An Elastic-Plastic Constitutive Model for Unsaturated Structural Loess
Abstract
:1. Introduction
2. Constitutive Model
2.1. The Critical State Line of Unsaturated Intact Loess under Axisymmetric Stress Conditions
2.2. The Initial Yield Surface of Unsaturated Intact Loess
2.3. Hardening Laws
2.4. Flow Rules
2.5. Stress–Strain Relationships
3. Model Prediction and Validation
3.1. Verification of Intact Loess in the Guanzhong Region
3.2. Verification of Intact Loess in the Northern Shaanxi Region
3.3. Verification of Intact Loess in Gansu Province
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yao, Y.; Zhang, Y.; Gao, X.; Huang, H.; Liu, D.; Hui, X. Study on permeability and collapsibility characteristics of sandy loess in northern Loess Plateau, China. J. Hydrol. 2021, 603, 126883. [Google Scholar] [CrossRef]
- Matoshko, A. Loess and its derivatives in a common sedimentary and geomorphic evolution of the East European Plain. Aeolian Res. 2021, 53, 100750. [Google Scholar] [CrossRef]
- Gao, D.; Zhao, K.; Jin, S.; Xing, Y. Moistening Deformation Constitutive Model for Unsaturated Loess. Int. J. Geomech. 2022, 22, 04022123. [Google Scholar] [CrossRef]
- Xing, Y.; Gao, D.; Jin, S.; Zhang, A.; Guo, M. Study on Mechanical Behaviors of Unsaturated Loess in terms of Moistening Level. KSCE J. Civ. Eng. 2019, 23, 1055–1063. [Google Scholar] [CrossRef]
- Giomi, I.; Francisca, F.M. Numerical Modeling of the Oedometrical Behavior of Collapsible Loess. Geotech. Geol. Eng. 2022, 40, 2501–2512. [Google Scholar] [CrossRef]
- Francisca, F.M.; Giomi, I.; Rocca, R.J. Inverse analysis of shallow foundation settlements on collapsible loess: Understanding the impact of varied soil mechanical properties during wetting. Comput. Geotech. 2024, 167, 106090. [Google Scholar] [CrossRef]
- Wen, B.P.; Yan, Y.J. Influence of structure on shear characteristics of the unsaturatedloess in Lanzhou, China. Eng. Geol. 2014, 168, 46–58. [Google Scholar] [CrossRef]
- Pan, L.; Zhu, J.-G.; Zhang, Y.-F. Evaluation of Structural Strength and Parameters of Collapsible Loess. Int. J. Geomech. 2021, 21, 04021066. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, D.; Zhang, Y.; Chen, H.; Ma, W. Variations in hydraulic properties of collapsible loess exposed to wetting and shearing. Acta Geotech. 2022, 17, 2995–3015. [Google Scholar] [CrossRef]
- Wang, L.; Shao, S.; She, F. A new method for evaluating loess collapsibility and its application. Eng. Geol. 2020, 264, 105376. [Google Scholar] [CrossRef]
- Yates, K.; Russell, A.R. The unsaturated characteristics of natural loess in slopes, New Zealand. Geotechnique 2022, 73, 871–884. [Google Scholar] [CrossRef]
- Roscoe, K.H.; Burland, J.B. On the Generalized Stress-Strain Behaviour of ‘Wet’ Clay; Cambridge University Press: Cambridge, UK, 1968; pp. 535–609. [Google Scholar]
- Alonso, E.E.; Gens, A.; Josa, A. A constitutive model for partially saturated soils. Géotechnique 1990, 40, 405–430. [Google Scholar] [CrossRef]
- Zhou, A.N. A contact angle-dependent hysteresis model for soil–water retention behaviour. Comput. Geotech. 2013, 49, 36–42. [Google Scholar] [CrossRef]
- Fang, J.; Feng, Y. Elastoplastic model and three-dimensional method for unsaturated soils. Shock Vib. 2020, 2020, 8592628. [Google Scholar] [CrossRef]
- Zhou, A.; Wu, S.; Li, J.; Sheng, D. Including degree of capillary saturation into constitutive modelling of unsaturated soils. Comput. Geotech. 2018, 95, 82–98. [Google Scholar] [CrossRef]
- Yao, Y.; Niu, L.; Cui, W. Unified hardening (UH) model for overconsolidated unsaturated soils. Can. Geotech. J. 2014, 51, 810–821. [Google Scholar] [CrossRef]
- Sheng, D.; Sloan, S.W.; Gens, A. A constitutive model for unsaturated soils: Thermomechanical and computational aspects. Comput. Mech. 2004, 33, 453–465. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, Z.; Weng, X. A constitutive model for loess considering the characteristics of structurality and anisotropy. Soil Mech. Found. Eng. 2022, 59, 32–43. [Google Scholar] [CrossRef]
- Zhu, E.-Y.; Yao, Y.-P. Structured UH model for clays. Transp. Geotech. 2015, 3, 68–79. [Google Scholar] [CrossRef]
- Yao, Y.; Tian, Y.; Cui, W.; Luo, T.; Li, S. Unified hardening (UH) model for unsaturated expansive clays. Acta Geotech. 2023, 19, 3655–3669. [Google Scholar] [CrossRef]
- Mu, Q.; Dai, B.; Zhou, C. A constitutive model for structured soils under saturated and unsaturated conditions. Int. J. Numer. Anal. Methods Geomech. 2023, 47, 2562–2586. [Google Scholar] [CrossRef]
- Weng, X.; Hou, L.; Hu, J.; Zhou, R. An elastoplastic constitutive model for unsaturated loess with internal structure. Acta Geotech. 2023, 19, 3603–3619. [Google Scholar] [CrossRef]
- Yao, Z.; Chen, Z.; Fang, X.; Wang, W.; Li, W.; Su, L. Elastoplastic damage seepage–consolidation coupled model of unsaturated undisturbed loess and its application. Acta Geotech. 2020, 15, 1637–1653. [Google Scholar] [CrossRef]
- Moghaddasi, H.; Shahbodagh, B.; Khalili, N. A bounding surface plasticity model for unsaturated structured soils. Comput. Geotech. 2021, 138, 104313. [Google Scholar] [CrossRef]
- Shahbodagh, B.; Habte, M.A.; Khoshghalb, A.; Khalili, N. A bounding surface elasto-viscoplastic constitutive model for non-isothermal cyclic analysis of asphaltic materials. Int. J. Numer. Anal. Methods Geomech. 2016, 41, 721–739. [Google Scholar] [CrossRef]
- Liang, Q.; Wu, X.; Li, C.; Wang, L. Mechanical analysis using the unconfined penetration test on the tensile strength of Q3 loess around Lanzhou City, China. Eng. Geol. 2014, 183, 324–329. [Google Scholar] [CrossRef]
- Leng, Y.; Peng, J.; Wang, S.; Lu, F. Development of water sensitivity index of loess from its mechanical properties. Eng. Geol. 2021, 280, 105918. [Google Scholar] [CrossRef]
- Dang, J.Q.; Li, J. The structural strength and shear strength of unsaturated loess. J. Hydraul. Eng. 2001, 7, 79–83. [Google Scholar] [CrossRef]
- Horpibulsuk, S.; Liu, M.D.; Liyanapathirana, D.S.; Suebsuk, J. Behaviour of cemented clay simulated via the theoretical framework of the Structured Cam Clay model. Comput. Geotech. 2010, 37, 1–9. [Google Scholar] [CrossRef]
- Niu, L.S.; Zhang, A.J.; Zhao, J.M.; Wang, Y.G.; Zhao, Q.Y. Influences of soluble salt content on mechanical properties of Ili undisturbed loess. Chin. J. Geotech. Eng. 2020, 42, 1705–1714. [Google Scholar] [CrossRef]
- Turkeltaub, T.; Jia, X.; Zhu, Y.; Shao, M.A.; Binley, A. A Comparative Study of Conceptual Model Complexity to Describe Water Flow and Nitrate Transport in Deep Unsaturated Loess. Water Resour. Res. 2021, 57, e2020WR029250. [Google Scholar] [CrossRef]
- Niu, L.; Niu, H.; Zhao, Y.; Ge, L.; Guo, M.; Ren, W.; Wang, Y.; Zhang, A. Study on the unified mechanical properties of Ili undisturbed loess under the influence of soluble salt. Sustainability 2023, 15, 14717. [Google Scholar] [CrossRef]
- Wang, Y.; Yao, Y.P.; Hu, Y.D.; Mei, Y. Experimental study on strength and deformation characteristics of intact loess with different water content. J. Xi’an Univ. Archit. Technol. (Nat. Sci. Ed.) 2022, 54, 325–330. [Google Scholar] [CrossRef]
- Miao, H.C. The Deformation Properties under Increasing Moisture and Moistening Shear of Collapsible Loess. Master’s Thesis, Xi’an University of Technology, Xi’an, China, 2018. [Google Scholar]
- Zhang, D.; Wang, J.; Chen, C.; Wang, S. The compression and collapse behaviour of intact loess in suction-monitored triaxial apparatus. Acta Geotech. 2020, 15, 529–548. [Google Scholar] [CrossRef]
- Yin, J. A modified cam clay model for structured soft calys. Eng. Mech. 2013, 30, 190–197. [Google Scholar] [CrossRef]
- Nan, J.J. Study on Mechanical Behavior and Microstructural Variation in Loess under Loading and Wetting. Ph.D. Thesis, Chang’an University, Xi’an, China, 2021. [Google Scholar] [CrossRef]
- Pang, T.T. Study on the Mechanical Characteristics and Soil-Water Characteristics of Loess under Wetting and Loading. Master’s Thesis, Xi’an University of Technology, Xi’an, China, 2020. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, D.; Zhao, K.; Xing, Y.; Guo, N.; Yang, X. An Elastic-Plastic Constitutive Model for Unsaturated Structural Loess. Symmetry 2024, 16, 1096. https://doi.org/10.3390/sym16091096
Gao D, Zhao K, Xing Y, Guo N, Yang X. An Elastic-Plastic Constitutive Model for Unsaturated Structural Loess. Symmetry. 2024; 16(9):1096. https://doi.org/10.3390/sym16091096
Chicago/Turabian StyleGao, Denghui, Kuanyao Zhao, Yichuan Xing, Nan Guo, and Xiaohui Yang. 2024. "An Elastic-Plastic Constitutive Model for Unsaturated Structural Loess" Symmetry 16, no. 9: 1096. https://doi.org/10.3390/sym16091096
APA StyleGao, D., Zhao, K., Xing, Y., Guo, N., & Yang, X. (2024). An Elastic-Plastic Constitutive Model for Unsaturated Structural Loess. Symmetry, 16(9), 1096. https://doi.org/10.3390/sym16091096