Source Rock Evaluation and Hydrocarbon Generation Model of a Permian Alkaline Lakes—A Case Study of the Fengcheng Formation in the Mahu Sag, Junggar Basin
Abstract
:1. Introduction
2. Geological Setting
3. Samples and Methods
4. Results
4.1. Abundance of Organic Matter
4.2. Type of Organic Matter
4.3. Thermal Maturity of Organic Matter
5. Discussion
5.1. Source Rock Evaluation Standard in Alkaline Lakes
5.2. Evaluation of Hydrocarbon Source Rocks in Alkaline Lakes
5.3. Hydrocarbon Generation Model in Alkaline Lake Source Rocks
5.3.1. Source Rock Thermal Simulation Method
5.3.2. Measured Profile Method
5.3.3. Comprehensive Model of Hydrocarbon Generation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Melack, J.M.; Peter, K. Photosynthetic rates of phytoplankton in East African alkaline, saline lakes. Limnol. Oceanogr. 1974, 19, 743–755. [Google Scholar] [CrossRef]
- Kelts, K. Environments of deposition of lacustrine petroleum source rocks: An introduction. In Lacustrine Petroleum Source Rocks; Fleet, A.J., Kelts, K., Talbot, M.R., Eds.; Geological Society Special Publication: London, UK, 1988; Volume 40, pp. 3–29. [Google Scholar]
- Sun, Z.C.; Yang, F.; Zhang, Z.H. Sedimentary Environments and Hydrocarbon Generation of Cenozoic Salified Lakes in China; Petroleum Industry Press: Beijing, China, 1997; pp. 1–187. [Google Scholar]
- Zhu, G.Y.; Jin, Q.; Dai, J.X. Investigation on the salt lake source rocks for middle Shasi column of Dongying Depression. Geol. J. China Univ. 2004, 10, 257–266. [Google Scholar]
- Li, G.S.; Wang, Y.B.; Lu, Z.S. Geobiological processes of the formation of lacustrine source rock in Paleogene. Sci. China Earth Sci. 2014, 44, 1206–1217. [Google Scholar] [CrossRef]
- Jin, Q.; Zhu, G.Y.; Wang, J. Deposition and distribution of high-potential source rocks in saline lacustrine environments. J. China Univ. Pet. 2008, 32, 19–23. [Google Scholar]
- Hu, J.Y.; Hang, D.F. The Bases of Nonmarine Petroleum Geology in China; Petroleum Industry Press: Beijing, China, 1991; pp. 1–152. [Google Scholar]
- Dong, T.; He, S.; Lin, S.Q. Organic geochemical characteristics and thermal evolution maturity history modeling of source rocks in Eocene Hetaoyuan Formation of Biyang Sag, Nanxiang Basin. Exp. Pet. Geol. 2013, 37, 499–506. [Google Scholar]
- Li, S.F.; Hu, S.Z.; Sun, Y.M. Analysis and Comprehensive Evaluation of Source Rock Characteristics in Hydrocarbon Rich Depressions in Eastern China; China University of Geosciences Press: Wuhan, China, 2016; pp. 1–85. [Google Scholar]
- Qin, Z.Z.; Chen, L.H.; Li, Y.W. Paleo-sedimentary setting of the Lower Permian Fengcheng alkali lake in Mahu Sag, Junggar Basin. Xinjiang Pet. Geol. 2016, 37, 1–6. [Google Scholar]
- Zhang, Z.J.; Yuan, X.J.; Wang, M.S. Alkaline-lacustrine deposition and Paleoenvironmental evolution in Permian Fengcheng Formation at the Mahu Sag, Junggar Basin, NW China. Petrol. Explor. Dev. 2018, 45, 972–984. [Google Scholar] [CrossRef]
- Cao, J.; Xia, L.W.; Wang, T.T. An alkaline lake in the Late Paleozoic Ice Age (LPIA): A review and new insights into paleoenvironment and petroleum geology. Earth Sci. Rev. 2020, 202, 781–790. [Google Scholar] [CrossRef]
- Lei, D.W.; Chen, G.Q.; Liu, H.L. Study on the forming conditions and exploration fields of the Mahu giant oil (gas) Province, Junggar Basin. Acta Geol. Sin. 2017, 91, 1604–1619. [Google Scholar]
- Wang, X.L.; Zhi, D.M.; Wang, Y.T. Source Rocks and Oil-Gas Geochemistry in Junggar Basin; Petroleum Industry Press: Beijing, China, 2013; pp. 1–154. [Google Scholar]
- Chen, J.P.; Wang, X.L.; Deng, C.P. Geochemical features of source rocks and crude oil in the Junggar Basin, Northwest China. Acta Petrol. Sin. 2016, 90, 37–67. [Google Scholar]
- Zhi, D.M.; Cao, J.; Xiang, B.L. Fengcheng alkaline lacustrine source rocks of lower Permian in Mahu Sag in Junggar Basin: Hydrocarbon generation mechanism and petroleum resources reestimation. Xinjiang Pet. Geol. 2016, 37, 499–506. [Google Scholar]
- Tang, Y.; Guo, W.J.; Wang, X.T. A new breakthrough in exploration of large conglomerate oil province in Mahu Sag and its implications. Xinjiang Pet. Geol. 2019, 40, 127–137. [Google Scholar]
- Wang, X.J.; Wang, T.T.; Cao, J. Basic characteristics and highly efficient hydrocarbon generation of alkaline⁃lacustrine source rocks in Fengcheng Formation of Mahu Sag. Xinjiang Pet. Geol. 2018, 39, 9–15. [Google Scholar]
- Ren, J.L.; Jin, J.; Ma, W.Y. Analysis of hydrocarbon potential of Fengcheng saline lacustrine source rock of Lower Permian in Mahu Sag, Junggar Basin. Geol. Rev. 2017, 63, 51–52. [Google Scholar]
- Huang, F.; Xin, M.A. Geochemical Evaluation Method of Nonmarine Source Rocks; China National Petroleum Corporation: Beijing, China, 1995; pp. 1–10. [Google Scholar]
- Qin, J.Z.; Liu, B.Q.; Guo, J.Y. Discussion on the evaluation standards of carbonate source rocks. Exp. Pet. Geol. 2004, 26, 281–285. [Google Scholar]
- Zhi, D.M.; Tang, Y.; He, W.J. Orderly coexistence and accumulation models of conventional and unconventional hydrocarbons in Lower Permian Fengcheng Formation, Mahu sag, Junggar Basin. Petrol. Explor. Dev. 2021, 48, 43–59. [Google Scholar] [CrossRef]
- Kuang, L.C.; Tang, Y.; Le, D.W. Exploration of fan-controlled large-area lithologic oil reservoirs of Triassic Baikouquan Formation in slope zone of Mahu Depression in Junggar Basin. China Pet. Explor. 2014, 19, 14–23. [Google Scholar]
- Zheng, M.P. On saline lakes of China. Mineral. Depos. 2001, 20, 181–189. [Google Scholar]
- Tao, K.Y.; Cao, J.; Chen, X. Deep hydrocarbons in the northwestern Junggar Basin (NW China): Geochemistry, origin, and implications for the oil vs. gas generation potential of post-mature saline lacustrine source rocks. Mar. Pet. Geol. 2019, 109, 623–640. [Google Scholar] [CrossRef]
- Espitalié, J.; Makadi, K.S.; Trichet, J. Role of the mineral matrix during kerogen pyrolysis. Org. Geochem. 1984, 6, 365–382. [Google Scholar] [CrossRef]
- Sorci, A.; Cirilli, S.; Clayton, G.; Corrado, S.; Hints, O.; Goodhue, R.; Schito, A.; Spina, A. Palynomorph optical analyses for thermal maturity assessment of Upper Ordovician (Katian-Hirnantian) rocks from Southern Estonia. Mar. Petrol. Geol. 2020, 120, 104574. [Google Scholar] [CrossRef]
- Yang, S.; Horsfield, B. Critical review of the uncertainty of Tmax in revealing the thermal maturity of organic matter in sedimentary rocks. Int. J. Coal. Geol. 2020, 225, 103500. [Google Scholar] [CrossRef]
- Suarez-Ruiz, I.; Flores, D.; Mendonca Filho, J.G.; Hackley, P.C. Review and update of the applications of organic petrology: Part 1, geological applications. Int. J. Coal. Geol. 2012, 99, 54–112. [Google Scholar] [CrossRef]
- Fernandes, P.; Cogné, N.; Chew, D.M.; Rodrigues, B.; Jorge, R.C.; Marques, J.; Vasconcelos, L. The thermal history of the Karoo Moatize-Minjova Basin, Tete Province, Mozambique: An integrated vitrinite reflectance and apatite fission track thermochronology study. J. Afr. Earth Sci. 2015, 112, 55–72. [Google Scholar] [CrossRef]
- Spina, A.; Vecoli, M.; Riboulleau, A.; Clayton, G.; Cirilli, S.; Di Michele, A.; Marcogiuseppe, A.; Rettori, R.; Sassi, P.; Servais, T.; et al. Application of Palynomorph Darkness Index (PDI) to assess the thermal maturity of palynomorphs: A case study from North Africa. Int. J. Coal. Geol. 2018, 188, 64–78. [Google Scholar] [CrossRef]
- Zhang, B.; He, Y.Y.; Chen, Y. Geochemical characteristics and oil accumulation significance of the high quality saline lacustrine source rocks in the western Qaidam Basin, NW Chin. Acta Petrol. Sin. 2017, 38, 1158–1167. [Google Scholar]
- Liu, C.L.; Li, J.; Guo, Z.Q. Geochemical Characteristics of Source Rocks and Hydrocarbon Accumulation Mechanism in the Salt Lake Basin; Science Press: Beijing, China, 2018; pp. 1–187. [Google Scholar]
- Cao, J.; Lei, D.W.; Li, Y.W. Ancient high-quality alkaline lacustrine source rocks discovered in the Lower Permian Fengcheng Formation, Junggar Basin. Acta Petrol. Sin. 2015, 36, 781–790. [Google Scholar]
- Hunt, J. Petroleum Geochemistry and Geology; W H Freeman and Company: NewYork, NY, USA, 1979; pp. 67–178. [Google Scholar]
- Tissot, B.P.; Welte, D.H. Petroleum Formation and Occurrence; Spring: Berlin/Heidelberg, Germany, 1984; pp. 1–189. [Google Scholar]
- Ma, Z.; Ning, S.H.; Jiang, L. Hydrocarbon generation model of source rock in Junggar Basin. Xinjiang Pet. Geol. 1998, 19, 278–280. [Google Scholar]
- Pan, C.C.; Gao, X.W.; Xiang, B.L. Study on the Dynamic Characteristics of Hydrocarbon Generation in Different Types of Source Rocks; Experimental Detection Research Institute of PetroChina Xinjiang Oilfield Company: Kelamayi, China, 2014; pp. 1–125. [Google Scholar]
- Zhu, S.A.; Xu, S.R.; Zhu, S.B. Petroleum geological characteristics of the Biyang Depression, Henan. Acta Petrol. Sin. 1981, 2, 21–27. [Google Scholar]
- Jiang, J.G. Origin of oil and gas in Qianjiang Formation of saline lake facies in the Jianghan Basin. Acta Petrol. Sin. 1981, 2, 83–92. [Google Scholar]
- Ma, X.M.; Wang, J.G.; Shi, Y.J. Paleogene high abundance hydrocarbon source rocks, the soul of oil rich depression in Southwestern Qaidam Basin. Geol. Sci. Technol. Inf. 2018, 37, 96–104. [Google Scholar]
- Huang, D.F.; Li, J.C.; Zhou, Z. Evolution and Hydrocarbon Generation Mechanism of Continental Organic Matter; Petroleum Industry Press: Beijing, China, 1984; pp. 1–255. [Google Scholar]
- Jiang, J.G.; Zhang, Q. The generation and evolution of petroleum of the saline Qianjiang Formation in Jianghan Basin. Oil Gas. Geol. 1982, 3, 1–15. [Google Scholar]
- Zhao, C.Y.; Cheng, K.M.; Wang, F.Y. Analyses of the macerals contributing mainly to hydrocarbons derived from coals of the Turpan-Hami Basin. Acta Sedimentol. Sin. 1997, 15, 95–99. [Google Scholar]
- Chen, J.; Lu, K.; Feng, Y. Evaluation on hydrocarbon source rocks in different environments and characteristics of hydrocarbon generation and expulsion in Dongpu Depression. Fault Block Oil Gas. Field 2012, 19, 35–38. [Google Scholar]
- Fu, S.T.; Ma, D.D.; Chen, Y. New advance of petroleum and gas exploration in Qaidam Basin. Acta Petrol. Sin. 2016, 37, 1–10. [Google Scholar]
- Yang, H.; Zhang, W.Z. Leading effect of the Seven Member high-quality source rock of Yanchang Formation in Ordos Basin during the enrichment of low-penetrating oil-gas accumulation: Geology and geochemistry. Geochimica 2005, 34, 147–154. [Google Scholar]
- Fu, J.H.; Li, S.X.; Xu, L.M. Paleo-sedimentary environmental restoration and its significance of Chang 7 Member of Triassic Yanchang Formation in Ordos Basin, NW China. Petrol. Explor. Dev. 2018, 45, 936–946. [Google Scholar] [CrossRef]
- Hou, Q.J.; Feng, Z.Q.; Feng, Z.H. Nonmarine Petroleum Geology of Songliao Basin; Petroleum Industry Press: Beijing, China, 2009; pp. 1–358. [Google Scholar]
Types of Source Rock | TOC (%) | PG (mg/g) | Chloroform Asphalt “A” (%) | Carbon Isotope of Kerogen (‰) | Ro (%) | Tmax (°C) | C29 Sterane 20S/(20S + 20R) | C29 Sterane ββ/(ββ + αα) |
---|---|---|---|---|---|---|---|---|
argillaceous rock | 0.12–2.60 0.82 (105) | 0.09–22.26 3.59 (105) | 0.006–1.893 0.465 (74) | −27.95–−24.94 −26.35 (29) | 0.56–1.14 0.89 (5) | 399–488 438 (67) | 0.41–0.49 0.47 (17) | 0.48–0.62 0.57 (17) |
dolomite | 0.07–2.89 0.86 (78) | 0.02–21.97 4.08 (78) | 0.001–1.934 0.224 (83) | 418–453 441 (72) | 0.34–0.49 0.44 (51) | 0.27–0.60 0.43 (51) | ||
tuff | 0.25–3.58 1.19 (11) | 0.01–24.05 6.32 (11) | 0.006–0.608 0.244 (11) | 428–446 436 (11) | 0.33–0.48 0.41 (7) | 0.21–0.49 0.34 (7) |
Evaluation Indicator | Non-source Rock | Poor | Fair | Good | Excellent |
---|---|---|---|---|---|
TOC (%) | <0.3 | 0.3–0.5 | 0.5–0.7 | 0.7–1.4 | >1.4 |
PG (mg HC/g TOC) | <0.5 | 0.5–1.5 | 1.5–3.0 | 3.0–7.0 | >7.0 |
Chloroform bitumen “A” (%) | <0.015 | 0.015–0.1 | 0.1–0.2 | 0.2–0.4 | / |
HC (μg/g) | <150 | 150–700 | 700–1400 | 1400–2700 | |
Organic matter conversion rate (Chloroform bitumen “A”/TOC) (%) | <8 | 8–20 | 20–30 | 30–35 | / |
Evaluation indicator | Lake Salinity | Non-Source Rock | Poor | Fair | Good | Excellent |
---|---|---|---|---|---|---|
TOC (%) | Fresh-brackish water | <0.4 | 0.4–0.6 | 0.6–1.0 | 1.0–2.0 | >2.0 |
Salt water | <0.2 | 0.2–0.4 | 0.4–0.6 | 0.6–0.8 | >0.8 | |
Chloroform bitumen “A”(%) | Fresh-brackish water | <0.015 | 0.015–0.05 | 0.05–0.1 | 0.1–0.2 | >0.2 |
HC (μg/g) | Fresh-brackish water | <100 | 100–200 | 200–500 | 500–1000 | >1000 |
PG (mg/g) | Fresh-brackish water | — | <2 | 2–6 | 6–20 | >20 |
Basin | Sag/Depression | Formation | Salinity of Ancient Lake Basin | Ro (%) | Petroleum Conversion Ratio (%) | References | |
---|---|---|---|---|---|---|---|
Chloroform Bitumen “A”/TOC | HC/TOC | ||||||
Bohaiwan | Dongpu | Sha 3 | Freshwater-brackish water | 0.5–1.3 | 7.2 | / | [45] |
Brackish water | 17.9 | / | |||||
Saltwater | 11.8 | / | |||||
Dongying | Sha 3 | Brackish water | 0.5–1.3 | 21.6 | 8.7 | [3] | |
Sha 4 | Saltwater | 10.6 | 8.7 | ||||
Subei | / | Fu 4 | Brackish water-saltwater | 0.5–1.0 | 13.9 | 4.5 | |
Nanxiang | Biyang | Upper Hetaoyuan | Freshwater-brackish water | 0.3–1.3 | 2.1 | 2.0 | |
Middle Hetaoyuan | Brackish water | 9.1 | 7.0 | ||||
Lower Hetaoyuan | Brackish water-saltwater | 10.9–12.4 | 6.2–8.5 | ||||
Jianghan | Qianjiang | Qian 3 | Saltwater | 0.5–1.3 | 48.4 | 17.6 | [40] |
Qian 4 | Saltwater | 34.9 | 21.6 | ||||
Chaidamu | Mangya | Lower Ganchaigou | Saltwater | 0.7–1.2 | 12.9–21.5 | 5.3–8.9 | [33,46] |
Uinta | / | Green River | Brackish water-saltwater | 0.5–1.1 | 20–30 | / | [3] |
Ordos | Yishan Slope | Chang 7 | Brackish water-freshwater | 0.7–1.3 | 3.1–9.8 | 1.9–5.8 | [47,48] |
Songliao | Sanzhao | Qing 1 | Brackish water-freshwater | 0.6–1.4 | 19.9 | 13.7 | [49] |
Junggar | Mahu | Fengcheng | Saltwater (alkaline lake) | 0.7–1.2 | 32.9 | 30.5 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Y.; He, W.; Bai, Y.; Zhang, X.; Zhao, J.; Yang, S.; Wu, H.; Zou, Y.; Wu, W. Source Rock Evaluation and Hydrocarbon Generation Model of a Permian Alkaline Lakes—A Case Study of the Fengcheng Formation in the Mahu Sag, Junggar Basin. Minerals 2021, 11, 644. https://doi.org/10.3390/min11060644
Tang Y, He W, Bai Y, Zhang X, Zhao J, Yang S, Wu H, Zou Y, Wu W. Source Rock Evaluation and Hydrocarbon Generation Model of a Permian Alkaline Lakes—A Case Study of the Fengcheng Formation in the Mahu Sag, Junggar Basin. Minerals. 2021; 11(6):644. https://doi.org/10.3390/min11060644
Chicago/Turabian StyleTang, Yong, Wenjun He, Yubin Bai, Xiang Zhang, Jingzhou Zhao, Sen Yang, Heyuan Wu, Yang Zou, and Weitao Wu. 2021. "Source Rock Evaluation and Hydrocarbon Generation Model of a Permian Alkaline Lakes—A Case Study of the Fengcheng Formation in the Mahu Sag, Junggar Basin" Minerals 11, no. 6: 644. https://doi.org/10.3390/min11060644
APA StyleTang, Y., He, W., Bai, Y., Zhang, X., Zhao, J., Yang, S., Wu, H., Zou, Y., & Wu, W. (2021). Source Rock Evaluation and Hydrocarbon Generation Model of a Permian Alkaline Lakes—A Case Study of the Fengcheng Formation in the Mahu Sag, Junggar Basin. Minerals, 11(6), 644. https://doi.org/10.3390/min11060644