer, T.; Steinberg, P.; Thomas, J.E. Strongly Correlated Quantum Fluids: Ultracold Quantum Gases, Quantum Chromodynamic Plasmas, and Holographic Duality. New J. Phys. 2012, 14, 115009. [Google Scholar] [CrossRef]
- Andersen, J.O. QCD phase diagram in a constant magnetic background: Inverse magnetic catalysis: Where models meet the lattice. Eur. Phys. J. A 2021, 57, 189. [Google Scholar] [CrossRef]
- Kharzeev, D.E. Topology, magnetic field, and strongly interacting matter. Ann. Rev. Nucl. Part. Sci. 2015, 65, 193–214. [Google Scholar] [CrossRef]
- Andersen, J.O.; Naylor, W.R.; Tranberg, A. Phase diagram of QCD in a magnetic field: A review. Rev. Mod. Phys. 2016, 88, 025001. [Google Scholar] [CrossRef]
- Fukushima, K. Chiral effective model with the Polyakov loop. Phys. Lett. B 2004, 591, 277–284. [Google Scholar] [CrossRef]
- Ratti, C.; Bellwied, R. The Deconfinement Transition of QCD: Theory Meets Experiment. Lect. Notes Phys. 2021, 981, 1–216. [Google Scholar] [CrossRef]
- Dexheimer, V.; Noronha, J.; Noronha-Hostler, J.; Ratti, C.; Yunes, N. Future physics perspectives on the equation of state from heavy ion collisions to neutron stars. J. Phys. G 2021, 48, 073001. [Google Scholar] [CrossRef]
- Troyer, M.; Wiese, U.J. Computational complexity and fundamental limitations to fermionic quantum Monte Carlo simulations. Phys. Rev. Lett. 2005, 94, 170201. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Dexheimer, V.; Jahan, J.; Noronha, J.; Noronha-Hostler, J.; Ratti, C.; Yunes, N.; Acuna, A.; Alford, M.; Anik, M.; et al. Theoretical and Experimental Constraints for the Equation of State of Dense and Hot Matter. arXiv 2023, arXiv:2303.17021. [Google Scholar] [CrossRef]
- Kaczmarek, O.; Karsch, F.; Petreczky, P.; Zantow, F. Heavy quark anti-quark free energy and the renormalized Polyakov loop. Phys. Lett. B 2002, 543, 41–47. [Google Scholar] [CrossRef]
- Ratti, C.; Thaler, M.A.; Weise, W. Phases of QCD: Lattice thermodynamics and a field theoretical model. Phys. Rev. D 2006, 73, 014019. [Google Scholar] [CrossRef]
- Ratti, C.; Borsanyi, S.; Fodor, Z.; Hoelbling, C.; Katz, S.D.; Krieg, S.; Szabo, K.K. Recent results on QCD thermodynamics: Lattice QCD versus Hadron Resonance Gas model. Nucl. Phys. A 2011, 855, 253–256. [Google Scholar] [CrossRef]
- Pisarski, R.D. Quark gluon plasma as a condensate of SU(3) Wilson lines. Phys. Rev. D 2000, 62, 111501. [Google Scholar] [CrossRef]
- Pisarski, R.D. Effective Theory of Wilson Lines and Deconfinement. Phys. Rev. D 2006, 74, 121703. [Google Scholar] [CrossRef]
- Schaefer, B.J.; Pawlowski, J.M.; Wambach, J. The Phase Structure of the Polyakov–Quark-Meson Model. Phys. Rev. D 2007, 76, 074023. [Google Scholar] [CrossRef]
- Roessner, S.; Ratti, C.; Weise, W. Polyakov loop, diquarks and the two-flavour phase diagram. Phys. Rev. D 2007, 75, 034007. [Google Scholar] [CrossRef]
- Dexheimer, V.A.; Schramm, S. A Novel Approach to Model Hybrid Stars. Phys. Rev. C 2010, 81, 045201. [Google Scholar] [CrossRef]
- Dexheimer, V.; Schramm, S. Neutron Stars as a Probe for Dense Matter. Nucl. Phys. A 2009, 827, 579C–581C. [Google Scholar] [CrossRef]
- Dexheimer, V.; Gomes, R.O.; Klähn, T.; Han, S.; Salinas, M. GW190814 as a massive rapidly rotating neutron star with exotic degrees of freedom. Phys. Rev. C 2021, 103, 025808. [Google Scholar] [CrossRef]
- Papazoglou, P.; Zschiesche, D.; Schramm, S.; Schaffner-Bielich, J.; Stoecker, H.; Greiner, W. Nuclei in a chiral SU(3) model. Phys. Rev. C 1999, 59, 411–427. [Google Scholar] [CrossRef]
- Yamawaki, K. Old wine in a new bottle: Technidilaton as the 125 GeV Higgs. Int. J. Mod. Phys. A 2017, 32, 1747026. [Google Scholar] [CrossRef]
- Ma, Y.L.; Rho, M. Towards the hadron–quark continuity via a topology change in compact stars. Prog. Part. Nucl. Phys. 2020, 113, 103791. [Google Scholar] [CrossRef]
- Polyakov, A.M. Thermal Properties of Gauge Fields and Quark Liberation. Phys. Lett. B 1978, 72, 477–480. [Google Scholar] [CrossRef]
- Brown, G.E.; Rho, M. Scaling effective Lagrangians in a dense medium. Phys. Rev. Lett. 1991, 66, 2720–2723. [Google Scholar] [CrossRef] [PubMed]
- Ishii, M.; Yonemura, K.; Takahashi, J.; Kouno, H.; Yahiro, M. Determination of U(1)A restoration from pion and a0-meson screening masses: Toward the chiral regime. Phys. Rev. D 2016, 93, 016002. [Google Scholar] [CrossRef]
- Li, Y.L.; Ma, Y.L.; Rho, M. Chiral-scale effective theory including a dilatonic meson. Phys. Rev. D 2017, 95, 114011. [Google Scholar] [CrossRef]
- Ma, Y.L.; Rho, M. Scale-chiral symmetry, ω meson and dense baryonic matter. Phys. Rev. D 2018, 97, 094017. [Google Scholar] [CrossRef]
- Shao, L.Q.; Ma, Y.L. Scale symmetry and composition of compact star matter. Phys. Rev. D 2022, 106, 014014. [Google Scholar] [CrossRef]
- Borsanyi, S.; Fodor, Z.; Hoelbling, C.; Katz, S.D.; Krieg, S.; Ratti, C.; Szabo, K.K. Is there still any Tc mystery in lattice QCD? Results with physical masses in the continuum limit III. J. High Energy Phys. 2010, 9, 73. [Google Scholar] [CrossRef]
- Mattos, O.A.; Frederico, T.; Lenzi, C.H.; Dutra, M.; Lourenço, O. PNJL model at zero temperature: The three-flavor case. Phys. Rev. D 2021, 104, 116001. [Google Scholar] [CrossRef]
- Paeng, W.G.; Lee, H.K.; Rho, M.; Sasaki, C. Dilaton-Limit Fixed Point in Hidden Local Symmetric Parity Doublet Model. Phys. Rev. D 2012, 85, 054022. [Google Scholar] [CrossRef]
- Sakai, Y.; Sasaki, T.; Kouno, H.; Yahiro, M. Entanglement between deconfinement transition and chiral symmetry restoration. Phys. Rev. D 2010, 82, 076003. [Google Scholar] [CrossRef]
- Sasaki, T.; Sakai, Y.; Kouno, H.; Yahiro, M. Quark-mass dependence of the three-flavor QCD phase diagram at zero and imaginary chemical potential: Model prediction. Phys. Rev. D 2011, 84, 091901. [Google Scholar] [CrossRef]
- D’Elia, M.; Sanfilippo, F. The Order of the Roberge-Weiss endpoint (finite size transition) in QCD. Phys. Rev. D 2009, 80, 111501. [Google Scholar] [CrossRef]
- de Forcrand, P.; Philipsen, O. Constraining the QCD phase diagram by tricritical lines at imaginary chemical potential. Phys. Rev. Lett. 2010, 105, 152001. [Google Scholar] [CrossRef] [PubMed]
- Kogut, J.B.; Sinclair, D.K. The Finite temperature transition for 2-flavor lattice QCD at finite isospin density. Phys. Rev. D 2004, 70, 094501. [Google Scholar] [CrossRef]
- Schaefer, B.J.; Wagner, M.; Wambach, J. Thermodynamics of (2+1)-flavor QCD: Confronting Models with Lattice Studies. Phys. Rev. D 2010, 81, 074013. [Google Scholar] [CrossRef]
- Herbst, T.K.; Pawlowski, J.M.; Schaefer, B.J. The phase structure of the Polyakov–quark–meson model beyond mean field. Phys. Lett. B 2011, 696, 58–67. [Google Scholar] [CrossRef]
- Schaefer, B.J.; Wagner, M. QCD critical region and higher moments for three flavor models. Phys. Rev. D 2012, 85, 034027. [Google Scholar] [CrossRef]
- Mao, H.; Jin, J.; Huang, M. Phase diagram and thermodynamics of the Polyakov linear sigma model with three quark flavors. J. Phys. G 2010, 37, 035001. [Google Scholar] [CrossRef]
- Kawaguchi, M.; Matsuzaki, S.; Tomiya, A. Detecting scale anomaly in chiral phase transition of QCD: New critical endpoint pinned down. J. High Energy Phys. 2021, 12, 175. [Google Scholar] [CrossRef]
- Mei, J.; Xia, T.; Mao, S. Mass spectra of neutral mesons K0,π0,η,η′ at finite magnetic field, temperature and quark chemical potential. Phys. Rev. D 2023, 107, 074018. [Google Scholar] [CrossRef]
- Csorgo, T.; Vertesi, R.; Sziklai, J. Indirect observation of an in-medium η′ mass reduction in √sNN = 200 GeV Au+Au collisions. Phys. Rev. Lett. 2010, 105, 182301. [Google Scholar] [CrossRef] [PubMed]
- Benic, S.; Horvatic, D.; Kekez, D.; Klabucar, D. Restoration of singlet axial symmetry at finite temperature. Acta Phys. Polon. Supp. 2012, 5, 941–946. [Google Scholar] [CrossRef]
- Kwon, Y.; Lee, S.H.; Morita, K.; Wolf, G. Renewed look at η′ in medium. Phys. Rev. D 2012, 86, 034014. [Google Scholar] [CrossRef]
- Schaffner-Bielich, J. Effective restoration of the U(A)(1) symmetry in the SU(3) linear sigma model. Phys. Rev. Lett. 2000, 84, 3261. [Google Scholar] [CrossRef]
- Liu, K.F. Hadrons, Superconductor Vortices, and Cosmological Constant. Phys. Lett. B 2024, 849, 138418. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sheng, B.-K.; Ma, Y.-L. A Bridge between Trace Anomalies and Deconfinement Phase Transitions. Symmetry 2024, 16, 718. https://doi.org/10.3390/sym16060718
Sheng B-K, Ma Y-L. A Bridge between Trace Anomalies and Deconfinement Phase Transitions. Symmetry. 2024; 16(6):718. https://doi.org/10.3390/sym16060718
Chicago/Turabian StyleSheng, Bing-Kai, and Yong-Liang Ma. 2024. "A Bridge between Trace Anomalies and Deconfinement Phase Transitions" Symmetry 16, no. 6: 718. https://doi.org/10.3390/sym16060718
APA StyleSheng, B. -K., & Ma, Y. -L. (2024). A Bridge between Trace Anomalies and Deconfinement Phase Transitions. Symmetry, 16(6), 718. https://doi.org/10.3390/sym16060718