Next Article in Journal
The Relationship between Cardiomyocyte Action Potentials and Ion Concentrations: Machine Learning Prediction Modeling and Analysis of Spontaneous Spiral Wave Generation Mechanisms
Previous Article in Journal
The Optimal Experimental Design for Exponentiated Frech’et Lifetime Products
Previous Article in Special Issue
Inverse Applications of the Generalized Littlewood Theorem Concerning Integrals of the Logarithm of Analytic Functions
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Sharp Results for a New Class of Analytic Functions Associated with the q-Differential Operator and the Symmetric Balloon-Shaped Domain

1
Department of Mathematics and Statistics, Hazara University Mansehra, Mansehra 21120, Pakistan
2
Department of Mathematical Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates
3
Department of Mathematics, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
*
Author to whom correspondence should be addressed.
Symmetry 2024, 16(9), 1134; https://doi.org/10.3390/sym16091134
Submission received: 4 July 2024 / Revised: 24 August 2024 / Accepted: 25 August 2024 / Published: 2 September 2024
(This article belongs to the Special Issue Symmetry in Geometric Theory of Analytic Functions)

Abstract

:
In our current study, we apply differential subordination and quantum calculus to introduce and investigate a new class of analytic functions associated with the q-differential operator and the symmetric balloon-shaped domain. We obtain sharp results concerning the Maclaurin coefficients the second and third-order Hankel determinants, the Zalcman conjecture, and its generalized conjecture for this newly defined class of q-starlike functions with respect to symmetric points.

1. Introduction

Let H D denote the class of all of analytic functions ψ defined in the open unit disk D = { ς C : ς < 1 } , and let A be the subclass of H D containing all analytic functions ψ ς provided by the Maclaurin series:
ψ ς = ς + t = 2 a t ς t .
By S , S , C , K , and R , we refer to the well-known subclasses of H D , which include all univalent, starlike, convex, close-to-convex functions, and functions with bounded turnings, respectively. These classes and their generalizations have been extensively studied using various techniques and tools over the past few decades. In Geometric Function Theory, subordination is an important tool for defining certain new subclasses of analytic functions and establishing several geometric properties of the subclasses. Let ψ and ξ be two analytic functions in H D , where ψ is said to be subordinate to ξ , written as ψ ξ , if a Schwarz function w exists in H D with w ( 0 ) = 0 and w ( ς ) < 1 , such that ψ = ξ ( w ς ) (see [1]) . Furthermore, if the function ξ S , then
ψ ξ if and only if ψ ( 0 ) = ξ ( 0 ) = 0 and ψ D ξ D .
For two analytic functions ψ and ξ in A with the series representation of ψ given in (1) and ξ ( ς ) = ς + t = 2 b t ς t , the convolution (Hadamard product) ψ ξ is defined by
ψ ξ ( ς ) = ς + t = 2 a t b t ς t .
By applying the principle of subordination, Shanmugam [2] and Padmanabhan et al. [3] studied the natural generalization of starlike and convex functions. Later, Ma and Minda [4] introduced unified classes S ( ξ ) and C ( ξ ) , as follows:
S ( ξ ) = ψ A : ς ψ ς ψ ς ξ ( ς ) ς D ,
C ( ξ ) = ψ A : 1 + ς ψ ς ψ ς ξ ( ς ) ς D ,
where ξ is an analytic, univalent, and starlike function whose real part is positive in D with ξ ( 0 ) = 1 and ξ ( 0 ) > 0 . The geometry of the function ξ is such that its image domain is symmetric about the real axis. Over time, numerous researchers have defined and investigated various new classes of analytic and univalent functions by applying certain operators and considering image domains of the diverse functions ξ . For detailed information, see [5,6,7,8,9,10,11].
Researchers have recently shifted their focus towards q-calculus, recognizing its applications and significance. This shift led them to define important and interesting subclasses of analytic functions in the framework of q-calculus. Q-calculus is like classical calculus, but it does not use the notation of limits. Its theory has attracted researchers because of its extensive applications in special functions, differential equations, mathematical analysis, number theory, hypergeometric series, applied physics, complex analysis, and related areas.
Jackson [12,13] was the first to introduce the q-analogs of differential and integral operators. Srivastava [14] initiated the application of q-calculus in Geometric Function Theory by introducing q-hypergeometric functions. Since then, many authors have significantly contributed by defining and exploring new subclasses of analytic functions using q-calculus, which have played a crucial role in developing Geometric Function Theory.
Ismail et al. [15] employed the q-difference operator to extend starlike functions to q-starlike functions, while Agarwal et al. [16] further extended this work. Furthermore, Ashis et al. [17] used q-hypergeometric series and trigonometric functions to derive recursion formulas. For more details, see [18,19,20,21,22,23].
Recently, an appealing and innovative approach to defining and studying new classes of analytic functions through image domain generalization and specific q-operators has become an attractive and effective tool. For example, Jabeen et al. [24] defined and studied a class of q-convex functions using the q-Ruscheweyh operator in conic regions. Khan et al. [25] addressed sharp coefficient problems for a subclass defined by the q-operator and a generalization of the lemniscate of Bernoulli. Mahmood et al. [26] proved the geometric properties of q-starlike functions associated with the q-integral operator, and Seoudy et al. [27] addressed certain coefficient problems for q-starlike and q-convex functions. Vijay et al. [28] studied Ozaki-type functions related to fractional operators and three-leaf-type functions. Sailu et al. [29] defined a new class of starlike functions using the q-version of Limaçon functions, and Shaba et al. [30] proved important inequalities for this generalized Limaçon a domain. Furthermore, Srivastava et al. [31] established a subclass of q-starlike functions through the generalization of the exponential function and estimated Hankel determinants of different orders, while Swarup [32] introduced a new subclass of q-starlike functions associated with the q-extension of the tangent hyperbolic function. Zhang et al. [33] introduced a new subclass of the q-starlike functions associated with generalizing the conic domain.
Next, we present some basic q-calculus definitions that will aid our investigations. Also, see [34] for more applications of the q difference operator.
Definition 1 
([12]). For q 0 , 1 , the q difference operator of a function ψ is defined as follows:
D q ψ ( ς ) = ψ ( q ς ) ψ ( ς ) ς ( q 1 ) ( ς D , ς 0 ) .
For example,
D q t = 1 a t ς t = t = 1 [ t ] q a t ς t 1 ,
where [ t ] q is the so called q −number, defined by:
[ t ] q = 1 q t 1 q , t C k = 0 n 1 q k = 1 + q + q 2 + + q n 1 , t = n N .
One can observe that lim q 1 D q ψ ( ς ) = ψ ( ς ) . Thus, the classical derivative can be seen as the limit of the q −difference operators.
Definition 2 
([35]). For t 0 , the q −generalization of the factorial notation is defined as follows:
[ t ] q ! = 1 , t = 0 , [ 1 ] q [ 2 ] q [ 3 ] q [ t ] q , t N .
Definition 3 
([31]). For q 0 , 1 , the q −exponential function is defined as
e q ς = t = 2 ς t [ t ] q ! = 1 + ς [ 1 ] q ! + ς 2 [ 2 ] q ! + ς 3 [ 3 ] q ! + . . . .
Now, we introduce the new class ψ S B s q of q-starlike functions connected with the q-difference operator and the balloon-shaped domain, as initiated by Ahmed et al. initiated in [36]. This class is symmetric about the real axis.
Definition 4. 
Let ψ S B s q denote the subclass of A that contains all ψ known as q-starlike functions with symmetric points, such that the following subordination holds
2 ς D q ψ ς ψ ς ψ ς 2 1 + q ς 1 + e q ς , ς D , q 0 , 1 .
Geometrically, for the function ψ S B s q , the functional 2 ς D q ψ ς ψ ς ψ ς maps the open unit disc D into the inflated balloon-shaped domain. This new class extends the notion of starlike functions with respect to symmetric points, initiated by Sakaguchi [37], to q-starlike functions with respect to symmetric points. We also extend the class established and investigated by Khan et al. in [38].
In Geometric Function Theory, coefficient-related inequalities play a key role in understanding the behavior and convergence properties of analytic functions within specific domains, especially those with favorable geometric interpretations. For this purpose:
Zalcman proposed a conjecture for ψ S in the 1960s, which states
a t 2 a 2 t 1 t 1 2 , for t N { 1 } .
In 1999, Ma [39] proposed a generalized Zalcman conjecture:
a t a s a t + s 1 t 1 s 1 , for s , t N { 1 } .
Despite several authors demonstrating these inequalities for specific values and coefficients of certain subclasses of univalent functions, these conjectures remain unsolved.
Let ψ A , where the r t h Hankel determinant H r , n is defined in [40] as follows:
H r , n ( ψ ) = a n a n + 1 . . . a n + r 1 a n + 1 a n + 2 . . . a n + r . . . . . . . . . . . . . . . . . . a n + r 1 a n + r . . . a n + 2 r 1 ,
where a n are the coefficients of the Maclaurin series (1) for the analytic function ψ , with a 1 = 1 . For example, the second and third Hankel determinants are given by.
H 2 , 1 ( ψ ) = 1 a 2 a 2 a 3 = a 3 a 2 2 , H 2 , 2 ( ψ ) = a 2 a 3 a 3 a 4 = a 2 a 4 a 3 2 ,
H 3 , 1 ( ψ ) = 1 a 2 a 3 a 2 a 3 a 4 a 3 a 4 a 5 = a 3 a 2 a 4 a 3 2 a 4 a 4 a 2 a 3 + a 5 a 3 a 2 2 .
The primary goal of this investigation is to obtain sharp inequalities for the Maclaurin coefficient bounds, the upper limits of second and third-order Hankel determinants, the Zalcman conjecture, and its generalization conjecture for the newly defined class ψ S B s q of q-starlike functions with respect to symmetric points.

2. A Set of Lemmas

The following lemmas will be instrumental in illustrating our main findings and providing further clarity.
Let P represent the subclass of H D containing all Carathéodory functions p, such that p ( 0 ) = 1 , R e ( p ( ς ) ) > 0 , and with the following Maclaurin series.
p ς = 1 + t = 1 c t ς t .
Let ψ A and p P be functions with series representation given in (1) and (11), respectively. Then, class W ϕ , φ , p is defined in [41], as
ϕ ψ φ ψ p ,
where
φ ς = ς + t = 2 u t ς t and ϕ ς = ς + t = 2 v t ς t .
Lemma 1 
([40]). Let p P , then the following inequalities hold true
c t 2 , f o r t 1 ,
c t + k ν c t c k < 2 , f o r 0 ν 1 .
Lemma 2. 
Let p P , then there exists k , δ   D ¯ = ς C : ς 1 , such that
c 2 = 1 2 c 1 2 + k 4 c 1 2 ,
and
c 3 = 1 4 c 1 3 + 2 c 1 k 4 c 1 2 4 c 1 2 c 1 k 2 + 2 4 c 1 2 1 k 2 δ .
The values provided in (15) and (16) are due to [40,42], respectively.
Lemma 3 
([42]). Let p P , 0 M 1 and M 2 M 1 N M . Then,
c 3 2 M c 1 c 2 + N c 1 3 2 .
Lemma 4 
([43]). Let p P , and α , β , γ , and λ satisfy the inequalities 0 < λ < 1 , 0 < α < 1 , and
8 λ 1 λ α β 2 γ 2 + α λ + α β 2 + α 1 α β 2 λ α 2 4 α 2 1 α 2 λ 1 λ .
Then, we have
γ c 1 4 + λ c 2 2 + 2 α c 1 c 3 3 2 β c 1 2 c 2 c 4 2 .
Lemma 5 
([41]). Let ψ W ϕ , φ , p and v k u k for (k=2,3). Then,
a 2 p 1 v 2 u 2 , a 3 p 1 v 3 u 3 max 1 , ρ ,
and
a 3 μ a 2 2 p 1 v 3 u 3 max 1 , η , μ C ,
where
ρ = p 2 p 1 + u 2 p 1 v 2 u 2 a n d η = v 3 u 3 v 2 u 2 2 p 1 μ ρ .
The results are sharp.

3. Main Results

It is worth mentioning at the beginning of this section that if ψ A , has the series representation given in 1 , along with
ϕ 1 ς = ς D q ς 1 ς = ς + t = 2 [ t ] q ς t = ς + 1 + q ς + 1 + q + q 2 ς 2 + .
φ 1 ς = 1 2 ς 1 ς + ς 1 ς = t = 1 ς 2 t 1 = ς + ς 3 + ς 5 + .
and
p q ς = 1 + q ς 1 + e q ς = 1 + p 1 ς + p 2 ς 2 + .
Then, for a 1 = 1 ,
ψ ς ψ ς 2 = t = 1 a 2 t 1 ς 2 t 1 = ς + t = 2 a t ς t ς + t = 2 ς 2 t 1 = ψ ς φ 1 ς .
Furthermore, by applying the q −difference operator,
ς D q ψ ς = ς + t = 2 t q a t ς t = ς + t = 2 a t ς t ς + t = 2 t q ς t = ψ ς ϕ 1 ς ,
It follows from (20) and (21) that
2 ς D q ψ ς ψ ς ψ ς = ψ ς ϕ 1 ς ψ ς φ 1 ς .
Thus, we conclude that the newly defined class S B s q is a particular case of the class W ϕ , φ , p , that is
S B s q = W ϕ 1 , φ 1 , p q .
Moreover, we can apply Lemma 5 from (22) to obtain the following corollary.
Corollary 1. 
Let ψ S B s q , provided in (1), then we have
a 2 1 2 ,
a 3 1 2 q , q 0 , 1
and
a 3 a 2 2 1 2 q , q 0 , 1 .
Proof. 
Let ψ S B s q , then by the application of Lemma 5,
u 2 = 0 , u 3 = 1 , v 2 = 1 + q , v 3 = 1 + q + q 2 , p 1 = 1 + q 2 ,
and
p 2 = 1 + q 4 1 2 1 + q q 2 8 .
Using Lemma 5 , we obtain
a 2 1 2 .
To prove (24) and (25), we consider
ρ = p 2 p 1 + u 2 p 1 v 2 u 2 and η = v 3 u 3 v 2 u 2 2 p 1 ρ .
Applying the given values and simplifying,
ρ = 1 4 1 + q 2 q 3 + q 2 + 4 q 2 1 , for all q 0 , 1 , η = 1 4 1 + q 2 3 q 3 + 3 q 2 2 q + 2 1 , for all q 0 , 1 .
Hence, Lemma 5 proves that
a 3 p 1 v 3 u 3 = 1 2 q and a 3 a 2 2 p 1 v 3 u 3 = 1 2 q .
Theorem 1. 
Let ψ S B s q , as given in (1). Then,
a 4 1 2 1 + q 2 , for q 0.535 , 1 ,
a 5 1 2 q 1 + q 2 , for q 0.723 , 1 .
Proof. 
Let ψ S B s q , then by (6), we have
2 ς D q ψ ς ψ ς ψ ς 2 1 + q ς 1 + e q ς .
Thus, there is a Schwarz function w ς , such that
2 ς D q ψ ς ψ ς ψ ς = 2 1 + q w ς 1 + e q w ς .
Let p P , then we have
p ς = 1 + w ς 1 w ς = 1 + c 1 ς + c 2 ς 2 + c 3 ς 3 + c 4 ς 4 + .
It follows that
w ς = p ς 1 1 + p ς = c 1 ς + c 2 ς 2 + c 3 ς 3 + c 4 ς 4 + 2 + c 1 ς + c 2 ς 2 + c 3 ς 3 + c 4 ς 4 + ,
which provided
w ς = 1 2 c 1 ς + 1 2 c 2 1 4 c 1 2 ς 2 + 1 8 c 1 3 1 2 c 1 c 2 + 1 2 c 3 ς 3 + 1 2 c 4 1 2 c 1 c 3 1 4 c 2 2 1 16 c 1 4 + 3 8 c 1 2 c 2 ς 4 + .
Substituting the above Maclaurin series of w ς and simplifying, we obtain
2 1 + q w ς 1 + e q w ς = 1 + 2 q c 1 4 ς + 2 q 4 c 2 10 2 q + 5 q 2 + q 3 32 2 q c 1 2 ς 2 + 2 q 4 c 3 5 + 4 q + 4 q 2 + q 3 16 2 q c 1 c 2 + 6 + 2 q + 13 q 2 + 8 q 3 + 4 q 4 + q 5 128 3 q c 1 3 ς 3 + 2 q 4 c 4 + 78 + 24 q + 45 q 2 + 3 q 3 + 36 q 4 + 15 q 5 + 3 q 6 128 2 q 3 q c 1 2 c 2 216 136 q + 208 q 2 76 q 3 + 173 q 4 + 118 q 5 + 179 q 6 + 95 q 7 + 30 q 8 + 5 q 9 2048 3 q 4 q c 1 4 4 + 4 q + 5 q 2 + q 3 16 2 q c 1 c 3 4 + 4 q + 5 q 2 + q 3 32 2 q c 2 2 ς 4 + . . . .
On the other hand, taking the series form provided in (1) along with (5), we have
2 ς D q ψ ς ψ ς ψ ς = 2 ς 1 + t = 2 [ t ] q a t ς t 1 ς + t = 2 a t ς t ς + t = 2 a t ς t , = 1 + [ 2 ] q a 2 ς + [ 3 ] q a 3 ς 2 + [ 4 ] q a 4 ς 3 + 1 + a 3 ς 2 + a 5 ς 4 .
The simple computations provide
2 ς D q ψ ς ψ ς ψ ς = 1 + 2 q a 2 ς + 3 q 1 a 3 ς 2 + 4 q a 4 2 q a 2 a 3 ς 3 + 5 q 1 a 5 3 q 1 a 3 2 ς 4 + . . . .
From (28) and (29), comparing the coefficients of ς , ς 2 , ς 3 , ς 4 and simple computations provide
a 2 = c 1 4 ,
a 3 = 1 q 2 q 1 + q 4 c 2 10 2 q + 5 q 2 + q 3 32 1 + q c 1 2 ,
a 4 = 1 4 q 1 + q 4 c 3 q 4 + 4 q 3 + 3 q 2 + 3 q 1 16 q 1 + q c 1 c 2 + q 7 + 5 q 6 + 11 q 5 + 15 q 4 + 11 q 3 5 q 2 2 q 10 128 q 1 + q 1 + q + q 2 c 1 3 ,
and
a 5 = 1 q 4 q 1 + q 4 c 4 + 3 q 7 + 15 q 6 + 34 q 5 9 q 4 + 37 q 3 2 q 2 + 62 q 20 128 q q 3 + 2 q 2 + 2 q + 1 c 1 2 c 2 q 3 + 5 q 2 + 4 q + 4 16 1 + q c 1 c 3 q 4 + 5 q 3 + 2 q 2 2 32 q 1 + q c 2 2 Υ 1 q 2048 q q + 1 3 q 4 + q 3 + 2 q 2 + q + 1 c 1 4 ,
where
Υ 1 q = 5 q 12 + 40 q 11 + 158 q 10 + 377 q 9 + 505 q 8 + 504 q 7 + 74 q 6 + 39 q 5 374 q 4 96 q 3 232 q 2 + 96 q 200 .
From (32), we have
a 4 = 1 + q 4 4 q c 3 q 4 + 4 q 3 + 3 q 2 + 3 q 1 4 q 1 + q 2 c 1 c 2 + q 7 + 5 q 6 + 11 q 5 + 15 q 4 + 11 q 3 5 q 2 2 q 10 32 q 1 + q 2 1 + q + q 2 c 1 3 .
To apply Lemma 3, we consider
M = q 4 + 4 q 3 + 3 q 2 + 3 q 1 8 q 1 + q 2 and N = q 7 + 5 q 6 + 11 q 5 + 15 q 4 + 11 q 3 5 q 2 2 q 10 32 q 1 + q 2 1 + q + q 2 .
It can be easily seen that 0 < M < 1 for q 0.24926 , 1 and N < M for all q 0 , 1 . Additionally, M 2 M 1 N < 0 for q 0.5353 , 1 . Therefore, by Lemma 3, we have
a 4 1 2 1 + q 2 , q 0.5353 , 1 .
From (33), we have
a 5 = 1 + q 4 q 4 q Υ 1 q 512 q 1 + q 4 q 4 + q 3 + 2 q 2 + q + 1 c 1 4 + q 4 + 5 q 3 + 2 q 2 + 2 8 q 1 + q 2 c 2 2 + q 3 + 5 q 2 + 4 q + 4 4 1 + q 2 c 1 c 3 3 q 7 + 15 q 6 + 34 q 5 9 q 4 + 37 q 3 2 q 2 + 62 q 20 32 q 1 + q q 3 + 2 q 2 + 2 q + 1 c 1 2 c 2 c 4 .
To apply Lemma 4, we consider,
γ = Υ 1 q 512 q 1 + q 4 q 4 + q 3 + 2 q 2 + q + 1 , λ = q 4 + 5 q 3 + 2 q 2 + 2 8 q 1 + q 2 ,
where
Υ 1 q = 5 q 12 + 40 q 11 + 158 q 10 + 377 q 9 + 505 q 8 + 504 q 7 + 74 q 6 + 39 q 5 374 q 4 96 q 3 232 q 2 + 96 q 200 ,
and
α = q 3 + 5 q 2 + 4 q + 4 8 1 + q 2 , β = 3 q 7 + 15 q 6 + 34 q 5 9 q 4 + 37 q 3 2 q 2 + 62 q 20 48 q 1 + q q 3 + 2 q 2 + 2 q + 1 .
Clearly, 0 < λ < 1 and 0 < α < 1 for q 0 , 1 . Now, consider
8 λ 1 λ α β 2 γ 2 + α λ + α β 2 + α 1 α β 2 λ α 2 4 α 2 1 α 2 λ 1 λ = Ψ 1 q ,
where
Ψ 1 q = Λ 1 q 147456 q 2 q + 1 10 q 2 + q + 1 2 ,
and
Λ 1 q = 111 q 20 672 q 19 + 2156 q 18 + 26552 q 17 + 65731 q 16 74150 q 15 884511 q 14 2936298 q 13 6360820 q 12 10237558 q 11 + 12723173 q 10 12062862 q 9 8015668 q 8 2679044 q 7 + 1316924 q 6 + 2479552 q 5 + 1758320 q 4 + 678208 q 3 + 129344 q 2 + 17920 q + 3328
After some simple calculations, one can see that Ψ 1 q 0 , for all q 0.723 , 1 . By using Lemma 4, we obtain
a 5 1 2 q 1 + q 2 .
Remark 1. 
The inequalities (23)–(27) in Corollary 1 and Theorem 1 are sharp. The equalities are obtained by the normalized extremal function ψ n , respectively defined by
2 ς D q ψ n ς ψ n ς ψ n ς = 2 1 + q ς n 1 + e q ς n , f o r n = 1 , 2 , 3 , 4 .
That is, the normalized extremal functions are provided by:
2 ς D q ψ 1 ς ψ 1 ς ψ 1 ς = 2 1 + q ς 1 + e q ς = 1 + 1 2 1 + q ς + q 3 + q 2 + 4 q 2 8 q + 1 ς 2 + . . . ,
2 ς D q ψ 2 ς ψ 2 ς ψ 2 ς = 2 1 + q ς 2 1 + e q ς 2 = 1 + 1 2 1 + q ς 2 + q 3 + q 2 + 4 q 2 8 q + 1 ς 4 + . . . ,
2 ς D q ψ 3 ς ψ 3 ς ψ 3 ς = 2 1 + q ς 3 1 + e q ς 3 = 1 + 1 2 1 + q ς 3 + q 3 + q 2 + 4 q 2 8 q + 1 ς 6 + . . . ,
2 ς D q ψ 4 ς ψ 4 ς ψ 4 ς = 2 1 + q ς 4 1 + e q ς 4 = 1 + 1 2 1 + q ς 4 + q 3 + q 2 + 4 q 2 8 q + 1 ς 8 + . . . .
To show that the function defined by (34) is the extremal function of the sharpness of (23), we compare the coefficients of the series in (29) with the coefficients of the series in (34), and then apply definition (1), we have
2 q a 2 = 1 2 1 + q , 1 + q a 2 = 1 2 1 + q , w h i c h g i v e s a 2 = 1 2 .
3 q 1 a 3 = q 3 + q 2 + 4 q 2 8 1 + q , w h i c h g i v e s a 3 = q 3 + q 2 + 4 q 2 8 q 1 + q 2 .
Thus, the normalized extremal function defined by (34) is given below.
ψ ς = ς + 1 2 ς 2 + q 3 + q 2 + 4 q 2 8 q 1 + q 2 ς 3 + .
In this manner, we can also obtain the extremal functions defined by (35)–(37).
The following example provides an extremal function of the sharpness (23) and confirms that the new class S B s q is non-empty.
Example 1. 
Let
ψ ς = ς + 0.5 ς 2 + 0.064 ς 3 0.000137 ς 4 0.000355 ς 5 ,
then
2 ς D 0.8 ψ ς ψ ς ψ ς = 2 1 + 0.8 ς 1 + e 0.8 ς , ς D .
It implies ψ S B s 0.8 with
a 2 = 0.5 , a 3 = 0.064 < 1 2 × 0.8 , a 4 = 0.000137 < 1 2 1 + 0 . 8 2 , a 5 = 0.000355 < 1 2 × 0.8 1 + 0 . 8 2 .
Theorem 2. 
Let ψ S B s q be provided in (1). Then,
a 4 a 2 a 3 1 2 q 2 + 1 , f o r q 0.762 , 1 .
The result is sharply obtained by the function given in (36).
Proof. 
From (30)–(32), using the definition of q-number, we have
a 4 a 2 a 3 = q + 1 4 q 3 + q 2 + q + 1 c 3 q 4 + 4 q 3 + 3 q 2 + 3 q 1 16 q q + 1 q 3 + q 2 + q + 1 c 1 c 2 + q 7 + 5 q 6 + 11 q 5 + 15 q 4 + 11 q 3 5 q 2 2 q 10 128 q q + 1 q 2 + q + 1 q 3 + q 2 + q + 1 c 1 3 c 1 4 1 q q + 1 q + 1 4 c 2 q 3 + 5 q 2 2 q + 10 32 q + 1 c 1 2 .
Collecting the like terms, we obtain
a 4 a 2 a 3 = q + 1 4 1 + q + q 2 + q 3 c 3 2 q 3 + 6 q 2 + 5 q + 5 16 q q + 1 q 3 + q 2 + q + 1 c 1 c 2 + q 8 + 7 q 7 + 10 q 6 + 30 q 5 + 27 q 4 + 34 q 3 + 3 q 2 + 8 q 10 128 q q + 1 q 2 + 1 q 3 + q 2 + q + 1 c 1 3 .
Some simple calculations yield
a 4 a 2 a 3 = q + 1 4 q 3 + q 2 + q + 1 c 3 2 q 3 + 6 q 2 + 5 q + 5 4 q q + 1 2 c 1 c 2 + q 8 + 7 q 7 + 10 q 6 + 30 q 5 + 27 q 4 + 34 q 3 + 3 q 2 + 8 q 10 32 q q + 1 2 q 2 + 1 c 1 3 .
Assume
M = 2 q 3 + 6 q 2 + 5 q + 5 8 q q + 1 2 and N = q 8 + 7 q 7 + 10 q 6 + 30 q 5 + 27 q 4 + 34 q 3 + 3 q 2 + 8 q 10 32 q q + 1 2 q 2 + 1 .
Clearly, 0 < M < 1 for q 0 , 1 and N < M for q 0 , 1 also M 2 M 1 N 0 for all q 0.762 , 1 . Then, by Lemma 3, we have
a 4 a 2 a 3 1 2 q 2 + 1 , q 0.762 , 1 .
Theorem 3. 
Let ψ S B s q , as in (1). Then,
a 3 2 a 5 1 2 q q 2 + 1 , f o r q 0.628 , 1 .
The result is sharply obtained by the function given in (37).
Proof. 
From (31) and (33), applying the definition of q-number, we have
a 3 2 a 5 = 1 q q + 1 q + 1 4 c 2 q 3 + 5 q 2 2 q + 10 32 q + 1 c 1 2 2 q + 1 4 q q 3 + q 2 + q + 1 c 4 + 3 q 7 + 15 q 6 + 34 q 5 9 q 4 + 37 q 3 2 q 2 + 62 q 20 128 q 2 q 3 + q 2 + q + 1 q 3 + 2 q 2 + 2 q + 1 c 1 2 c 2 q 3 + 5 q 2 + 4 q + 4 16 q q 3 + q 2 + q + 1 q + 1 c 1 c 3 q 4 + 5 q 3 + 2 q 2 2 32 q 2 q + 1 q 3 + q 2 + q + 1 c 2 2 5 q 12 + 40 q 11 + 158 q 10 + 377 q 9 + 505 q 8 + 504 q 7 + 74 q 6 + 39 q 5 374 q 4 96 q 3 232 q 2 + 96 q 200 2048 q 2 q + 1 3 q 4 + q 3 + 2 q 2 + q + 1 q 3 + q 2 + q + 1 c 1 4 .
Collecting the like terms,
a 3 2 a 5 = 7 q 11 + 62 q 10 + 226 q 9 + 483 q 8 + 885 q 7 + 778 q 6 + 966 q 5 + 477 q 4 + 732 q 3 + 272 q 2 + 496 q + 216 2048 q q 2 + 1 2 q + 1 4 q 2 + q + 1 c 1 4 1 + q 4 q q 3 + q 2 + q + 1 c 4 + q 3 + 5 q 2 + 4 q + 4 16 q 1 + q q 3 + q 2 + q + 1 c 1 c 3 + 3 q 3 + 9 q 2 + 6 q + 4 32 q q 2 + 1 q + 1 2 c 2 2 5 q 6 + 27 q 5 + 44 q 4 + 29 q 3 + 61 q 2 + 44 q + 78 128 q q + 1 2 q 4 + q 3 + 2 q 2 + q + 1 c 1 2 c 2 ,
We can rewrite,
a 3 2 a 5 = 1 + q 4 q q 3 + q 2 + q + 1 Υ 2 q 512 q 2 + 1 q + 1 4 q 2 + q + 1 c 1 4 + q 3 + 5 q 2 + 4 q + 4 4 1 + q 2 c 1 c 3 + 3 q 3 + 9 q 2 + 6 q + 4 8 q + 1 2 c 2 2 5 q 6 + 27 q 5 + 44 q 4 + 29 q 3 + 61 q 2 + 44 q + 78 32 q + 1 2 q + q 2 + 1 c 1 2 c 2 c 4 ,
where
Υ 2 q = 7 q 11 + 62 q 10 + 226 q 9 + 483 q 8 + 885 q 7 + 778 q 6 + 966 q 5 + 477 q 4 + 732 q 3 + 272 q 2 + 496 q + 216 .
Now, by Lemma 4,
γ = Υ 2 q 512 q 2 + 1 q + 1 4 q 2 + q + 1 , λ = 3 q 3 + 9 q 2 + 6 q + 4 8 q + 1 2
and
α = q 3 + 5 q 2 + 4 q + 4 8 1 + q 2 , β = 5 q 6 + 27 q 5 + 44 q 4 + 29 q 3 + 61 q 2 + 44 q + 78 48 q + 1 2 q + q 2 + 1 .
where 0 < λ < 1 and 0 < α < 1 for q 0 , 1 . Now, we consider
8 λ 1 λ α β 2 γ 2 + α λ + α β 2 + α 1 α β 2 λ α 2 4 α 2 1 α 2 λ 1 λ = Ψ 2 q ,
where
Ψ 2 q = Λ 2 q 4718592 q + 1 12 q 4 + q 3 + 2 q 2 + q + 1 2
and
Λ 2 q = 1089 q 28 + 19 866 q 27 + 176309 q 26 + 982794 q 25 + 3770070 q 24 + 9974594 q 23 + 16186303 q 22 + 7211406 q 21 36456810 q 20 127230918 q 19 277137857 q 18 499 537 850 q 17 825 273 602 q 16 1101 540 386 q 15 904 180 239 q 14 + 340 893 602 q 13 + 2946 316 773 q 12 + 6160 911 116 q 11 + 8878 393 692 q 10 + 9404 597 248 q 9 + 7766 676 656 q 8 + 4432 890 112 q 7 + 1351 376 128 q 6 655 503 488 q 5 1192592 192 q 4 891 531 520 q 3 411 837 184 q 2 110 432 256 q 13151232
A calculation shows that Ψ q 0 , for all q 0.628 , 1 . Hence, by Lemma 4, we obtain
a 3 2 a 5 1 2 q q 2 + 1 .
Theorem 4. 
Let ψ S B s q be given in (1). Then,
a 2 a 4 a 5 1 2 q q 2 + 1 , f o r q 0 , 0.514 .
The result is sharply obtained by the function given in (37).
Proof. 
From (30), (32) and (33), along with the definition of q-number, we have
a 2 a 4 a 5 = c 1 4 q + 1 4 q 3 + q 2 + q + 1 c 3 q 4 + 4 q 3 + 3 q 2 + 3 q 1 16 q q + 1 q 3 + q 2 + q + 1 c 1 c 2 + q 7 + 5 q 6 + 11 q 5 + 15 q 4 + 11 q 3 5 q 2 2 q 10 128 q q + 1 q 2 + q + 1 q 3 + q 2 + q + 1 c 1 3 q + 1 4 q q 3 + q 2 + q + 1 c 4 + 3 q 7 + 15 q 6 + 34 q 5 9 q 4 + 37 q 3 2 q 2 + 62 q 20 128 q 2 q 3 + q 2 + q + 1 q 3 + 2 q 2 + 2 q + 1 c 1 2 c 2 q 3 + 5 q 2 + 4 q + 4 16 q q 3 + q 2 + q + 1 q + 1 c 1 c 3 q 4 + 5 q 3 + 2 q 2 2 32 q 2 q + 1 q 3 + q 2 + q + 1 c 2 2 5 q 12 + 40 q 11 + 158 q 10 + 377 q 9 + 505 q 8 + 504 q 7 + 74 q 6 + 39 q 5 374 q 4 96 q 3 232 q 2 + 96 q 200 2048 q 2 q + 1 3 q 4 + q 3 + 2 q 2 + q + 1 q 3 + q 2 + q + 1 c 1 4 ,
Combining the coefficients of like terms,
a 2 a 4 a 5 = 9 q 12 + 68 q 11 + 250 q 10 + 573 q 9 + 801 q 8 + 800 q 7 + 278 q 6 + 91 q 5 466 q 4 212 q 3 320 q 2 + 56 q 200 2048 q 2 q 2 + 1 2 q + 1 4 q 2 + q + 1 c 1 4 + q 4 + 5 q 3 + 2 q 2 + 2 32 1 + q + q 2 + q 3 q 2 1 + q c 2 2 + 2 q 3 + 7 q 2 + 5 q + 4 16 q q 2 + 1 q + 1 2 c 1 c 3 5 q 7 + 25 q 6 + 50 q 5 + 11 q 4 + 47 q 3 + 2 q 2 + 60 q 20 128 q 2 q + 1 2 q 4 + q 3 + 2 q 2 + q + 1 c 1 2 c 2 1 + q 4 q 1 + q + q 2 + q 3 c 4 .
It implies
a 2 a 4 a 5 = 1 + q 4 q 1 + q + q 2 + q 3 Υ 3 q 512 q q 2 + 1 q + 1 4 q 2 + q + 1 c 1 4 + q 4 + 5 q 3 + 2 q 2 + 2 8 q 1 + q 2 c 2 2 + 2 q 3 + 7 q 2 + 5 q + 4 4 q + 1 2 c 1 c 3 5 q 7 + 25 q 6 + 50 q 5 + 11 q 4 + 47 q 3 + 2 q 2 + 60 q 20 32 q q + 1 2 q + q 2 + 1 c 1 2 c 2 c 4 ,
where
Υ 3 q = 9 q 12 + 68 q 11 + 250 q 10 + 573 q 9 + 801 q 8 + 800 q 7 + 278 q 6 + 91 q 5 466 q 4 212 q 3 320 q 2 + 56 q 200 .
Consider
γ = Υ 3 q 512 q q 2 + 1 q + 1 4 q 2 + q + 1 , λ = q 4 + 5 q 3 + 2 q 2 + 2 8 q 1 + q 2 ,
and
α = 2 q 3 + 7 q 2 + 5 q + 4 8 q + 1 2 , β = 5 q 7 + 25 q 6 + 50 q 5 + 11 q 4 + 47 q 3 + 2 q 2 + 60 q 20 48 q q + 1 2 q + q 2 + 1 .
Clearly, 0 < λ < 1 and 0 < α < 1 for q 0 , 1 . Now,
8 λ 1 λ α β 2 γ 2 + α λ + α β 2 + α 1 α β 2 λ α 2 4 α 2 1 α 2 λ 1 λ = Ψ 3 q ,
where
Ψ 3 q = Λ 3 q 4718592 q 4 q + 1 12 q 4 + q 3 + 2 q 2 + q + 1 2
and
Λ 3 q = 49 q 32 + 574 q 31 + 2669 q 30 + 4330 q 29 34 358 q 28 383 594 q 27 2118 409 q 26 8583 478 q 25 31 105 086 q 24 99 548 394 q 23 267 222 045 q 22 601 142 446 q 21 1131536606 q 20 1773679062 q 19 2297680443 q 18 2421183786 q 17 2068071911 q 16 1477288612 q 15 1124226544 q 14 1302948636 q 13 1851382648 q 12 2371066992 q 11 2338 803 868 q 10 1735 883 520 q 9 915 866 752 q 8 241 534 464 q 7 + 86 898 560 q 6 + 121 530 688 q 5 + 57 728 256 q 4 + 14 253 312 q 3 + 7542 528 q 2 + 3678 208 q + 975104 .
It can be observed that Ψ q 0 for all q 0 , 0.514 . Now, by Lemma 4, we have
a 2 a 4 a 5 1 2 q q 2 + 1 , q 0 , 0.514 .
Remark 2. 
i In Theorems 2 and 3, we prove the generalized Zalcman conjectures for s = 2 , t = 3 and s = 3 , t = 3 , respectively.
ii In Theorem 4, we prove the generalized Zalcman’s conjecture for s = 2 and t = 4 .
Theorem 5. 
Let ψ S B s q , as given in (1). Then,
H 2 , 2 ψ = a 2 a 4 a 3 2 1 4 q 2 , f o r q 0.119 , 1 .
The function in (35) sharply obtains the result.
Proof. 
From (30)–(32), utilizing the definition of the q-number, we have
a 2 a 4 a 3 2 = c 1 4 q + 1 4 q 3 + q 2 + q + 1 c 3 q 4 + 4 q 3 + 3 q 2 + 3 q 1 16 q q + 1 q 3 + q 2 + q + 1 c 1 c 2 + q 7 + 5 q 6 + 11 q 5 + 15 q 4 + 11 q 3 5 q 2 2 q 10 128 q q + 1 q 2 + q + 1 q 3 + q 2 + q + 1 c 1 3 1 q q + 1 q + 1 4 c 2 q 3 + 5 q 2 2 q + 10 32 q + 1 c 1 2 2 ,
Collecting the like terms,
a 2 a 4 a 3 2 = 1 + q 16 1 + q + q 2 + q 3 c 1 c 3 1 16 q 2 c 2 2 + q 4 4 q 3 + 12 q 2 q + 10 64 q 2 q 2 + 1 q + 1 2 c 1 2 c 2 q 10 3 q 9 11 q 8 42 q 7 + 53 q 6 + 31 q 5 + 291 q 4 + 162 q 3 + 308 q 2 + 80 q + 100 1024 q 2 q + 1 4 q 4 + q 3 + 2 q 2 + q + 1 c 1 4 .
By using Lemma 2 , we have
a 2 a 4 a 3 2 = q 4 4 q 3 + 10 q 2 5 q + 8 128 q 2 q 2 + 1 q + 1 2 c 1 4 + q 4 4 q 3 + 8 q 2 9 q + 6 128 q 2 q 2 + 1 q + 1 2 4 c 1 2 c 1 2 k 1 + q 64 1 + q + q 2 + q 3 4 c 1 2 c 1 2 k 2 1 64 q 2 4 c 1 2 2 k 2 + 1 + q 32 1 + q + q 2 + q 3 c 1 4 c 1 2 1 k 2 δ .
For the convenience of notation, let c 1 = c 0 , 2 , and
α 1 = q 4 4 q 3 + 10 q 2 5 q + 8 128 q 2 q 2 + 1 q + 1 2 = q 4 4 q 3 + 10 q 2 5 q + 8 128 q 2 q 2 + 1 q + 1 2 > 0 , α 2 = q 4 4 q 3 + 8 q 2 9 q + 6 128 q 2 q 2 + 1 q + 1 2 = q 4 4 q 3 + 8 q 2 9 q + 6 128 q 2 q 2 + 1 q + 1 2 > 0 , α 3 = 1 + q 64 1 + q + q 2 + q 3 = 1 + q 64 1 + q + q 2 + q 3 > 0 , α 4 = 1 64 q 2 = 1 64 q 2 > 0 , α 5 = 1 + q 32 1 + q + q 2 + q 3 = 1 + q 32 1 + q + q 2 + q 3 > 0
Now, applying the modulus and using the triangular inequality along with k = u , c = t and δ 1 , we have
a 2 a 4 a 3 2 α 1 t 4 + α 2 4 t 2 t 2 u + α 3 4 t 2 t 2 u 2 + α 4 4 t 2 2 u 2 + α 5 t 4 t 2 1 u 2 = L t , u
Now, we suppose that the upper bound for (43) exists in the interior of rectangle 0 , 2 × 0 , 1 . Differentiating L t , u with respect to u, we have
L u = α 2 4 t 2 t 2 + 2 α 3 4 t 2 t 2 u + 2 α 4 4 t 2 2 u 2 α 5 t 4 t 2 u , = 4 t 2 α 2 + 2 α 3 2 α 4 u t 2 + 8 α 4 u 2 α 5 t u .
Setting L u = 0 implies either t = 2 or α 2 + 2 α 3 2 α 4 u t 2 + 8 α 4 u 2 α 5 t u = 0 . The points t , u that satisfy these conditions are not interior points of the rectangle [ 0 , 2 ] × [ 0 , 1 ] . Consequently, the function L t , u cannot achieve its maximum value within the interior of the rectangle. Thus, the maximum value must occur at the boundary of the rectangle. For this, we consider the following cases
(i)
On the line t = 0 , 0 u 1 , we have L 0 , y = 16 α 4 y 2 and
max L 0 , y = L 0 , 1 = 16 α 4 = 1 4 q 2 .
(ii)
On the line t = 2 , 0 u 1 , we have L 2 , y = 16 α 1 and
max L 2 , y = 16 α 1 = q 4 4 q 3 + 10 q 2 5 q + 8 8 q 2 q 2 + 1 q + 1 2 .
(iii)
On the line u = 0 , 0 t 1 , we have L t , 0 = α 1 t 4 + α 5 t 4 t 2 = g 1 t and
g 1 t = 4 α 1 t 3 3 α 5 t 2 + 4 α 5 > 0 for all 0 t 2 ,
this shows that g 1 t is an increasing function on 0 t 2 , therefore
max L t , 0 = L 2 , 0 = 16 α 1 = q 4 4 q 3 + 10 q 2 5 q + 8 8 q 2 q 2 + 1 q + 1 2 .
(iv)
On the line u = 1 , 0 t 1 , we have
L t , 1 = α 1 α 2 α 3 + α 4 t 4 + 4 α 2 + α 3 2 α 4 t 2 + 16 α 4 = g 2 t ,
as g 2 0 = 0 and
g 2 0 = 8 α 2 + α 3 2 α 4 = q 4 + 8 q 3 2 q 2 + 17 q 2 16 q 2 q 2 + 1 q + 1 2 for q 0.119 , 1 ,
so
max L t , 1 = g 2 0 = 16 α 4 = 1 4 q 2 .
Hence, on the rectangle [ 0 , 2 ] × [ 0 , 1 ] , the max L t , y = 1 4 q 2 , so
H 2 , 2 ψ = a 2 a 4 a 3 2 1 4 q 2 , q 0.119 , 1 .
Theorem 6. 
Let ψ S B s q , as given in (1). Then,
H 3 , 1 ψ q 4 + 4 q 3 + 2 q 2 + 2 q + 1 8 q 3 q 2 + 1 2 , f o r q 0.762 , 1 .
Proof. 
From (10), we have
H 3 , 1 ψ = a 3 a 2 a 4 a 3 2 a 4 a 4 a 2 a 3 + a 5 a 3 a 2 2 . a 3 a 2 a 4 a 3 2 + a 4 a 4 a 2 a 3 + a 5 a 3 a 2 2 .
Using (24)–(27) and (38), (41), we have
H 3 , 1 ψ 1 2 q 1 4 q 2 + 1 2 1 + q 2 1 2 q 2 + 1 + 1 2 q 1 + q 2 1 2 q .
Through simple calculations, we obtain the required result. □

4. Conclusions

By applying the principle of subordination and quantum calculus, we introduced and explored a new class ψ S B s q of analytic functions connected with the q-differential operator and the symmetric balloon-shaped domain. This class extended the notion of starlike functions with respect to symmetric points to q-starlike functions with respect to symmetric points. This study established sharp results for the Maclaurin coefficients, Hankel determinants, the Zalcman conjecture, and its generalization conjecture for the newly defined class.

Author Contributions

Writing—original draft, A.A. (Adeel Ahmad), J.G., A.R., S.H., A.A. (Asad Ali) and Z.C.; Writing—review & editing, A.A. (Adeel Ahmad), J.G., A.R., S.H., A.A. (Asad Ali) and Z.C. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by United Arab Emirates University, UAEU Program for Advanced Research Grant (UPAR12S127) and SURE+.

Data Availability Statement

Data are contained within the article.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Miller, S.S.; Mocanu, P.T. Differential subordination and univalent functions. Mich. Math. J. 1981, 28, 157–171. [Google Scholar] [CrossRef]
  2. Shanmugam, T.N. Convolution and Differential subordination. Int. J. Math. Math. Sci. 1989, 12, 333–340. [Google Scholar] [CrossRef]
  3. Padmanabhan, K.S.; Parvatham, R. Some applications of differential subordination. Bull. Aust. Math. Soc. 1985, 32, 321–330. [Google Scholar] [CrossRef]
  4. Ma, W.C.; Minda, D. A unified treatment of some special classes of univalent functions. In Proceedings of the Conference on Complex Analysis at the Nankai Institute of Mathematics; Li, Z., Ren, F., Yang, L., Zhang, S., Eds.; International Press: New York, NY, USA, 1994; pp. 157–169. [Google Scholar]
  5. Bano, K.; Raza, M. Starlike functions associated with cosine function. Bull. Iran. Math. Soc. 2021, 47, 1513–1532. [Google Scholar] [CrossRef]
  6. Cho, N.E.; Kumar, V.; Kumar, S.S.; Ravichandran, V. Radius problems for starlike functions associated with the sine function. Bull. Iran. Math. Soc. 2019, 45, 213–232. [Google Scholar] [CrossRef]
  7. Geol, P.; Kumar, S.S. Certain class of starlike functions associated with modified sigmoid function. Bull. Malays. Math. Sci. Soc. 2020, 43, 957–991. [Google Scholar] [CrossRef]
  8. Khan, M.G.; Khan, B.; Gong, J.; Tchier, F.; Tawfiq, F.M.O. Applications of first-order differential subordination for subfamilies of analytic functions related to symmetric image domains. Symmetry 2023, 15, 2004. [Google Scholar] [CrossRef]
  9. Kumar, S.S.; Arora, K. Starlike functions associated with a petal shaped domain. arXiv 2020, arXiv:2010.10072. [Google Scholar]
  10. Wani, L.A.; Swaminathan, A. Starlike and convex functions associated with a Nephroid domain. Bull. Malays. Math. Sci. Soc. 2021, 44, 79–104. [Google Scholar] [CrossRef]
  11. Khan, M.G.; Ahmad, B.; Murugusundaramoorthy, G.; Chinram, R.; Mashwani, W.K. Applications of modified sigmoid functions to a class of starlike functions. J. Funct. Spaces 2020, 2020, 8844814. [Google Scholar] [CrossRef]
  12. Jackson, F.H. On q-functions and certain difference operator. Trans. R. Soc. Edinb. 1909, 46, 253–281. [Google Scholar] [CrossRef]
  13. Jackson, F.H. On q-definite integrals. Quart. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
  14. Srivastava, H.M. Univalent functions, fractional calculus, and associated generalized hypergeometric functions. In Univalent Functions, Fractional Calculus and Their Applications; Srivastava, H.M., Owa, S., Eds.; John Wiley Sons: New York, NY, USA, 1989. [Google Scholar]
  15. Ismail, M.E.H.; Merkes, E.; Styer, D. A generalization of starlike functions. Complex Var. 1990, 14, 77–84. [Google Scholar] [CrossRef]
  16. Agrawal, S.; Sahoo, S.K. A generalization of starlike functions of order α. Hokkaido Math. J. 2017, 46, 15–27. [Google Scholar] [CrossRef]
  17. Ashish, V.; Sarasvati, Y. Recursion formulas for Srivastava’s general triple q-hypergeometric series. Afr. Mat. 2020, 31, 869–885. [Google Scholar]
  18. Al-Shbeil, I.; Gong, J.; Khan, S.; Khan, N.; Khan, A.; Khan, M.F.; Goswami, A. Hankel and symmetric Toeplitz determinants for a new subclass of q-starlike functions. Fractal Fract. 2022, 6, 658. [Google Scholar] [CrossRef]
  19. Al-Shaikh, S.B.; Abubaker, A.A.; Matarneh, K.; Khan, M.F. Some new applications of the q-analogous of differential and integral operators for new subclasses of q-starlike and q-convex functions. Fractal Fract. 2023, 7, 411. [Google Scholar] [CrossRef]
  20. Khan, N.; Shafiq, M.; Darus, M.; Khan, B.; Ahmad, Q.Z. Upper bound of the third Hankel determinant for a subclass of q-starlike functions associated with lemniscate of Bernoulli. J. Math. Inequal. 2020, 14, 51–63. [Google Scholar] [CrossRef]
  21. Srivastava, H.M.; Khan, N.; Darus, M.; Khan, S.; Ahmad, Q.Z.; Hussain, S. Fekete-Szegö type problems and their applications for a subclass of q-starlike functions with respect to symmetrical Points. Mathematics 2020, 8, 842. [Google Scholar] [CrossRef]
  22. Taj, Y.; Zainab, S.; Ferdous, Q.X.; Tawfiq, M.O.; Raza, M.; Malik, S.N. Certain coefficient problems for q-starlike functions associated with q-analogue of sine function. Symmetry 2022, 14, 2200. [Google Scholar] [CrossRef]
  23. Murugusundaramoorthy, K.R.K.G.; Purohit, S.D.; Suthar, D.L. Certain class of analytic functions with respect to symmetric points defined by q-calculus. J. Math. 2021, 2021, 8298848. [Google Scholar]
  24. Jabeen, M.; Malik, S.N.; Mahmood, S.; Riaz, S.M.J.; Ali, M.S. On q-convex functions defined by the q-Ruscheweyh derivative operator in conic regions. J. Math. 2022, 2022, 2681789. [Google Scholar] [CrossRef]
  25. Khan, M.F.; Khan, S.; Darus, M.; Hussain, S. Sharp coefficient inequalities for a class of analytic functions defined by q-difference operator associated with the q-lemniscate of Bernoulli. Results Nonlinear Anal. 2023, 6, 55–73. [Google Scholar]
  26. Mahmood, S.; Raza, N.; Jarad, E.S.A.; Srivastava, G.; Srivastava, H.M.; Malik, S.N. Geometric properties of certain classes of analytic functions associated with a q-integral operator. Symmetry 2019, 14, 719. [Google Scholar] [CrossRef]
  27. Seoudy, T.; Aouf, M. Coefficient estimates of new classes of q-starlike and q-convex functions of complex order. J. Math. Inequal. 2016, 10, 135–145. [Google Scholar] [CrossRef]
  28. Vijaya, K.; Murugusundaramoorthy, G.; Breaz, D.; Oros, G.I.; El-Deeb, S.M. Ozaki-type bi-close-to-convex and bi-concave functions involving a modified caputo’s fractional operator linked with a three-leaf function. Fractal Fract. 2024, 8, 220. [Google Scholar] [CrossRef]
  29. Saliu, A.; Jabeen, K.; Al-Shbeil, I.; Aloraini, N.; Malik, S.N. On q-Limaçon functions. Symmetry 2022, 14, 242. [Google Scholar] [CrossRef]
  30. Shaba, T.G.; Araci, S.; Adebesin, B.O.; Tchier, F.; Zainab, S.; Khan, B. Sharp bounds of the Fekete–Szegö problem and second Hankel determinant for certain Bi-univalent functions defined by a novel q-differential operator associated with q-Limaçon domain. Fractal Fract. 2023, 7, 506. [Google Scholar] [CrossRef]
  31. Srivastava, H.M.; Khan, B.; Khan, N.; Tahir, M.; Ahmad, S.; Khan, N. Upper bound of the third Hankel determinant for a subclass of q-starlike functions associated with the q-exponential function. Bull. Sci. Math. 2021, 167, 102942. [Google Scholar] [CrossRef]
  32. Swarup, C. Sharp coefficient bounds for a new subclass of q-starlike functions associated with q-analogue of the hyperbolic tangent function. Symmetry 2023, 15, 763. [Google Scholar] [CrossRef]
  33. Zhang, X.; Khan, S.; Hussain, S.; Tang, H.; Shareef, Z. New subclass of q-starlike functions associated with generalized conic domain. Aims Math. 2020, 5, 4830–4848. [Google Scholar] [CrossRef]
  34. Khan, M.F.; Al-shbeil, I.; Khan, S.; Khan, N.; Haq, W.U.; Gong, J. Applications of a q-Differential Operator to a Class of Harmonic Mappings Defined by q-Mittag-Leffler Functions. Symmetry 2022, 14, 1905. [Google Scholar] [CrossRef]
  35. Gasper, G.; Rahman, M. Basic Hypergeometric Series; Cambridge University Press: Cambridge, UK, 2004; Volume 96. [Google Scholar]
  36. Ahmad, A.; Gong, J.; Al-Shbeil, I.; Rasheed, A.; Ali, A.; Hussain, S. Analytic functions related to a balloon-shaped domain. Fractal Fract. 2023, 7, 865. [Google Scholar] [CrossRef]
  37. Sakaguchi, K. On a certain univalent mapping. J. Math. Soc. Jpn. 1959, 11, 72–75. [Google Scholar] [CrossRef]
  38. Khan, B.; Gong, J.; Khan, M.G.; Tchier, F. Sharp Coefficient Bounds for a Class of Symmetric Starlike Functions Involving the Balloon Shape Domain. Heliyon, 2024; to appear. [Google Scholar]
  39. Ma, W. Generalized Zalcman conjecture for starlike and typically real functions. J. Math. Anal. Appl. 1999, 234, 328–339. [Google Scholar] [CrossRef]
  40. Pommerenke, C.; Jensen, G. Univalent Functions; Vandenhoeck and Ruprecht: Gottingen, Germany, 1975. [Google Scholar]
  41. Dziok, J. A general solution of the Fekete–Szegö problem. Bound. Value Probl. 2013, 2013, 98. [Google Scholar] [CrossRef]
  42. Libera, R.J.; Zlotkiewicz, E.J. Coefficient bounds for the inverse of a function with derivative in P. Proc. Am. Math. Soc. 1983, 87, 251–257. [Google Scholar] [CrossRef]
  43. Ravichandran, V.; Verma, S. Bound for the fifth coefficient of certain starlike functions. Comptes Rendus Math. Acad. Sci. Paris 2015, 353, 505–510. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Ahmad, A.; Gong, J.; Rasheed, A.; Hussain, S.; Ali, A.; Cheikh, Z. Sharp Results for a New Class of Analytic Functions Associated with the q-Differential Operator and the Symmetric Balloon-Shaped Domain. Symmetry 2024, 16, 1134. https://doi.org/10.3390/sym16091134

AMA Style

Ahmad A, Gong J, Rasheed A, Hussain S, Ali A, Cheikh Z. Sharp Results for a New Class of Analytic Functions Associated with the q-Differential Operator and the Symmetric Balloon-Shaped Domain. Symmetry. 2024; 16(9):1134. https://doi.org/10.3390/sym16091134

Chicago/Turabian Style

Ahmad, Adeel, Jianhua Gong, Akhter Rasheed, Saqib Hussain, Asad Ali, and Zeinebou Cheikh. 2024. "Sharp Results for a New Class of Analytic Functions Associated with the q-Differential Operator and the Symmetric Balloon-Shaped Domain" Symmetry 16, no. 9: 1134. https://doi.org/10.3390/sym16091134

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Article metric data becomes available approximately 24 hours after publication online.
Back to TopTop