A Study on the Effects of Automatic Scaling for 3D Object Manipulation in Virtual Reality
Abstract
:1. Introduction
2. Related Work
3. Automatic Scaling
3.1. Virtual Environment and User Interface
3.2. Scaling Algorithm
Algorithm 1 Calculate the bounding box and longest diagonal. |
|
Algorithm 2 Calculate player scale and adjust position. |
|
4. Preliminary Study
4.1. Purpose and Objectives
4.2. Methodology
4.3. Participants
4.4. Procedure
4.5. Results and Discussion
5. Main Study
5.1. Purpose and Objectives
5.2. Methodology
5.3. Participants
5.4. Procedure
5.5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- LaViola, J.J., Jr.; Kruijff, E.; McMahan, R.P.; Bowman, D.A.; Poupyrev, I.P. 3D User Interfaces: Theory and Practice, 2nd ed.; Addison-Wesley Professional: Boston, MA, USA, 2017; 400p. [Google Scholar]
- Argelaguet, F.; Andujar, C. A Survey of 3D Object Selection Techniques for Virtual Environments. Comput. Graph. 2013, 37, 121–136. [Google Scholar] [CrossRef]
- Mendes, D.; Caputo, F.M.; Giachetti, A.; Ferreira, A.; Jorge, J. A Survey on 3D Virtual Object Manipulation: From the Desktop to Immersive Virtual Environments. Comput. Graph. Forum 2019, 38, 21–45. [Google Scholar] [CrossRef]
- Poupyrev, I.; Weghorst, S.; Billinghurst, M.; Ichikawa, T. Egocentric Object Manipulation in Virtual Environments: Empirical Evaluation of Interaction Techniques. Comput. Graph. Forum 1998, 17, 41–52. [Google Scholar] [CrossRef]
- Poupyrev, I.; Billinghurst, M.; Weghorst, S.; Ichikawa, T. The Go-Go Interaction Technique: Non-linear Mapping for Direct Manipulation in VR. In Proceedings of the 9th Annual ACM Symposium on User Interface Software and Technology, UIST’96, Seattle, WA, USA, 6–8 November 1996; ACM: New York, NY, USA, 1996; pp. 79–80. [Google Scholar]
- Bowman, D.A.; Hodges, L.F. An Evaluation of Techniques for Grabbing and Manipulating Remote Objects in Immersive Virtual Environments. In Proceedings of the 1997 Symposium on Interactive 3D Graphics, I3D’97, Providence, RI, USA, 27–30 April 1997; ACM: New York, NY, USA, 1997; pp. 35–38. [Google Scholar]
- Stoakley, R.; Conway, M.J.; Pausch, R. Virtual Reality on a WIM: Interactive Worlds in Miniature. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI’95, Denver, CO, USA, 7–11 May 1995; ACM Press/Addison-Wesley Publishing Co.: New York, NY, USA, 1995; pp. 265–272. [Google Scholar]
- Mine, M.R.; Brooks, F.P., Jr.; Sequin, C.H. Moving Objects in Space: Exploiting Proprioception In Virtual-Environment Interaction. In Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’97, Los Angeles, CA, USA, 3–8 August 1997; ACM Press/Addison-Wesley Publishing Co.: New York, NY, USA, 1997; pp. 19–26. [Google Scholar]
- Steinicke, F.; Ropinski, T.; Hinrichs, K. Object Selection in Virtual Environments Using an Improved Virtual Pointer Metaphor. In Proceedings of the Computer Vision and Graphics: International Conference, ICCVG 2004, Warsaw, Poland, 22–24 September 2004; Springer: Berlin/Heidelberg, Germany, 2006; pp. 320–326. [Google Scholar]
- Lu, Y.; Yu, C.; Shi, Y. Investigating Bubble Mechanism for Ray-Casting to Improve 3D Target Acquisition in Virtual Reality. In Proceedings of the 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), Atlanta, GA, USA, 22–26 March 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 35–43. [Google Scholar]
- Tseng, W.-J.; Huron, S.; Lecolinet, E.; Gugenheimer, J. FingerMapper: Mapping Finger Motions onto Virtual Arms to Enable Safe Virtual Reality Interaction in Confined Spaces. In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, CHI’23, Hamburg, Germany,, 23–29 April 2023; Association for Computing Machinery: New York, NY, USA, 2023; pp. 1–14. [Google Scholar]
- Schjerlund, J.; Hornbæk, K.; Bergström, J. Ninja Hands: Using Many Hands to Improve Target Selection in VR. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, CHI’21, Yokohama, Japan, 8–13 May 2021; Association for Computing Machinery: New York, NY, USA, 2021; pp. 1–14. [Google Scholar]
- Kopper, R.; Ni, T.; Bowman, D.A.; Pinho, M. Design and Evaluation of Navigation Techniques for Multiscale Virtual Environments. In Proceedings of the IEEE Virtual Reality Conference (VR’06), Alexandria, VA, USA, 25–29 March 2006; IEEE: Piscataway, NJ, USA, 2006; pp. 175–182. [Google Scholar]
- LaViola, J.J.; Feliz, D.A.; Keefe, D.F.; Zeleznik, R.C. Hands-Free Multi-Scale Navigation in Virtual Environments. In Proceedings of the 2001 Symposium on Interactive 3D Graphics (I3D’01), Chapel Hill, NC, USA, 26–29 March 2001; ACM: New York, NY, USA, 2001; pp. 9–15. [Google Scholar]
- Wingrave, C.A.; Haciahmetoglu, Y.; Bowman, D.A. Overcoming World in Miniature Limitations by a Scaled and Scrolling WIM. In Proceedings of the IEEE Symposium on 3D User Interfaces (3DUI’06), Alexandria, VA, USA, 25–26 March 2006; IEEE: Alexandria, VA, USA, 2006; pp. 11–16. [Google Scholar]
- Pivovar, J.; DeGuzman, J.; Suma, R.E. Virtual Reality on a SWIM: Scalable World in Miniature. In Proceedings of the 2022 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), Christchurch, New Zealand, 12–16 March 2022; IEEE: Christchurch, New Zealand, 2022; pp. 912–913. [Google Scholar]
- Krekhov, A.; Cmentowski, S.; Emmerich, K.; Masuch, M.; Krüger, J. GulliVR: A Walking-Oriented Technique for Navigation in Virtual Reality Games Based on Virtual Body Resizing. In Proceedings of the 2018 Annual Symposium on Computer-Human Interaction in Play (CHI PLAY’18), Melbourne, VIC, Australia, 28–31 October 2018; ACM: New York, NY, USA, 2018; pp. 243–256. [Google Scholar]
- Abtahi, P.; Gonzalez-Franco, M.; Ofek, E.; Steed, A. I’m a Giant: Walking in Large Virtual Environments at High Speed Gains. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (CHI’19), Glasgow, UK, 4–9 May 2019; ACM: New York, NY, USA, 2019. Paper 522, 13p. [Google Scholar]
- Weissker, T.; Franzgrote, M.; Kuhlen, T. Try This for Size: Multi-Scale Teleportation in Immersive Virtual Reality. IEEE Trans. Vis. Comput. Graph. 2024, 30, 2298–2308. [Google Scholar] [CrossRef] [PubMed]
- Cho, I.; Li, J.; Wartell, Z. Evaluating Dynamic-Adjustment of Stereo View Parameters in a Multi-Scale Virtual Environment. In Proceedings of the 2014 IEEE Symposium on 3D User Interfaces (3DUI), Minneapolis, MN, USA, 29–30 March 2014; IEEE: Minneapolis, MN, USA, 2014; pp. 91–98. [Google Scholar]
- Argelaguet, F.; Maignant, M. GiAnt: Stereoscopic-Compliant Multi-Scale Navigation in VEs. In Proceedings of the 22nd ACM Conference on Virtual Reality Software and Technology (VRST’16), Munich, Germany, 2–4 November 2016; ACM: New York, NY, USA, 2016; pp. 269–277. [Google Scholar]
- Zhang, X.; Furnas, G.W. mCVEs: Using Cross-Scale Collaboration to Support User Interaction with Multiscale Structures. Presence 2005, 14, 31–46. [Google Scholar] [CrossRef]
- Le Chénéchal, M.; Lacoche, J.; Royan, J.; Duval, T.; Gouranton, V.; Arnaldi, B. When the Giant meets the Ant: An Asymmetric Approach for Collaborative and Concurrent Object Manipulation in a Multi-Scale Environment. In Proceedings of the 2016 IEEE Third VR International Workshop on Collaborative Virtual Environments (3DCVE), Greenville, SC, USA, 20 March 2016; IEEE: Greenville, SC, USA, 2016; pp. 18–22. [Google Scholar]
- Piumsomboon, T.; Lee, G.A.; Irlitti, A.; Ens, B.; Thomas, B.H.; Billinghurst, M. On the Shoulder of the Giant: A Multi-Scale Mixed Reality Collaboration with 360 Video Sharing and Tangible Interaction. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (CHI’19), Glasgow, UK, 4–9 May 2019; ACM: New York, NY, USA, 2019. Paper 228, 17p. [Google Scholar]
- Drey, T.; Albus, P.; der Kinderen, S.; Milo, M.; Segschneider, T.; Chanzab, L.; Rietzier, M.; Seufert, T.; Rukzio, E. Towards Collaborative Learning in Virtual Reality: A Comparison of Co-Located Symmetric and Asymmetric Pair-Learning. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems (CHI’22), New Orleans, LA, USA, 29 April–5 May 2022; ACM: New York, NY, USA, 2022. Paper 610, 19p. [Google Scholar]
- Hart, S.G. Nasa-Task Load Index (NASA-TLX); 20 Years Later. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2006, 50, 904–908. [Google Scholar] [CrossRef]
- Kim, H.K.; Park, J.; Choi, Y.; Choe, M. Virtual Reality Sickness Questionnaire (VRSQ): Motion Sickness Measurement Index in a Virtual Reality Environment. Appl. Ergon. 2018, 69, 66–73. [Google Scholar] [CrossRef] [PubMed]
Participant | State | Time (min: s ) | Difference (s) |
---|---|---|---|
1 | Manual | 4:51 | −21 |
Automatic | 4:30 | ||
2 | Manual | 6:06 | +121 |
Automatic | 8:07 | ||
3 | Manual | 11:00 | −248 |
Automatic | 6:52 | ||
4 | Manual | 8:41 | −246 |
Automatic | 4:35 | ||
5 | Manual | 8:40 | −52 |
Automatic | 7:48 | ||
6 | Manual | 9:16 | +45 |
Automatic | 10:01 |
Metric | Manual Scaling | Automatic Scaling | t(12) | p-Value |
---|---|---|---|---|
VRSQ | 6.86 (SD = 7.40) | 3.36 (SD = 5.15) | 1.93 | 0.076 |
NASA-TLX | 23.36 (SD = 13.14) | 14.43 (SD = 6.35) | 2.37 | 0.034 |
Questionnaire | 49.79 (SD = 18.03) | 73.50 (SD = 5.77) | −4.55 | 0.0005 |
Completion Time | 430.07 s (SD = 205.86) | 477.86 s (SD = 216.15) | -0.70 | 0.497 |
Accuracy | 84.03% (SD = 13.38) | 97.69% (SD = 3.83) | −3.53 | 0.0037 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, D.; Han, S.; Lee, K.H. A Study on the Effects of Automatic Scaling for 3D Object Manipulation in Virtual Reality. Symmetry 2024, 16, 1198. https://doi.org/10.3390/sym16091198
Lee D, Han S, Lee KH. A Study on the Effects of Automatic Scaling for 3D Object Manipulation in Virtual Reality. Symmetry. 2024; 16(9):1198. https://doi.org/10.3390/sym16091198
Chicago/Turabian StyleLee, Dongkeun, Seowon Han, and Kang Hoon Lee. 2024. "A Study on the Effects of Automatic Scaling for 3D Object Manipulation in Virtual Reality" Symmetry 16, no. 9: 1198. https://doi.org/10.3390/sym16091198
APA StyleLee, D., Han, S., & Lee, K. H. (2024). A Study on the Effects of Automatic Scaling for 3D Object Manipulation in Virtual Reality. Symmetry, 16(9), 1198. https://doi.org/10.3390/sym16091198