Chemical and Thermal Treatment for Drying Cassava Tubers: Optimization, Microstructure, and Dehydration Kinetics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Pretreatment and Drying Experiments
2.3. Moisture Content Analysis
2.4. Color Measurement
2.5. Determination of Effective Moisture Diffusivity
2.6. Determination of Activation Energy
2.7. Microstructure Analysis
2.8. Statistical Analysis
2.9. Dehydration Kinetics
3. Results and Discussion
3.1. Pretreatment Parameters of Dried Cassava
3.1.1. Moisture Content
3.1.2. Whiteness Index
3.1.3. Effective Moisture Diffusivity
3.1.4. Activation Energy
3.2. Modeling and Optimization of the Pretreatment Parameters
3.3. Microstructure of Pretreated Cassava Flour
3.4. Dehydration Kinetics of the Optimized Pretreatment Parameters
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chimphepo, L.; Alamu, E.O.; Monjerezi, M.; Ntawuruhunga, P.; Saka, J.D.K. Physicochemical parameters and functional properties of flours from advanced genotypes and improved cassava varieties for industrial applications. LWT 2021, 147, 111592. [Google Scholar] [CrossRef]
- FAO. Crops and Livestock Products. In Statistics Division Food and Agriculture Organization of the United Nations; FAOSTAT: Rome, Italy, 2021; Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 3 October 2023).
- Abass, A.B.; Mlingi, N.; Ranaivoson, R.; Zulu, M.; Mukuka, I.; Abele, S. Potential for Commercial Production and Marketing of Cassava: Experiences from the Small-Scale Cassava Processing Project in East and Southern Africa; IITA: Ibadan, Nigeria, 2013. [Google Scholar]
- Warji, W.; Tamrin, T. Hybrid Dryer of Cassava Chips. IOP Conf. Ser. Earth Environ. Sci. 2021, 757, 012027. [Google Scholar] [CrossRef]
- Elisabeth, D.A.A.; Utomo, J.S.; Byju, G.; Ginting, E. Cassava flour production by small scale processors, its quality and economic feasibility. Food Sci. Technol. 2022, 42, e41522. [Google Scholar] [CrossRef]
- Kwaw, E.; Osae, R.; Apaliya, M.T.; Rapheal, A.N.; Aikins, A.S.S.; Olivia, A.; Nancy, A.; Veronica, O. Influence of different osmotic dehydration pretreatment on the physiochemical and sensory characteristics of fried cassava chips (Manihot esculenta). J. Agric. Food Res. 2023, 12, 100613. [Google Scholar] [CrossRef]
- Riley, C.K.; Adebayo, S.A.; Wheatley, A.O.; Asemota, H.N. Fundamental and Derived Properties of Yam (Dioscorea spp.) Starch Powders and Implications in Tablet and Capsule Formulation. Starch/Stärke 2006, 58, 418–424. [Google Scholar] [CrossRef]
- Srikanth, N. Emphasis on integrative and inclusive health approaches: An essential current need. J. Res. Ayurvedic Sci. 2021, 5, 1–3. [Google Scholar] [CrossRef]
- Falade, K.O.; Olurin, T.O.; Ike, E.A.; Aworh, O.C. Effect of pretreatment and temperature on air-drying of Dioscorea alata and Dioscorea rotundata slices. J. Food Eng. 2007, 80, 1002–1010. [Google Scholar] [CrossRef]
- Pham, N.D.; Khan, M.I.H.; Karim, M.A. A mathematical model for predicting the transport process and quality changes during intermittent microwave convective drying. Food Chem. 2020, 325, 126932. [Google Scholar] [CrossRef]
- Trujillo, M.E.; Kroppenstedt, R.M.; Fernandez-Molinero, C.; Schumann, P.; Martinez-Molina, E. Micromonospora lupini sp. nov. and Micromonospora saelicesensis sp. nov., isolated from root nodules of Lupinus angustifolius. Int. J. Syst. Evol. Microbiol. 2007, 57, 2799–2804. [Google Scholar] [CrossRef]
- Kerkhof, P.; Coumans, W.J. Drying: A fascinating unit operation. Chem. Eng. J. 2002, 86, 1.e2. [Google Scholar] [CrossRef]
- Babalis, S.J.; Belessiotis, V.G. Influence of drying conditions on the drying constant and moisture diffusivity during the thin-layer drying of figs. J. Food Eng. 2006, 65, 449–458. [Google Scholar] [CrossRef]
- Udoro, E.O.; Anyasi, T.A.; Jideani, A.I.O. Interactive Effects of Chemical Pretreatment and Drying on the Physicochemical Properties of Cassava Flour Using Response Surface Methodology. Int. J. Food Sci. 2020, 2020, 7234372. [Google Scholar] [CrossRef] [PubMed]
- Haile, S.A.F.; Fisseha, A. Effects of pretreatments and drying methods on chemical composition, microbial and sensory quality of orange-fleshed sweet potato flour and porridge. Am. J. Food Sci. Technol. 2015, 3, 82–88. [Google Scholar]
- Nainggolan, E.A.; Banout, J.; Urbanova, K. Application of Central Composite Design and Superimposition Approach for Optimization of Drying Parameters of Pretreated Cassava Flour. Foods 2023, 12, 2101. [Google Scholar] [CrossRef]
- Wahab, B.A.; Adebowale, A.A.; Sanni, S.A. Effect of species pretreatments and drying methods on the functional and pasting properties of high-quality yam flour. Food Sci. Nutr. 2016, 4, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Doymaz, I. Thin-layer drying characteristics of sweet potato slices and mathematical modelling. Heat Mass Transf. 2011, 47, 277–285. [Google Scholar] [CrossRef]
- Rafiee, S.; Mirzaee, E.; Keyhani, A.R.; Emam Djom–eh, Z.; Kheuralipour, K. Mass modeling of two varieties of apricot (Prunus armenaica L) with some physical characteristics. Plant Omics 2008, 1, 37–43. [Google Scholar]
- Perea-Flores, M.J.; Garibay-Febles, V.; Chanona-Perez, J.J.; Calderon-Dominguez, G.; Mendez-Mendez, J.V.; Palacios-Gonzalez, E.; Gutierrez-Lopez, G.F. Mathematical modelling of castor oil seeds (Ricinus communis) drying kinetics in fluidized bed at high temperatures. Ind. Crop. Prod. 2012, 38, 64–71. [Google Scholar] [CrossRef]
- Onwude, D.I.; Hashim, N.; Janius, R.B.; Nawi, N.M.; Abdan, K. Modeling the thinlayer drying of fruits and vegetables: A review. Compr. Rev. Food Sci. Food Saf. 2016, 15, 599–618. [Google Scholar] [CrossRef]
- Akpinar, E.K.; Bicer, Y.; Cetinkaya, F. Modelling of thin layer drying of parsley leaves in a convective dryer and under open sun. J. Food Eng. 2006, 75, 308–315. [Google Scholar] [CrossRef]
- Jimoh, K.O.; Olurin, T.O.; Aina, J.O. Effect of drying methods on the rheological characteristics and colour of yam flours. Afr. J. Biotechnol. 2009, 8, 2325–2328. [Google Scholar]
- Cosme-De Vera, F.H.; Soriano, A.N.; Dugos, N.P.; Rubi, R.V.C. A comprehensive review on the drying kinetics of common tubers. Appl. Sci. Eng. Prog. 2021, 14, 146–155. [Google Scholar] [CrossRef]
- Al-Hilphy, A.R.; Al-Asadi, M.H.; Zhuang, H. Effect of Electrical Stimulation on Qualitative Characteristics of Aged Chicken Carcasses: A Comprehensive Review. Basrah J. Agric. Sci. 2020, 33, 135–158. [Google Scholar] [CrossRef]
- Al-Hilphy, A.R.; Al-Mtury, A.A.A.; Al-Iessa, S.A.; Gavahian, M.; Al-Shatty, S.M.; Jassim, M.A.; Mohusen, Z.A.A.; Mousavi Khaneghah, A. A pilot-scale rotary infrared dryer of shrimp (Metapenaeus affinis): Mathematical modeling and effect on physicochemical attributes. J. Food Process Eng. 2022, 45, e13945. [Google Scholar] [CrossRef]
- Al-Hilphy, A.R.; Gavahian, M.; Barba, F.J.; Lorenzo, J.M.; Al-Shalah, Z.M.; Verma, D.K. Drying of sliced tomato (Lycopersicon esculentum L.) by a novel halogen dryer: Effects of drying temperature on physical properties, drying kinetics, and energy consumption. J. Food Process Eng. 2021, 44, e13624. [Google Scholar] [CrossRef]
- Duque-Dussán, E.; Banout, J. Improving the drying performance of parchment coffee due to the newly redesigned drying chamber. J. Food Process Eng. 2022, 45, e14161. [Google Scholar] [CrossRef]
- Duque-Dussán, E.; Villada-Dussán, A.; Roubík, H.; Banout, J. Modeling of Forced and Natural Convection Drying Process of a Coffee Seed. J. ASABE 2022, 65, 1061–1070. [Google Scholar] [CrossRef]
- Hatamipour, M.S.; Kazemi, H.H.; Nooralivand, A.; Nozarpoorm, A. Drying characteristics of six varieties of sweet potatoes in different dryers. Food Bioprod. Process. 2007, 85, 171–177. [Google Scholar] [CrossRef]
- Ngoma, K.; Mashau, M.E.; Silungwe, H. Physicochemical and functional properties of chemically pretreated Ndou sweet potato flour. Int. J. Food Sci. 2019, 2019, 4158213. [Google Scholar] [CrossRef]
- Ulfa, Z.; Julianti, E.; Nurminah, M. Effect of pre-treatment in the production of purple-fleshed sweet potato flour on cookies quality. IOP Conf. Ser. Earth Environ. Sci. 2019, 260, 1. [Google Scholar] [CrossRef]
- Desalegn, A.; Kibr, G. Effect of pretreatment and drying methods on the quality of anchote (Coccinia abyssinica (Lam.)) Flour. J. Food Qual. 2021, 2021, 3183629. [Google Scholar] [CrossRef]
- Nascimento, R.F.D.; Canteri, M.H.G. Effect of blanching on physicochemical characteristics of potato flour. Hortic. Bras. 2018, 36, 461–465. [Google Scholar] [CrossRef]
- Sumardiono, S.; Idris, F.A.; Tribowo, E.; Cahyono, H. Optimization hydrogen peroxide oxidation of cassava starch to improve psychochemical properties with surface response method. AIP Conf. Proc. 2023, 2667, 020011. [Google Scholar] [CrossRef]
- Setyaningsih, W.; Karmila; Fathimah, R.N.; Cahyanto, M.N. Process Optimization for Ultrasound-Assisted Starch Production from Cassava (Manihot esculenta Crantz) Using Response Surface Methodology. Agronomy 2021, 11, 117. [Google Scholar] [CrossRef]
- Olagunju, T.M.; Aregbesola, O.A.; Akpan, G.E. Modeling and optimization of thin-layer drying data of pretreated taro (Colocasia esculenta) corm slices. J. Food Process Eng. 2020, 43, e13564. [Google Scholar] [CrossRef]
- Sombatpraiwan, S.; Junyusen, T.; Treeamnak, T.; Junyusen, P. Optimization of microwave-assisted alkali pretreatment of cassava rhizome for enhanced enzymatic hydrolysis glucose yield. Food Energy Secur. 2019, 8, e00174. [Google Scholar] [CrossRef]
- Coelho, D.G.; Fonseca, K.S.; de Mélo Neto, D.F.; de Andrade, M.T.; Junior, L.F.C.; Ferreira-Silva, S.L.; Simões, A.D.N. Association of preharvest management with oxidative protection and enzymatic browning in minimally processed cassava. J. Food Biochem. 2019, 43, e12840. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists. Official Methods of Analysis, 17th ed.; AOAC: Arlington, VA, USA, 2000. [Google Scholar]
- Torbica, A.; Hadnadev, M.; Dapčević, H.T. Rice and buckwheat flour characterisation and its relation to cookie quality. Food Res. Int. 2012, 48, 277–283. [Google Scholar] [CrossRef]
- Mota, C.L.; Luciano, C.; Dias, A.; Barroca, M.J.; Guine, R.P.F. Convective drying of onion: Kinetics and nutritional evaluation. Food Bioprod. Process. 2010, 88, 115–123. [Google Scholar] [CrossRef]
- Perez-Francisco, J.M.; Cerecero-Enríquez, R.; Andrade-González, I.; Ragazzo-Sanchez, J.; Luna-Solano, G. Optimization of vegetal pear drying using response surface methodology. Dry. Technol. 2008, 26, 1401–1405. [Google Scholar] [CrossRef]
- Henderson, S.M.; Pabis, S. Grain drying theory, I. Temperature effect on drying coefficient. J. Agric. Eng. Reserve 1961, 6, 169–174. [Google Scholar]
- Madamba, P.S.; Driscoll, R.H.; Buckle, K.A. The thin-layer drying characteristics of garlic slices. J. Food Eng. 1996, 29, 75–97. [Google Scholar] [CrossRef]
- Yagcioglu, A.; Degirmencioglu, A.; Cagatay, F. Drying characteristics of laurel leaves under different conditions. In Proceedings of the International Congress on Agricultural Mechanization and Energy, Adana, Turkey, 26–27 May 1999. [Google Scholar]
- Togrul, I.T.; Pehlivan, D. Modeling of thin layer drying of some fruits under open-air sun drying process. J. Food Eng. 2004, 65, 413–425. [Google Scholar] [CrossRef]
- Wang, C.Y.; Singh, R.P. A Single Layer Drying Equation for Rough Rice; ASAE Press: St. Joseph, MI, USA, 1978. [Google Scholar]
- Akpinar, E.K. Determination of suitable thin layer drying curve model for some vegetables and fruits. J. Food Eng. 2006, 73, 75–84. [Google Scholar] [CrossRef]
- Midilli, A.; Kucuk, H.; Yapar, Z. A new model for single-layer drying. Dry. Technol. 2002, 20, 1503–1513. [Google Scholar] [CrossRef]
- Ertekin, C.; Yaldiz, O. Drying of eggplant and selection of a suitable thin layer drying model. J. Food Eng. 2004, 6, 349–359. [Google Scholar] [CrossRef]
- Sahoo, M.; Titikshya, S.; Aradwad, P.; Kumar, V.; Naik, S.N. Study of the drying behaviour and color kinetics of convective drying of yam (Dioscorea hispida) slices. Ind. Crop. Prod. 2022, 176, 114258. [Google Scholar] [CrossRef]
- Chen, X.; Lu, J.; Li, X.; Wang, Y.; Miao, J.; Mao, X.; Zhao, C.; Gao, W. Effect of blanching and drying temperatures on starch-related physicochemical properties, bioactive components and antioxidant activities of yam flours. LWT Food Sci. Technol. 2017, 82, 303–310. [Google Scholar] [CrossRef]
- Rayas-Duarte, P.; Majewska, K.; Doetkott, C. Effect of extrusion process parameters on the quality of buckwheat flour mixes. Cereal Chem. 1998, 75, 338–345. [Google Scholar] [CrossRef]
- Lewicki, P.P. Effect of pre-drying treatment, drying and rehydration on plant tissue properties: A review. Int. J. Food Prop. 1998, 1, 1–22. [Google Scholar] [CrossRef]
- Anyasi, T.A.; Jideani, A.I.O.; McHau, G.R.A. Effect of organic acid pretreatment on some physical, functional and antioxidant properties of flour obtained from three unripe banana cultivars. Food Chem. 2015, 172, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Quayson, E.T.; Ayernor, G.S.; Johnson, P.N.T.; Ocloo, F.C.K. Effects of two pre-treatments, blanching and soaking, as processing modulation on non-enzymatic browning developments in three yam cultivars from Ghana. Heliyon 2021, 7, e07224. [Google Scholar] [CrossRef] [PubMed]
- Yongjie, L.I.; Meiping, Z.O. Simple methods for rapid determination of sulfite in food products. J. Food Control 2005, 17, 975–980. [Google Scholar] [CrossRef]
- Utomo, J.S.; Cheman, Y.B.; Rahman, R.A.; Sadd, M.S. The effect of shape, blanching methods and flour on characteristics of restructured sweet potato stick. Int. J. Food Sci. Technol. 2008, 43, 1896–1900. [Google Scholar] [CrossRef]
- Chen, J.P.; Tai, C.Y.; Chen, B.H. Effects of different treatments on the stability of carotenoids in Taiwanese mango (Mangifera indica L). Food Chem. 2005, 100, 1005–1010. [Google Scholar] [CrossRef]
- Rastogi, N.; Raghavarao, K.; Niranjan, K.; Knorr, D. Recent developments in osmotic dehydration: Methods to enhance mass transfer. Trends Food Sci. Technol. 2002, 13, 48–59. [Google Scholar] [CrossRef]
- Ekeledo, E.; Latif, S.; Abass, A.; Müller, J. Amylose, rheological and functional properties of yellow cassava flour as affected by pretreatment and drying methods. Food Humanit. 2023, 1, 57–63. [Google Scholar] [CrossRef]
- Falade, K.O.; Ayetigbo, O.E. Effects of annealing, acid hydrolysis and citric acid modifications on physical and functional properties of starches from four yam (Dioscorea spp.) cultivars. Food Hydrocoll. 2015, 43, 529–539. [Google Scholar] [CrossRef]
- Tunde-Akintunde, T.Y.; Afon, A.A. Modeling of hot-air drying of pretreated cassava chips. CIGR J. 2010, 12, 34–41. [Google Scholar]
- Ajala, A.S.; Abioye, A.O.; Poopola, J.O.; Adeyanju, J.A. Drying characteristics and mathematical modeling of cassava chips. Chem. Process Eng. Res. 2012, 4, 1–9. [Google Scholar]
- Waramit, P.; Krittakom, B.; Luampon, R. Experimental Investigation to Evaluate the Effective Moisture Diffusivity and Activation Energy of Cassava (Manihot esculenta) under Convective Drying. Appl. Sci. Eng. Prog. 2021, 49, 103348. [Google Scholar] [CrossRef]
- Keneni, Y.G.; Hvoslef-Eide, A.T.; Marchetti, J.M. Mathematical modelling of the drying kinetics of Jatropha curcas L. seeds. Ind. Crops Prod. 2019, 132, 12–20. [Google Scholar] [CrossRef]
- Menshutina, N.V.; Gordienko, M.G.; Voynovskiy, A.A.; Kudra, T. Dynamic analysis of drying energy consumption. Dry. Technol. Int. J. 2004, 22, 2281–2290. [Google Scholar] [CrossRef]
- Srikanth, K.S.; Sharanagat, V.S.; Kumar, Y.; Bhadra, R.; Singh, L.; Nema, P.K.; Kumar, V. Convective drying and quality attributes of elephant foot yam (Amorphophallus paeoniifolius). LWT 2019, 99, 8–16. [Google Scholar] [CrossRef]
- Ezeanya, N.C.; Akubuo, C.O.; Chilakpu, K.O.; Iheonye, A.C. Modelling of thin layer solar drying kinetics of cassava noodles (Tapioca). Agric. Eng. Int. CIGR J. 2018, 20, 193–200. [Google Scholar]
- Troncoso, E.; Pedreschi, F. Modeling of textural changes during drying of potato slices. J. Food Eng. 2007, 82, 577–584. [Google Scholar] [CrossRef]
- Fasuan, T.O.; Akanbi, C.T. Application of osmotic pressure in modification of Amaranth (Amaranthus viridis) Starch. LWT Food Sci. Technol. 2018, 96, 182–192. [Google Scholar] [CrossRef]
- Soni, P.L.; Sharma, H.W.; Dobhal, N.P.; Bisen, S.S. The starches of Dioscorea ballophylla and Amorphophallus campanulatus. Comparison with tapioca starch. Starch/Starke 1985, 37, 6–9. [Google Scholar] [CrossRef]
- Tacer-Caba, Z.; Nilufer-Erdil, D.; Boyacioglu, M.H.; Ng, P.K.W. Evaluating the effects of amylose and Concord grape extract powder substitution on physicochemical properties of wheat flour extrudates produced at different temperatures. Food Chem. 2014, 157, 476–484. [Google Scholar] [CrossRef]
- Ayetigbo, O.; Latif, S.; Abass, A.; Müller, J. Comparing Characteristics of Root, Flour and Starch of Biofortified Yellow-Flesh and White-Flesh Cassava Variants, and Sustainability Considerations: A Review. Sustainability 2018, 10, 3089. [Google Scholar] [CrossRef]
- Kuttigounder, D.; Lingamallu, J.R.; Bhattacharya, S. Turmeric Powder and Starch: Selected Physical, Physicochemical, and Microstructural Properties. J. Food Sci. 2011, 76, C1284–C1291. [Google Scholar] [CrossRef] [PubMed]
- Oladejo, A.O.; Ekpene, M.-A.M.; Onwude, D.I.; Assian, U.E.; Nkem, O.M. Effects of ultrasound pretreatments on the drying kinetics of yellow cassava during convective hot air drying. J. Food Process Preserv. 2021, 45, e15251. [Google Scholar] [CrossRef]
- Marín, R.A.F.; Aguirre, J.C.L. The Evaluation of the Drying Kinetics of Cassava Slices (Manihot Esculenta Crantz) Variety Ica Catumare. J. Hunan Univ. Nat. Sci. 2023, 50, 47–56. [Google Scholar] [CrossRef]
- Pornpraipech, P.; Khusakul, M.; Singklin, R.; Sarabhorn, P.; Areeprasert, C. Effect of temperature and shape on drying performance of cassava chips. Agric. Nat. Resour. 2017, 51, 402–409. [Google Scholar] [CrossRef]
Model’s Name | Model | Reference |
---|---|---|
Henderson and Pabis | [44] | |
Page | [45] | |
Logarithmic | [46] | |
Newton | [47] | |
Wang and Singh | [48] |
Sample | Uncoded and Coded Factors | Responses | |||||
---|---|---|---|---|---|---|---|
SM (% w/w) | CA (% w/w) | BT (min) | MC (% db) | WI | Deff (m2/s) × 10−9 | Ea (kJ/mol) | |
S1 | 0 (−1) | 0 (−1) | 0 (−1) | 7.81 ± 0.13 | 91.86 ± 0.06 | 5.81 ± 0.08 | 33.28 ± 0.43 |
S2 | 4 (+1) | 0 (−1) | 0 (−1) | 6.44 ± 0.04 | 93.87 ± 0.05 | 6.23 ± 0.03 | 32.68 ± 0.38 |
S3 | 0 (−1) | 4 (+1) | 0 (−1) | 6.53 ± 0.17 | 93.49 ± 0.07 | 6.32 ± 0.04 | 32.83 ± 0.56 |
S4 | 4 (+1) | 4 (+1) | 0 (−1) | 6.17 ± 0.09 | 94.19 ± 0.03 | 6.52 ± 0.07 | 32.16 ± 0.44 |
S5 | 0 (−1) | 0 (−1) | 4 (+1) | 9.42 ± 0.14 | 87.16 ± 0.08 | 5.06 ± 0.09 | 31.86 ± 0.25 |
S6 | 4 (+1) | 0 (−1) | 4 (+1) | 8.79 ± 0.09 | 87.74 ± 0.05 | 5.55 ± 0.02 | 31.44 ± 0.39 |
S7 | 0 (−1) | 4 (+1) | 4 (+1) | 8.86 ± 0.12 | 87.49 ± 0.02 | 5.47 ± 0.05 | 31.62 ± 0.47 |
S8 | 4 (+1) | 4 (+1) | 4 (+1) | 9.18 ± 0.15 | 88.13 ± 0.08 | 5.37 ± 0.07 | 31.16 ± 0.52 |
S9 | 0 (−1) | 2 (0) | 2 (0) | 6.17 ± 0.18 | 90.39 ± 0.04 | 6.49 ± 0.04 | 30.51 ± 0.24 |
S10 | 4 (+1) | 2 (0) | 2 (0) | 5.85 ± 0.22 | 90.96 ± 0.03 | 6.71 ± 0.04 | 29.84 ± 0.35 |
S11 | 2 (0) | 0 (−1) | 2 (0) | 6.36 ± 0.14 | 90.22 ± 0.06 | 6.48 ± 0.05 | 30.36 ± 0.27 |
S12 | 2 (0) | 4 (+1) | 2 (0) | 6.14 ± 0.11 | 90.75 ± 0.07 | 6.39 ± 0.08 | 30.15 ± 0.43 |
S13 | 2 (0) | 2 (0) | 0 (0) | 6.15 ± 0.06 | 94.23 ± 0.04 | 6.32 ± 0.06 | 32.64 ± 0.16 |
S14 | 2 (0) | 2 (0) | 4 (+1) | 8.22 ± 0.08 | 89.84 ± 0.08 | 5.34 ± 0.03 | 30.85 ± 0.23 |
S15 | 2 (0) | 2 (0) | 2 (0) | 6.46 ± 0.13 | 91.28 ± 0.03 | 6.31 ± 0.05 | 29.74 ± 0.22 |
S16 | 2 (0) | 2 (0) | 2 (0) | 6.32 ± 0.09 | 90.83 ± 0.06 | 6.34 ± 0.08 | 29.83 ± 0.46 |
S17 | 2 (0) | 2 (0) | 2 (0) | 6.13 ± 0.08 | 90.62 ± 0.09 | 6.47 ± 0.04 | 29.65 ± 0.27 |
S18 | 2 (0) | 2 (0) | 2 (0) | 6.41 ± 0.05 | 91.07 ± 0.05 | 6.34 ± 0.03 | 30.04 ± 0.34 |
S19 | 2 (0) | 2 (0) | 2 (0) | 5.96 ± 0.16 | 90.89 ± 0.02 | 6.44 ± 0.07 | 29.85 ± 0.18 |
S20 | 2 (0) | 2 (0) | 2 (0) | 5.82 ± 0.12 | 91.35 ± 0.06 | 6.62 ± 0.05 | 30.18 ± 0.26 |
Source | Df | Responses | |||
---|---|---|---|---|---|
MC | WI | Deff | Ea | ||
Model | 9 | 45.6783 * | 56.4101 * | 30.7223 * | 79.3221 * |
SM | 1 | 8.1370 * | 12.5047 * | 9.2542 * | 21.1945 * |
CA | 1 | 5.4985 * | 6.3233 * | 5.4049 * | 7.7023 * |
BT | 1 | 188.8693 * | 459.5528 * | 118.9614 * | 118.2152 * |
SM×CA | 1 | 7.0156 * | 1.2061 ns | 5.0166 * | 0.0403 ns |
SM×BT | 1 | 3.6824 ns | 1.7137 ns | 0.4045 ns | 0.5067 ns |
BT×CA | 1 | 3.4778 ns | 1.1678 ns | 2.4842 ns | 0.6746 ns |
SM×SM | 1 | 0.6323 ns | 5.7665 * | 1.5181 ns | 2.6585 ns |
CA×CA | 1 | 5.3659 * | 10.1399 * | 0.8242 ns | 5.3610 * |
BT×BT | 1 | 67.9459 * | 10.2595 * | 76.6424 * | 227.1470 * |
Lack of fit | 5 | 1.07 ns | 3.14 ns | 1.41 ns | 0.9595 ns |
R2 | 0.9763 | 0.9801 | 0.9651 | 0.9862 | |
Adj R2 | 0.9549 | 0.9633 | 0.9337 | 0.9738 | |
SD | 0.2616 | 0.4024 | 0.1279 | 0.1937 | |
Mean | 6.9595 | 90.8180 | 6.1290 | 31.0335 | |
CV (%) | 3.7593 | 0.4431 | 2.0862 | 0.6242 |
Independent Variables | Optimum Level | Predicted | Experimental | D | ||||||
---|---|---|---|---|---|---|---|---|---|---|
MC (% db) | WI | Deff (m2/s) × 10−9 | Ea (kJ/mol) | MC (% db) | WI | Deff (m2/s) × 10−9 | Ea (kJ/mol) | |||
SM (% w/w) | 1.03 | 6.19 | 92.00 | 6.39 | 30.98 | 6.23 ± 0.12 | 92.18 ± 0.04 | 6.21 ± 0.03 | 30.64 ± 0.25 | 0.74 |
CA (% w/w) | 1.31 | |||||||||
BT (min) | 1.01 |
Model | Model Parameters | R2 | χ2 | RMSE | SSE |
---|---|---|---|---|---|
Henderson and Pabis | a = 0.9814, k = 0.2241 | 0.9823 | 0.0564 | 0.0018 | 0.0159 |
Page | k = 0.2318, n = 0.9914 | 0.9816 | 0.0556 | 0.0021 | 0.0164 |
Logarithmic | a = 1.0795, k = 0.1743, c = 0.1200 | 0.9859 | 0.0351 | 0.0015 | 0.0123 |
Newton | k = 0.2287 | 0.9816 | 0.0540 | 0.0016 | 0.0164 |
Wang and Singh | a = 0.1798, b = 0.0089 | 0.9821 | 0.0359 | 0.0023 | 0.0203 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nainggolan, E.A.; Banout, J.; Urbanova, K. Chemical and Thermal Treatment for Drying Cassava Tubers: Optimization, Microstructure, and Dehydration Kinetics. Life 2023, 13, 2355. https://doi.org/10.3390/life13122355
Nainggolan EA, Banout J, Urbanova K. Chemical and Thermal Treatment for Drying Cassava Tubers: Optimization, Microstructure, and Dehydration Kinetics. Life. 2023; 13(12):2355. https://doi.org/10.3390/life13122355
Chicago/Turabian StyleNainggolan, Ellyas Alga, Jan Banout, and Klara Urbanova. 2023. "Chemical and Thermal Treatment for Drying Cassava Tubers: Optimization, Microstructure, and Dehydration Kinetics" Life 13, no. 12: 2355. https://doi.org/10.3390/life13122355
APA StyleNainggolan, E. A., Banout, J., & Urbanova, K. (2023). Chemical and Thermal Treatment for Drying Cassava Tubers: Optimization, Microstructure, and Dehydration Kinetics. Life, 13(12), 2355. https://doi.org/10.3390/life13122355