On Analytical Extension of Generalized Hypergeometric Function 3F2
Abstract
:1. Introduction
2. Domains of Analytical Extension
- (A)
- The branched continued fractionconverges absolutely and uniformly for
- (B)
- The values of the branched continued fraction (16) and of its approximants are in the closed disk
- (i)
- and is replaced by ;
- (ii)
- (or ) and (or ), are replaced by (or ), respectively;
- (iii)
- (or ) and (or ), are replaced by (or ), respectively.
3. Examples
4. Discussion and Conclusions
5. Formulas of the Coefficients of the Branched Continued Fraction Expansions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cuyt, A.A.M.; Petersen, V.; Verdonk, B.; Waadeland, H.; Jones, W.B. Handbook of Continued Fractions for Special Functions; Springer: Dordrecht, The Netherlands, 2008. [Google Scholar]
- Exton, H. Multiple Hypergeometric Functions and Applications; Horwood, E., Ed.; Halsted Press: Chichester, UK, 1976. [Google Scholar]
- Seaborn, J.B. Hypergeometric Functions and Their Applications; Springer: New York, NY, USA, 1991. [Google Scholar]
- Srivastava, H.M.; Karlsson, P.W. Multiple Gaussian Hypergeometric Series; Horwood, E., Ed.; Halsted Press: Chichester, UK, 1985. [Google Scholar]
- Bailey, W.N. Generalised Hypergeometric Series; Cambridge University Press: Cambridge, UK, 1935. [Google Scholar]
- Hang, P.-C.; Luo, M.-J. Asymptotics of Saran’s hypergeometric function FK. J. Math. Anal. Appl. 2025, 541, 128707. [Google Scholar] [CrossRef]
- Petridis, Y.N.; Raulf, N.; Risager, M.S. Double Dirichlet series and quantum unique ergodicity of weight one-half Eisenstein series. Algebra Number Theory 2014, 8, 1539–1595. [Google Scholar] [CrossRef]
- Themangani, R.; Porwal, S.; Magesh, N. Generalized hypergeometric distribution and its applications on univalent functions. J. Inequal. Appl. 2020, 2020, 249. [Google Scholar] [CrossRef]
- Yang, Y.; Yui, N. Differential equations satisfied by modular forms and K3 surfaces. Illinois J. Math. 2005, 51, 667–696. [Google Scholar] [CrossRef]
- Sasaki, T.; Suzuki, H. Bending of light and inhomogeneous Picard-Fuchs equation. Class. Quantum Grav. 2021, 38, 135030. [Google Scholar] [CrossRef]
- Chapling, R. A hypergeometric integral with applications to the fundamental solution of Laplace’s equation on hyperspheres. SIGMA 2016, 12, 079. [Google Scholar] [CrossRef]
- Lüst, D.; Schlotterer, O.; Stieberger, S.; Taylor, T.R. The LHC String Hunter’s Companion (II): Five-particle amplitudes and universal properties. Nucl. Phys. B 2010, 828, 139–200. [Google Scholar] [CrossRef]
- Sagnotti, A. Notes on strings and higher spins. J. Phys. A Math. Theor. 2013, 46, 214006. [Google Scholar] [CrossRef]
- Zagier, D.; Zerbini, F. Genus-zero and genus-one string amplitudes and special multiple zeta values. Commun. Num. Theor. Phys. 2020, 14, 413–452. [Google Scholar] [CrossRef]
- Atakishiyev, N.M.; Pogosyan, G.S.; Wolf, K.B. Finite models of the oscillator. Fiz. Ehlement. Chast. Atom. Yadra 2005, 36, 473–508. [Google Scholar]
- Jafarov, E.; Lievens, S.; Van der Jeugt, J. The Wigner distribution function for the one-dimensional parabose oscillator. J. Phys. A Math. Theor. 2008, 41, 235301. [Google Scholar] [CrossRef]
- Le Doussal, P.; Smith, N.R.; Argaman, N. Exact first-order effect of interactions on the ground-state energy of harmonically-confined fermions. SciPost Phys. 2024, 17, 038. [Google Scholar] [CrossRef]
- Xia, W. Pricing exotic power options with a Brownian-time-changed variance gamma process. Commun. Math. Financ. 2017, 6, 21–60. [Google Scholar]
- Vidunas, R. Counting derangements and Nash equilibria. Ann. Comb. 2017, 21, 131–152. [Google Scholar] [CrossRef]
- Antonova, T.; Dmytryshyn, R.; Sharyn, S. Generalized hypergeometric function 3F2 ratios and branched continued fraction expansions. Axioms 2021, 10, 310. [Google Scholar] [CrossRef]
- Petreolle, M.; Sokal, A.D.; Zhu, B.X. Lattice paths and branched continued fractions: An infinite sequence of generalizations of the Stieltjes-Rogers and Thron-Rogers polynomials, with coefficientwise Hankel-total positivity. arXiv 2020, arXiv:1807.03271v2. [Google Scholar] [CrossRef]
- Antonova, T. On structure of branched continued fractions. Carpathian Math. Publ. 2024, 16, 391–400. [Google Scholar] [CrossRef]
- Bodnar, D.I. Branched Continued Fractions; Naukova Dumka: Kyiv, Ukraine, 1986. (In Russian) [Google Scholar]
- Antonova, T.; Cesarano, C.; Dmytryshyn, R.; Sharyn, S. An approximation to Appell’s hypergeometric function F2 by branched continued fraction. Dolomites Res. Notes Approx. 2024, 17, 22–31. [Google Scholar] [CrossRef]
- Antonova, T.; Dmytryshyn, R.; Sharyn, S. Branched continued fraction representations of ratios of Horn’s confluent function H6. Constr. Math. Anal. 2023, 6, 22–37. [Google Scholar] [CrossRef]
- Dmytryshyn, R.; Antonova, T.; Dmytryshyn, M. On the analytic extension of the Horn’s confluent function H6 on domain in the space 2. Constr. Math. Anal. 2024, in press. [Google Scholar]
- Hladun, V.R.; Hoyenko, N.P.; Manzij, O.S.; Ventyk, L. On convergence of function F4(1,2;2,2;z1,z2) expansion into a branched continued fraction. Math. Model. Comput. 2022, 9, 767–778. [Google Scholar] [CrossRef]
- Hladun, V.; Rusyn, R.; Dmytryshyn, M. On the analytic extension of three ratios of Horn’s confluent hypergeometric function H7. Res. Math. 2024, 32, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Dmytryshyn, R.; Lutsiv, I.-A.; Dmytryshyn, M. On the analytic extension of the Horn’s hypergeometric function H4. Carpathian Math. Publ. 2024, 16, 32–39. [Google Scholar] [CrossRef]
- Dmytryshyn, R.I. Convergence of multidimensional A- J-Fractions Independentvariables. Comput. Methods Funct. Theory 2022, 22, 229–242. [Google Scholar] [CrossRef]
- Dmytryshyn, R.; Goran, V. On the analytic extension of Lauricella–Saran’s hypergeometric function FK to symmetric domains. Symmetry 2024, 16, 220. [Google Scholar] [CrossRef]
- Antonova, T.; Dmytryshyn, R.; Goran, V. On the analytic continuation of Lauricella-Saran hypergeometric function FK(a1,a2,b1,b2;a1,b2,c3;z). Mathematics 2023, 11, 4487. [Google Scholar] [CrossRef]
- Wall, H.S. Analytic Theory of Continued Fractions; D. Van Nostrand Co.: New York, NY, USA, 1948. [Google Scholar]
- Zagier, D. The dilogarithm function. In Frontiers in Number Theory, Physics, and Geometry II; Cartier, P., Moussa, P., Julia, B., Vanhove, P., Eds.; Springer: Berlin, Germany, 2007; pp. 3–65. [Google Scholar]
- Krupnikov, E.D.; Kölbig, K.S. Some special cases of the generalized hypergeometric function q+lFq. J. Comput. Appl. Math. 1997, 78, 75–95. [Google Scholar] [CrossRef]
- Gauss, C.F. Disquisitiones generales circa seriem infinitam etc. In Commentationes Societatis Regiae Scientiarum Gottingensis Recentiores; Classis Mathematicae, 1812; H. Dieterich: Gottingae, Germany, 1813; Volume 2, pp. 3–46. [Google Scholar]
- Bodnar, D.I.; Bilanyk, I.B. Parabolic convergence regions of branched continued fractions of the special form. Carpathian Math. Publ. 2021, 13, 619–630. [Google Scholar] [CrossRef]
- Bodnar, D.I.; Bilanyk, I.B. Two-dimensional generalization of the Thron-Jones theorem on the parabolic domains of convergence of continued fractions. Ukr. Math. J. 2023, 74, 1317–1333. [Google Scholar] [CrossRef]
- Bodnar, D.I.; Bilanyk, I.B. On the convergence of branched continued fractions of a special form in angular domains. J. Math. Sci. 2020, 246, 188–200. [Google Scholar] [CrossRef]
- Antonova, T.M.; Dmytryshyn, M.V.; Vozna, S.M. Some properties of approximants for branched continued fractions of the special form with positive and alternating-sign partial numerators. Carpathian Math. Publ. 2018, 10, 3–13. [Google Scholar] [CrossRef]
- Antonova, T.M.; Sus’, O.M.; Vozna, S.M. Convergence and estimation of the truncation error for the corresponding two-dimensional continued fractions. Ukr. Math. J. 2022, 74, 501–518. [Google Scholar] [CrossRef]
- Bodnar, D.I.; Bilanyk, I.B. Estimation of the rates of pointwise and uniform convergence of branched continued fractions with inequivalent variables. J. Math. Sci. 2022, 265, 423–437. [Google Scholar] [CrossRef]
- Bodnar, D.I.; Bodnar, O.S.; Bilanyk, I.B. A truncation error bound for branched continued fractions of the special form on subsets of angular domains. Carpathian Math. Publ. 2023, 15, 437–448. [Google Scholar] [CrossRef]
- Hladun, V.R.; Bodnar, D.I.; Rusyn, R.S. Convergence sets and relative stability to perturbations of a branched continued fraction with positive elements. Carpathian Math. Publ. 2024, 16, 16–31. [Google Scholar] [CrossRef]
- Cuchta, T.; Grow, D.; Wintz, N. Discrete matrix hypergeometric functions. J. Math. Anal. Appl. 2023, 518, 126716. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dmytryshyn, R.; Oleksyn, V. On Analytical Extension of Generalized Hypergeometric Function 3F2. Axioms 2024, 13, 759. https://doi.org/10.3390/axioms13110759
Dmytryshyn R, Oleksyn V. On Analytical Extension of Generalized Hypergeometric Function 3F2. Axioms. 2024; 13(11):759. https://doi.org/10.3390/axioms13110759
Chicago/Turabian StyleDmytryshyn, Roman, and Volodymyra Oleksyn. 2024. "On Analytical Extension of Generalized Hypergeometric Function 3F2" Axioms 13, no. 11: 759. https://doi.org/10.3390/axioms13110759
APA StyleDmytryshyn, R., & Oleksyn, V. (2024). On Analytical Extension of Generalized Hypergeometric Function 3F2. Axioms, 13(11), 759. https://doi.org/10.3390/axioms13110759