Optimization of Large Vessel Occlusion Detection in Acute Ischemic Stroke Using Machine Learning Methods
Abstract
:1. Introduction
2. Methods
2.1. Study Cohort
2.2. Outcome
2.3. Statistical Analysis
2.4. Data Analysis
3. Results
Data Driven Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lakomkin, N.; Dhamoon, M.; Carroll, K.; Singh, I.P.; Tuhrim, S.; Lee, J.; Fifi, J.T.; Mocco, J. Prevalence of large vessel occlusion in patients presenting with acute ischemic stroke: A 10-year systematic review of the literature. J. NeuroInterv. Surg. 2018, 11, 241–245. [Google Scholar] [CrossRef] [PubMed]
- Goyal, M.; Menon, B.K.; Van Zwam, W.H.; Dippel, D.W.J.; Mitchell, P.J.; Demchuk, A.M.; Dávalos, A.; Majoie, C.B.L.M.; Van Der Lugt, A.; De Miquel, M.A.; et al. Endovascular thrombectomy after large-vessel ischaemic stroke: A meta-analysis of individual patient data from five randomised trials. Lancet 2016, 387, 1723–1731. [Google Scholar] [CrossRef]
- Aguiar de Sousa, D.; von Martial, R.; Abilleira, S.; Gattringer, T.; Kobayashi, A.; Gallofré, M.; Fazekas, F.; Szikora, I.; Feigin, V.; Caso, V.; et al. Access to and delivery of acute ischaemic stroke treatments: A survey of national scientific societies and stroke experts in 44 European countries. Eur. Stroke J. 2019, 4, 13–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almekhlafi, M.; Kunz, W.; Menon, B.; McTaggart, R.; Jayaraman, M.; Baxter, B.; Heck, D.; Frei, D.; Derdeyn, C.; Takagi, T.; et al. Imaging of Patients with Suspected Large-Vessel Occlusion at Primary Stroke Centers: Available Modalities and a Suggested Approach. Am. J. Neuroradiol. 2019, 40, 396–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romoli, M.; Paciaroni, M.; Tsivgoulis, G.; Agostoni, E.C.; Vidale, S. Mothership versus Drip-and-Ship Model for Mechanical Thrombectomy in Acute Stroke: A Systematic Review and Meta-Analysis for Clinical and Radiological Outcomes. J. Stroke 2020, 22, 317–323. [Google Scholar] [CrossRef]
- Saqqur, M.; Uchino, K.; Demchuk, A.M.; Molina, C.A.; Garami, Z.; Calleja, S.; Akhtar, N.; Orouk, F.O.; Salam, A.; Shuaib, A.; et al. Site of Arterial Occlusion Identified by Transcranial Doppler Predicts the Response to Intravenous Thrombolysis for Stroke. Stroke 2007, 38, 948–954. [Google Scholar] [CrossRef] [Green Version]
- Smith, E.E.; Kent, D.M.; Bulsara, K.R.; Leung, L.Y.; Lichtman, J.H.; Reeves, M.J.; Towfighi, A.; Whiteley, W.; Zahuranec, D.B. Accuracy of Prediction Instruments for Diagnosing Large Vessel Occlusion in Individuals with Suspected Stroke: A Systematic Review for the 2018 Guidelines for the Early Management of Patients with Acute Ischemic Stroke. Stroke 2018, 49, e111–e122. [Google Scholar] [CrossRef]
- Vidale, S.; Agostoni, E. Prehospital stroke scales and large vessel occlusion: A systematic review. Acta Neurol. Scand. 2018, 138, 24–31. [Google Scholar] [CrossRef]
- Inoue, M.; Noda, R.; Yamaguchi, S.; Tamai, Y.; Miyahara, M.; Yanagisawa, S.; Okamoto, K.; Hara, T.; Takeuchi, S.; Miki, K.; et al. Specific Factors to Predict Large-Vessel Occlusion in Acute Stroke Patients. J. Stroke Cerebrovasc. Dis. 2018, 27, 886–891. [Google Scholar] [CrossRef]
- Rennert, R.C.; Wali, A.R.; Steinberg, J.A.; Santiago-Dieppa, D.R.; Olson, S.E.; Pannell, J.S.; Khalessi, A.A. Epidemiology, natural history, and clinical presentation of large vessel is-chemic stroke. Neurosurgery 2019, 85, S4–S8. [Google Scholar] [CrossRef] [Green Version]
- Tibshirani, R. Regression Shrinkage and Selection Via the Lasso. J. R. Stat. Soc. Ser. B 1996, 58, 267–288. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: https://www.R-project.org/ (accessed on 12 December 2019).
- Kuhn, M. A Short Introduction to the Caret Package; R Foundation for Statistical Computing: Vienna, Austria, 2015; Volume 1, pp. 1–10. [Google Scholar]
- Beume, L.-A.; Hieber, M.; Kaller, C.P.; Nitschke, K.; Bardutzky, J.; Urbach, H.; Weiller, C.; Rijntjes, M. Large Vessel Occlusion in Acute Stroke. Stroke 2018, 49, 2323–2329. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, J.; Gong, X.; Zhang, W.; Zhou, Y.; Lou, M. Prediction of large vessel occlusion for ischaemic stroke by using the machine learning model random forests [published online ahead of print, 2021 Oct 26]. Stroke Vasc Neurol 2021, svn-2021-001096. [Google Scholar] [CrossRef] [PubMed]
- van Meenen, L.C.C.; van Stigt, M.N.; Siegers, A.; Smeekes, M.D.; van Grondelle, J.A.; Geuzebroek, G.; Marquering, H.A.; Majoie, C.B.; Roos, Y.B.; Koelman, J.H.; et al. Detection of large vessel occlusion stroke in the prehospital setting: Electroencephalography as a potential triage instrument. Stroke 2021, 52, e347–e355. [Google Scholar] [CrossRef]
- Purrucker, J.C.; Härtig, F.; Richter, H.; Engelbrecht, A.; Hartmann, J.; Auer, J.; Hametner, C.; Popp, E.; Ringleb, P.A.; Nagel, S.; et al. Design and validation of a clinical scale for prehospital stroke recognition, severity grading and prediction of large vessel occlusion: The shortened NIH Stroke Scale for emergency medical services. BMJ Open 2017, 7, e016893. [Google Scholar] [CrossRef]
- Grewal, P.; Lahoti, S.; Aroor, S.; Snyder, K.; Pettigrew, L.C.; Goldstein, L.B. Effect of known atrial fibrillation and anticoagulation status on the prehospital identification of large vessel occlusion. J. Stroke Cerebrovasc. Dis. 2019, 28, 104404. [Google Scholar] [CrossRef]
- Narwal, P.; Chang, A.D.; Mac Grory, B.; Jayaraman, M.; Madsen, T.; Paolucci, G.; Cutting, S.; Burton, T.; Dakay, K.; Schomer, A.; et al. The Addition of Atrial Fibrillation to the Los Angeles Motor Scale May Improve Prediction of Large Vessel Occlusion. J. Neuroimaging 2019, 29, 463–466. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Gong, X.; Zhong, W.; Zhou, Y.; Lou, M. Novel Prehospital Triage Scale for Detecting Large Vessel Occlusion and Its Cause. J. Am. Heart Assoc. 2021, 10, e021201. [Google Scholar] [CrossRef]
- Ohta, T.; Nakahara, I.; Matsumoto, S.; Kondo, D.; Watanabe, S.; Okada, K.; Fukuda, M.; Masahira, N.; Tsuno, T.; Matsuoka, T.; et al. Optimizing in-hospital triage for large vessel occlusion using a novel clinical scale (GAI2AA). Neurology 2019, 93, e1997–e2006. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Pardo, J.; Riera-López, N.; Fuentes, B.; de Leciñana, M.A.; Secades-García, S.; Álvarez-Fraga, J.; Carneado-Ruiz, J.; Díaz-Guzmán, J.; Egido-Herrero, J.; Gil-Núñez, A.; et al. Prehospital selection of thrombectomy candidates beyond large vessel occlusion: M-DIRECT scale. Neurology 2020, 94, e851–e860. [Google Scholar] [CrossRef]
- Kim, W.; Kim, E.J. Heart Failure as a Risk Factor for Stroke. J. Stroke 2018, 20, 33–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tarkanyi, G.; Karadi, Z.N.; Szabo, Z.; Szegedi, I.; Csiba, L.; Szapary, L. Relationship between leukocyte counts and large vessel occlusion in acute ischemic stroke. BMC Neurol. 2020, 20, 440. [Google Scholar] [CrossRef]
- Chang, A.; Ricci, B.; Mac Grory, B.; Cutting, S.; Burton, T.; Dakay, K.; Jayaraman, M.; Merkler, A.; Reznik, M.; Lerario, M.; et al. Cardiac Biomarkers Predict Large Vessel Occlusion in Patients with Ischemic Stroke. J. Stroke Cerebrovasc. Dis. 2019, 28, 1726–1731. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Pachón, A.; López-Cancio, E.; Bustamante, A.; de la Ossa, N.P.; Millán, M.; Hernández-Pérez, M.; Garcia-Berrocoso, T.; Cardona, P.; Rubiera, M.; Serena, J.; et al. D-Dimer as Predictor of Large Vessel Occlusion in Acute Ischemic Stroke. Stroke 2021, 52, 852–858. [Google Scholar] [CrossRef]
- Montaner, J.; Ramiro, L.; Simats, A.; Tiedt, S.; Makris, K.; Jickling, G.C.; Debette, S.; Sanchez, J.-C.; Bustamante, A. Multilevel omics for the discovery of biomarkers and therapeutic targets for stroke. Nat. Rev. Neurol. 2020, 16, 247–264. [Google Scholar] [CrossRef] [PubMed]
- Csecsei, P.; Várnai, R.; Nagy, L.; Kéki, S.; Molnár, T.; Illés, Z.; Farkas, N.; Szapáry, L. L-arginine pathway metabolites can discriminate paroxysmal from permanent atrial fibrillation in acute ischemic stroke. Ideggyogy Szle 2019, 72, 79–88. [Google Scholar] [CrossRef]
- Powers, W.J.; Rabinstein, A.A.; Ackerson, T.; Adeoye, O.M.; Bambakidis, N.C.; Becker, K.; Biller, J.; Brown, M.; Demaerschalk, B.M.; Hoh, B.; et al. Guidelines for the Early Management of Patients with Acute Ischemic Stroke: 2019 Update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke: A Guideline for Healthcare Professionals from the American Heart Association/American Stroke Association. Stroke 2019, 50, e344–e418. [Google Scholar] [CrossRef]
- Jia, B.; Ren, Z.; Mokin, M.; Burgin, W.S.; Bauer, C.T.; Fiehler, J.; Mo, D.; Ma, N.; Gao, F.; Huo, X.; et al. Current Status of Endovascular Treatment for Acute Large Vessel Occlusion in China: A Real-World Nationwide Registry. Stroke 2021, 52, 1203–1212. [Google Scholar] [CrossRef]
- Hendrix, P.; Killer-Oberpfalzer, M.; Broussalis, E.; Melamed, I.; Sharma, V.; Mutzenbach, S.; Pikija, S.; Collins, M.; Lieberman, N.; Hecker, C.; et al. Mechanical Thrombectomy for Anterior versus Posterior Circulation Large Vessel Occlusion Stroke with Emphasis on Posterior Circulation Outcomes [published online ahead of print, 2021 Nov 8]. World Neurosurg. 2021, S1878-8750(21)01698-3. [Google Scholar] [CrossRef]
- Schneck, M.J. Current Stroke Scales May Be Partly Responsible for Worse Outcomes in Posterior Circulation Stroke. Stroke 2018, 49, 2565–2566. [Google Scholar] [CrossRef]
LVO Present (n = 227) | LVO Absent (n = 299) | p Value | AUC (95% CI) | |
---|---|---|---|---|
Demographic characteristics | ||||
Age, years, median (IQR) | 68 (61–79) | 69 (59–77) | 0.231 | 0.524 (0.467–0.582) |
Gender, female, % (n) | 49.8 (113) | 43.5 (130) | 0.151 | 0.530 (0.474–0.587) |
Elapsed times | ||||
Onset-to-ER assessment time, min, median (IQR) | 83 (58–124) | 88 (59–135) | 0.110 | - |
ER assessment-to-CTA time, min, median (IQR) | 14 (6–23) | 17 (6–32) | 0.043 | - |
Parameters on admission | ||||
NIHSS score on admission, median (IQR) | 12 (8–16) | 6 (4–9) | <0.001 | 0.783 (0.742–0.824) |
On admission SBP, mmHg, median (IQR) | 160 (140–178) | 169.5 (145–185) | 0.005 | 0.420 (0.365–0.474) |
On admission DBP, mmHg, median (IQR) | 86 (78–99) | 90 (80–100) | 0.034 | 0.456 (0.401–0.511) |
Heart rate, 1/min, median (IQR) | 82 (72–93) | 80 (71–92) | 0.251 | 0.533 (0.477–0.589) |
SpO2, %, median (IQR) | 97 (96–98) | 97 (96–99) | 0.025 | 0.447 (0.345–0.550) |
Body temperature, °C, median (IQR) | 36.4 (36.0–36.5) | 36.5 (36.2–36.6) | 0.008 | 0.372 (0.270–0.474) |
BMI, kg/m2, median (IQR) | 25.78 (23.34–30.12) | 26.72 (23.46–31.21) | 0.125 | 0.447 (0.392–0.502) |
Laboratory parameters | ||||
Blood glucose, mmol/L, median (IQR) | 6.90 (5.91–8.28) | 6.50 (5.60–8.30) | 0.084 | 0.548 (0.495–0.602) |
INR, ratio, median (IQR) | 1.03 (0.96–1.10) | 1.00 (0.95–1.05) | <0.001 | 0.587 (0.534–0.640) |
CRP, mg/L, median (IQR) | 3.30 (1.50–7.20) | 2.98 (1.55–5.80) | 0.262 | 0.540 (0.486–0.595) |
WBC, 109/L, median (IQR) | 8.62 (6.88–10.62) | 7.94 (6.55–9.61) | 0.005 | 0.583 (0.530–0.636) |
Platelet, 109/L, median (IQR) | 233.5 (195–271) | 224 (186–267) | 0.078 | 0.532 (0.479–0.586) |
Haematocrit, %, median (IQR) | 40.0 (37.6–42.8) | 41.1 (38.0–44.0) | 0.034 | 0.449 (0.396–0.503) |
Haemoglobin, g/dL, median (IQR) | 138 (126–146) | 141 (130–152) | 0.005 | 0.433 (0.380–0.486) |
Creatinine, µmol/L, median (IQR) | 82 (69–99) | 83 (69–101) | 0.561 | 0.485 (0.431–0.539) |
BUN, mmol/L, median (IQR) | 6.26 (4.80–8.19) | 6.10 (4.68–7.63) | 0.173 | 0.527 (0.473–0.581) |
AST, U/L, median (IQR) | 20 (16–24) | 20 (16–25) | 0.480 | 0.476 (0.422–0.530) |
ALT, U/L, median (IQR) | 15 (11–22) | 16 (12–22.5) | 0.381 | 0.466 (0.412–0.520) |
Presence of vascular risk factors | ||||
Smoking, % (n) | 34.9 (66) | 31.4 (85) | 0.424 | 0.517 (0.460–0.574) |
Hypertension, % (n) | 81.4 (180) | 80.4 (234) | 0.768 | 0.496 (0.439–0.553) |
Diabetes mellitus, % (n) | 21.5 (47) | 28.6 (82) | 0.069 | 0.475 (0.418–0.531) |
Hyperlipidaemia, % (n) | 59.2 (125) | 58.3 (161) | 0.840 | 0.495 (0.438–0.552) |
Atrial fibrillation, % (n) | 35.8 (78) | 17.5 (50) | <0.001 | 0.590 (0.533–0.647) |
Coronary artery disease, % (n) | 29.6 (64) | 21.9 (61) | 0.051 | 0.535 (0.478–0.592) |
Chronic heart failure, % (n) | 17.9 (39) | 8.9 (25) | 0.002 | 0.549 (0.492–0.606) |
Previous stroke/TIA, % (n) | 21.0 (46) | 23.2 (66) | 0.564 | 0.494 (0.438–0.551) |
Malignancy, % (n) | 15.6 (33) | 11.7 (33) | 0.217 | 0.520 (0.462–0.577) |
Etiology (TOAST), % (n) | <0.001 | |||
Large-artery atherosclerosis | 26.4 (60) | 27.8 (83) | ||
Cardioembolism | 51.1 (116) | 20.7 (62) | ||
Small vessel disease | 0 (0) | 21.7 (65) | ||
Other determined origin | 0.4 (1) | 5.0 (15) | ||
Undetermined etiology | 22.0 (50) | 24.7 (74) |
Symptoms (NIHSS Items) | Points | Presence | AUC (95% CI) | ||||
---|---|---|---|---|---|---|---|
LVO Present | LVO Absent | p Value | LVO Present | LVO Absent | p Value | ||
1A. Level of consciousness (LOC) | 0 (0–0) | 0 (0–0) | 0.003 | 12.8% | 5.4% | 0.003 | 0.537 (0.487–0.587) |
1B. LOC questions | 1 (0–2) | 0 (0–1) | <0.001 | 56.4% | 33.1% | <0.001 | 0.638 (0.589–0.686) |
1C. LOC commands | 0 (0–2) | 0 (0–0) | <0.001 | 47.1% | 24.7% | <0.001 | 0.618 (0.569–0.667) |
2. Gaze | 0 (0–2) | 0 (0–0) | <0.001 | 46.3% | 15.1% | <0.001 | 0.666 (0.617–0.714) |
3. Visual fields | 0 (0–2) | 0 (0–0) | <0.001 | 47.6% | 21.4% | <0.001 | 0.632 (0.583–0.681) |
4. Facial palsy | 2 (1–2) | 1 (0–2) | <0.001 | 85.9% | 70.9% | <0.001 | 0.644 (0.597–0.692) |
5. Arm weakness | 3 (1–4) | 1 (0–2) | <0.001 | 91.2% | 72.6% | <0.001 | 0.738 (0.695–0.782) |
6. Leg weakness | 3 (1–3) | 1 (0–2) | <0.001 | 83.3% | 64.9% | <0.001 | 0.717 (0.671–0.762) |
7. Limb ataxia | 0 (0–0) | 0 (0–0) | 0.001 | 7.0% | 17.4% | <0.001 | 0.450 (0.401–0.499) |
8. Sensory deficit | 0 (0–1) | 0 (0–1) | 0.688 | 26.9% | 30.1% | 0.418 | 0.492 (0.442–0.542) |
9. Language/aphasia | 1 (0–2) | 0 (0–1) | <0.001 | 56.8% | 37.1% | <0.001 | 0.634 (0.586–0.683) |
10. Dysarthria | 0 (0–1) | 0 (0–1) | 0.893 | 37.0% | 38.1% | 0.792 | 0.497 (0.447–0.547) |
11. Extinction/inattention | 0 (0–0) | 0 (0–0) | 0.001 | 9.7% | 2.7% | 0.001 | 0.535 (0.485–0.585) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarkanyi, G.; Tenyi, A.; Hollos, R.; Kalmar, P.J.; Szapary, L. Optimization of Large Vessel Occlusion Detection in Acute Ischemic Stroke Using Machine Learning Methods. Life 2022, 12, 230. https://doi.org/10.3390/life12020230
Tarkanyi G, Tenyi A, Hollos R, Kalmar PJ, Szapary L. Optimization of Large Vessel Occlusion Detection in Acute Ischemic Stroke Using Machine Learning Methods. Life. 2022; 12(2):230. https://doi.org/10.3390/life12020230
Chicago/Turabian StyleTarkanyi, Gabor, Akos Tenyi, Roland Hollos, Peter Janos Kalmar, and Laszlo Szapary. 2022. "Optimization of Large Vessel Occlusion Detection in Acute Ischemic Stroke Using Machine Learning Methods" Life 12, no. 2: 230. https://doi.org/10.3390/life12020230
APA StyleTarkanyi, G., Tenyi, A., Hollos, R., Kalmar, P. J., & Szapary, L. (2022). Optimization of Large Vessel Occlusion Detection in Acute Ischemic Stroke Using Machine Learning Methods. Life, 12(2), 230. https://doi.org/10.3390/life12020230