Adiponectin Increase in Patients Affected by Chronic Obstructive Pulmonary Disease with Overlap of Bronchiectasis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Recruitment of Patients
2.2. Anthropometric and Biochemical Measurements
2.3. Measurement of Total and HMW Adiponectin by ELISA Assay
2.4. Measurement of Cytokine Levels by ELISA Assay
2.5. Western Blotting Analysis
2.6. Statistical Analysis
3. Results
3.1. Anthropometric and Biochemical Characteristics of Patients and Controls
3.2. Adiponectin Is Differently Expressed in COPD Patients with and without Bronchiectasis and in Comparison, to Healthy Controls
3.3. Adiponectin Oligomeric State
3.4. Cytokines Concentration in BCO Patients and Healthy Controls
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baiardini, I.; Contoli, M.; Corsico, A.G.; Scognamillo, C.; Ferri, F.; Scichilone, N.; Rogliani, P.; Di Marco, F.; Santus, P.; Braido, F. Exploring the Relationship between Disease Awareness and Outcomes in Patients with Chronic Obstructive Pulmonary Disease. Respiration 2021, 100, 291–297. [Google Scholar] [CrossRef]
- Kim, V.; Aaron, S.D. What is a COPD exacerbation? Current definitions, pitfalls, challenges and opportunities for improvement. Eur. Respir. J. 2018, 52, 1801261. [Google Scholar] [CrossRef] [PubMed]
- King, P.T. The pathophysiology of bronchiectasis. Int. J. Chron. Obstruct. Pulmon. Dis. 2009, 4, 411–419. [Google Scholar] [CrossRef] [PubMed]
- Goeminne, P.C.; Nawrot, T.S.; Ruttens, D.; Seys, S.; Dupont, L.J. Mortality in non-cystic fibrosis bronchiectasis: A prospective cohort analysis. Respir. Med. 2014, 108, 287–296. [Google Scholar] [CrossRef] [PubMed]
- Aliberti, S.; Sotgiu, G.; Lapi, F.; Gramegna, A.; Cricelli, C.; Blasi, F. Prevalence and incidence of bronchiectasis in Italy. BMC Pulm. Med. 2020, 20, 15. [Google Scholar] [CrossRef]
- Martinez-Garcia, M.A.; Miravitlles, M. Bronchiectasis in COPD patients: More than a comorbidity? Int. J. Chron. Obstruct. Pulmon. Dis. 2017, 12, 1401–1411. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Garcia, M.A.; Polverino, E.; Aksamit, T. Bronchiectasis and Chronic Airway Disease: It Is Not Just About Asthma and COPD. Chest 2018, 154, 737–739. [Google Scholar] [CrossRef] [PubMed]
- Shaw, J.G.; Vaughan, A.; Dent, A.G.; O’Hare, P.E.; Goh, F.; Bowman, R.V.; Fong, K.M.; Yang, I.A. Biomarkers of progression of chronic obstructive pulmonary disease (COPD). J. Thorac. Dis. 2014, 6, 1532–1547. [Google Scholar]
- Jairam, P.M.; van der Graaf, Y.; Lammers, J.-W.J.; Mali, W.P.T.M.; de Jong, P.A. Incidental findings on chest CT imaging are associated with increased COPD exacerbations and mortality. Thorax 2015, 70, 725–731. [Google Scholar] [CrossRef]
- Navaratnam, V.; Millett, E.R.C.; Hurst, J.R.; Thomas, S.L.; Smeeth, L.; Hubbard, R.B.; Brown, J.; Quint, J.K. Bronchiectasis and the risk of cardiovascular disease: A population-based study. Thorax 2017, 72, 161–166. [Google Scholar] [CrossRef]
- Komici, K.; Dello Iacono, A.; De Luca, A.; Perrotta, F.; Bencivenga, L.; Rengo, G.; Rocca, A.; Guerra, G. Adiponectin and Sarcopenia: A Systematic Review With Meta-Analysis. Front. Endocrinol. 2021, 12, 576619. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Liu, M. Adiponectin: A versatile player of innate immunity. J. Mol. Cell Biol. 2016, 8, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Daniele, A.; De Rosa, A.; Nigro, E.; Scudiero, O.; Capasso, M.; Masullo, M.; de Laurentiis, G.; Oriani, G.; Sofia, M.; Bianco, A. Adiponectin oligomerization state and adiponectin receptors airway expression in chronic obstructive pulmonary disease. Int. J. Biochem. Cell Biol. 2012, 44, 563–569. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.I.; Li, Y.; Man, S.F.P.; Tashkin, D.; Wise, R.A.; Connett, J.E.; Anthonisen, N.A.; Churg, A.; Wright, J.L.; Sin, D.D. The complex relationship of serum adiponectin to COPD outcomes COPD and adiponectin. Chest 2012, 142, 893–899. [Google Scholar] [CrossRef] [PubMed]
- Bianco, A.; Mazzarella, G.; Turchiarelli, V.; Nigro, E.; Corbi, G.; Scudiero, O.; Sofia, M.; Daniele, A. Adiponectin: An attractive marker for metabolic disorders in Chronic Obstructive Pulmonary Disease (COPD). Nutrients 2013, 5, 4115–4125. [Google Scholar] [CrossRef]
- Wu, Z.-J.; Cheng, Y.-J.; Gu, W.-J.; Aung, L.H.H. Adiponectin is associated with increased mortality in patients with already established cardiovascular disease: A systematic review and meta-analysis. Metabolism 2014, 63, 1157–1166. [Google Scholar] [CrossRef]
- GOLD Commitee GOLD-REPORT-2021-v1.1-25Nov20_WMV.pdf 2021. pp. 12–19. Available online: https://goldcopd.org/2022-gold-reports/ (accessed on 1 September 2022).
- Polverino, E.; Goeminne, P.C.; McDonnell, M.J.; Aliberti, S.; Marshall, S.E.; Loebinger, M.R.; Murris, M.; Cantón, R.; Torres, A.; Dimakou, K.; et al. European Respiratory Society guidelines for the management of adult bronchiectasis. Eur. Respir. J. 2017, 50, 1700629. [Google Scholar] [CrossRef]
- Hill, A.T.; Sullivan, A.L.; Chalmers, J.D.; De Soyza, A.; Elborn, S.; Floto, A.; Grillo, L.; Gruffydd-Jones, K.; Harvey, A.; Haworth, C.S.; et al. BTS Guidelines for Bronchiectasis 2018. Br. Thorac. Soc. Guidel. Bronchiectasis Adults 2019, 74 (Suppl. S1), 1–69. [Google Scholar] [CrossRef]
- Cameron, N. Assessment of growth and maturation during adolescence. Horm. Res. 1993, 39 (Suppl. S3), 9–17. [Google Scholar]
- Nigro, E.; Stiuso, P.; Matera, M.G.; Monaco, M.L.; Caraglia, M.; Maniscalco, M.; Perrotta, F.; Mazzarella, G.; Daniele, A.; Bianco, A. The anti-proliferative effects of adiponectin on human lung adenocarcinoma A549 cells and oxidative stress involvement. Pulm. Pharmacol. Ther. 2019, 55, 25–30. [Google Scholar] [CrossRef]
- Olveira, G.; Olveira, C.; Gaspar, I.; Porras, N.; Martín-Núñez, G.; Rubio, E.; Colomo, N.; Rojo-Martínez, G.; Soriguer, F. Fat-free mass depletion and inflammation in patients with bronchiectasis. J. Acad. Nutr. Diet. 2012, 112, 1999–2006. [Google Scholar] [CrossRef] [PubMed]
- Carolan, B.J.; Kim, Y.; Williams, A.A.; Kechris, K.; Lutz, S.; Reisdorph, N.; Bowler, R.P. The association of adiponectin with computed tomography phenotypes in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2013, 188, 561–566. [Google Scholar] [CrossRef] [Green Version]
- Perrotta, F.; Nigro, E.; Pafundi, P.C.; Polito, R.; Nucera, F.; Scialò, F.; Caramori, G.; Bianco, A.; Daniele, A. Adiponectin is Associated with Neutrophils to Lymphocyte Ratio in Patients with Chronic Obstructive Pulmonary Disease. COPD 2021, 18, 70–75. [Google Scholar] [CrossRef]
- Nigro, E.; Scudiero, O.; Sarnataro, D.; Mazzarella, G.; Sofia, M.; Bianco, A.; Daniele, A. Adiponectin affects lung epithelial A549 cell viability counteracting TNFα and IL-1ß toxicity through AdipoR1. Int. J. Biochem. Cell Biol. 2013, 45, 1145–1153. [Google Scholar] [CrossRef] [PubMed]
- Illiano, M.; Nigro, E.; Sapio, L.; Caiafa, I.; Spina, A.; Scudiero, O.; Bianco, A.; Esposito, S.; Mazzeo, F.; Pedone, P.V.; et al. Adiponectin down-regulates CREB and inhibits proliferation of A549 lung cancer cells. Pulm. Pharmacol. Ther. 2017, 45, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhang, S.; Liu, B.; Wang, B.; He, S.; Zhang, R. Anti-inflammatory effects of adiponectin in cigarette smoke-activated alveolar macrophage through the COX-2/PGE(2) and TLRs signaling pathway. Cytokine 2020, 133, 155148. [Google Scholar] [CrossRef] [PubMed]
- Alharbi, K.S.; Fuloria, N.K.; Fuloria, S.; Rahman, S.B.; Al-Malki, W.H.; Javed Shaikh, M.A.; Thangavelu, L.; Singh, S.K.; Rama Raju Allam, V.S.; Jha, N.K.; et al. Nuclear factor-kappa B and its role in inflammatory lung disease. Chem. Biol. Interact. 2021, 345, 109568. [Google Scholar] [CrossRef]
- Nigro, E.; Perrotta, F.; Monaco, M.L.; Polito, R.; Pafundi, P.C.; Matera, M.G.; Daniele, A.; Bianco, A. Implications of the Adiponectin System in Non-Small Cell Lung Cancer Patients: A Case-Control Study. Biomolecules 2020, 10, 926. [Google Scholar] [CrossRef]
- Nigro, E.; Daniele, A.; Scudiero, O.; Ludovica Monaco, M.; Roviezzo, F.; D’Agostino, B.; Mazzarella, G.; Bianco, A. Adiponectin in asthma: Implications for phenotyping. Curr. Protein. Pept. Sci. 2015, 16, 182–187. [Google Scholar] [CrossRef] [PubMed]
- Fuschillo, S.; De Felice, A.; Balzano, G. Mucosal inflammation in idiopathic bronchiectasis: Cellular and molecular mechanisms. Eur. Respir. J. 2008, 31, 396–406. [Google Scholar] [CrossRef]
- Angrill, J.; Agustí, C.; De Celis, R.; Filella, X.; Rañó, A.; Elena, M.; De La Bellacasa, J.P.; Xaubet, A.; Torres, A. Bronchial inflammation and colonization in patients with clinically stable bronchiectasis. Am. J. Respir. Crit. Care Med. 2001, 164, 1628–1632. [Google Scholar] [CrossRef] [PubMed]
- Gaga, M.; Bentley, A.M.; Humbert, M.; Barkans, J.; O’Brien, F.; Wathen, C.G.; Kay, A.B.; Durham, S.R. Increases in CD4+ T lymphocytes, macrophages, neutrophils and interleukin 8 positive cells in the airways of patients with bronchiectasis. Thorax 1998, 53, 685–691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uzeloto, J.S.; de Toledo-Arruda, A.C.; Silva, B.S. de A.; Golim, M. de A.; Braz, A.M.M.; de Lima, F.F.; Grigoletto, I.; Ramos, E.M.C. Systemic Cytokine Profiles of CD4+ T Lymphocytes Correlate with Clinical Features and Functional Status in Stable COPD. Int. J. Chron. Obstruct. Pulmon. Dis. 2020, 15, 2931–2940. [Google Scholar] [CrossRef] [PubMed]
- Bergin, D.A.; Hurley, K.; Mehta, A.; Cox, S.; Ryan, D.; O’Neill, S.J.; Reeves, E.P.; McElvaney, N.G. Airway inflammatory markers in individuals with cystic fibrosis and non-cystic fibrosis bronchiectasis. J. Inflamm. Res. 2013, 6, 1–11. [Google Scholar] [PubMed]
- Zhang, Y.; Ren, L.; Sun, J.; Han, F.; Guo, X. Increased Serum Soluble Interleukin-2 Receptor Associated with Severity of Acute Exacerbation of Chronic Obstructive Pulmonary Disease. Int. J. Chron. Obstruct. Pulmon. Dis. 2021, 16, 2561–2573. [Google Scholar] [CrossRef]
- King, P.T. Inflammation in chronic obstructive pulmonary disease and its role in cardiovascular disease and lung cancer. Clin. Transl. Med. 2015, 4, 68. [Google Scholar] [CrossRef]
- Huang, H.; Huang, X.; Zeng, K.; Deng, F.; Lin, C.; Huang, W. Interleukin-6 is a Strong Predictor of the Frequency of COPD Exacerbation Within 1 Year. Int. J. Chron. Obstruct. Pulmon. Dis. 2021, 16, 2945–2951. [Google Scholar] [CrossRef]
- Chen, Z.; Trapp, B.D. Microglia and neuroprotection. J. Neurochem. 2016, 136 (Suppl. S1), 10–17. [Google Scholar] [CrossRef]
- Kubysheva, N.I.; Postnikova, L.B.; Soodaeva, S.K.; Novikov, D.V.; Eliseeva, T.I.; Novikov, V.V.; Karaulov, A.V. Comparative Study of the Levels of IL-1β, IL-4, IL-8, TNFα, and IFNγ in Stable Course and Exacerbation of Chronic Obstruc-tive Pulmonary Disease of Varying Severity. Bull. Exp. Biol. Med. 2022, 173, 745–748. [Google Scholar] [CrossRef]
- Chen, J.; Li, X.; Huang, C.; Lin, Y.; Dai, Q. Change of Serum Inflammatory Cytokines Levels in Patients With Chronic Obstructive Pulmonary Disease, Pneumonia and Lung Cancer. Technol. Cancer Res. Treat. 2020, 19, 1533033820951807. [Google Scholar] [CrossRef]
- Mehta, M.; Paudel, K.R.; Shukla, S.D.; Shastri, M.D.; Singh, S.K.; Gulati, M.; Dureja, H.; Gupta, G.; Satija, S.; Hansbro, P.M.; et al. Interferon therapy for preventing COPD exacerba-tions. EXCLI J. 2020, 19, 1477–1480. [Google Scholar]
- Perrotta, F.; Scialò, F.; Mallardo, M.; Signoriello, G.; D’Agnano, V.; Bianco, A.; Daniele, A.; Nigro, E. Adiponectin, Leptin, and Resistin Are Dysregulated in Patients Infected by SARS-CoV-2. Int. J. Mol. Sci. 2023, 24, 1131. [Google Scholar] [CrossRef] [PubMed]
- Nigro, E.; Perrotta, F.; Polito, R.; D’Agnano, V.; Scialò, F.; Bianco, A.; Daniele, A. Metabolic Perturbations and Severe COVID-19 Disease: Implication of Molecular Pathways. Int. J. Endocrinol. 2020, 2020, 8896536. [Google Scholar] [CrossRef] [PubMed]
- Saha, S.; Doe, C.; Mistry, V.; Siddiqui, S.; Parker, D.; Sleeman, M.; Cohen, E.S.; Brightling, C.E. Granulocyte-macrophage colony-stimulating factor expression in induced sputum and bronchial mucosa in asthma and COPD. Thorax 2009, 64, 671–676. [Google Scholar] [CrossRef] [PubMed]
- Obling, N.; Backer, V.; Hurst, J.R.; Bodtger, U. Nasal and systemic inflammation in Chronic Obstructive Pulmonary Disease (COPD). Respir. Med. 2022, 195, 106774. [Google Scholar] [CrossRef]
Parameter | COPD | BCO | Controls | p-Value | |
---|---|---|---|---|---|
n = 29 | n = 30 | n = 29 | |||
Age, mean (SD) | 60.7 (8.4) | 60.0 (15.9) | 56.6 (10.3) | 0.37 | |
Sex | F | 13 (45%) | 15 (50%) | 15 (52%) | 0.86 |
M | 16 (55%) | 15 (50%) | 14 (48%) | ||
Smoking Status | Current | 13(44.8%) | 7 (23.3%) | 0 (0%) | <0.001 |
Former | 16(55.2%) | 23 (76.7%) | 0 (0%) | ||
Ever | 0 (0%) | 0 (0%) | 29 (100%) | ||
Pack Years, mean (SD) | 27.4 (10.4) | 26.8 (10.6) | - | 0.82 | |
BMI, mean (SD) | 27.7 (5.0) | 25.8 (4.2) | 25.1 (2.3) | 0.053 | |
Total cholesterol, mean (SD) | 177.9 (44.6) | 174.5 (35.2) | 200.0 (41.2) | 0.043 | |
Triglycerides, mean (SD) | 122.0 (71.4) | 106.2 (33.1) | 127.1 (64.5) | 0.36 | |
Glycemia, mean (SD) | 100.4 (23.2) | 91.5 (14.5) | 85.1 (14.5) | 0.008 | |
AST, mean (SD) | 21.3 (10.2) | 18.6 (6.0) | 19.8 (5.3) | 0.40 | |
ALT, mean (SD) | 20.2 (10.2) | 20.3 (8.9) | 20.8 (9.9) | 0.97 | |
WBC, mean (SD) | 8.0 (2.1) | 7.4 (2.4) | 10.2 (17.2) | 0.55 | |
Neutrophils%, mean (SD) | 62.6 (13.1) | 59.3 (8.6) | 57.6 (8.1) | 0.24 | |
Lymphocytes%, mean (SD) | 27.0 (11.8) | 29.5 (7.7) | 32.8 (6.1) | 0.077 | |
NLR, mean (SD) | 3.6 (4.8) | 2.3 (1.3) | 1.8 (0.5) | 0.077 | |
RBC, mean (SD) | 4.64 (0.4) | 4.86 (0.6) | 4.7 (0.3) | 0.174 | |
HGB, mean (SD) | 13.8 (1.1) | 14.0 (1.7) | 14.1 (1.0) | 0.678 | |
Adiponectin, mean (SD) | 18.2 (1.3) | 37.6 (8.3) | 9.1 (5.6) | <0.001 | |
FVC% predicted, mean (SD) | 83.2 (25.8) | 66.7 (17.8) | - | <0.001 | |
FEV1% predicted, mean (SD) | 67.3 (22.3) | 52.3 (16.5) | - | <0.001 | |
GOLD Stage | |||||
1 | 6 (20.7) | 4 (13.3) | 0.684 | ||
2 | 11 (37.9) | 11 (36.7) | 0.866 | ||
3/4 | 12 (41.4) | 15 (50) | 0.687 |
Group | Difference Mean (I–J) | Standard Error | p-Value | Confidence Interval 95% | ||
---|---|---|---|---|---|---|
Lower limit | Upper limit | |||||
CBO vs. | Controls | 28.51 | 1.53 | <0.001 | 24.77 | 32.26 |
CBO vs. | COPD | 19.39 | 1.53 | <0.001 | 15.65 | 23.14 |
Controls vs. | COPD | −9.12 | 1.55 | <0.001 | −12.90 | −5.35 |
95% Wald’s Confidence Interval | Hypothesis Testing | ||||
---|---|---|---|---|---|
Parameter | Lower | Upper | Chi−Square Wald | Degree of Freedom (df) | p-Value |
BMI | −0.65 | 0.84 | 0.06 | 1.00 | 0.80 |
Glycemia | −0.06 | 0.24 | 1.45 | 1.00 | 0.23 |
Total Cholesterol | −0.12 | 0.03 | 132 | 1.00 | 0.25 |
Triglycerides | −0.09 | 0.02 | 1.89 | 1.00 | 0.17 |
Cytokine (pg/mL) | COPD Patients (n = 29) | BCO Patients (n = 30) | Controls (n = 29) | p-Value |
---|---|---|---|---|
IL-2 | 8.12 ± 2.11 | 7.42 ± 1.26 | 15.72 ± 2.93 | <0.001 |
IL-4 | 15.3 ± 1.81 | 11.83 ± 0.32 | 5.56 ± 1.15 | <0.001 |
IL-6 | 9.56 ± 1.41 | 11.29 ± 3.11 | 7.71 ± 2.1 | 0.003 |
IL-8 | 58.03 ± 17.19 | 142.18 ± 30 | 20.48 ± 4.91 | <0.001 |
IL-10 | 7.81 ± 1.77 | 6.54 ± 0.54 | 23.87 ± 3.73 | <0.001 |
IFN-γ | 17.21 ± 3.51 | 125.30 ± 25.89 | 13.25 ± 2.74 | <0.001 |
GM-CSF | 15.03 ± 3.02 | 94.99 ± 10.02 | 12.78 ± 2.21 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nigro, E.; Mosella, M.; Daniele, A.; Mallardo, M.; Accardo, M.; Bianco, A.; Perrotta, F.; Scialò, F. Adiponectin Increase in Patients Affected by Chronic Obstructive Pulmonary Disease with Overlap of Bronchiectasis. Life 2023, 13, 444. https://doi.org/10.3390/life13020444
Nigro E, Mosella M, Daniele A, Mallardo M, Accardo M, Bianco A, Perrotta F, Scialò F. Adiponectin Increase in Patients Affected by Chronic Obstructive Pulmonary Disease with Overlap of Bronchiectasis. Life. 2023; 13(2):444. https://doi.org/10.3390/life13020444
Chicago/Turabian StyleNigro, Ersilia, Marco Mosella, Aurora Daniele, Marta Mallardo, Mariasofia Accardo, Andrea Bianco, Fabio Perrotta, and Filippo Scialò. 2023. "Adiponectin Increase in Patients Affected by Chronic Obstructive Pulmonary Disease with Overlap of Bronchiectasis" Life 13, no. 2: 444. https://doi.org/10.3390/life13020444
APA StyleNigro, E., Mosella, M., Daniele, A., Mallardo, M., Accardo, M., Bianco, A., Perrotta, F., & Scialò, F. (2023). Adiponectin Increase in Patients Affected by Chronic Obstructive Pulmonary Disease with Overlap of Bronchiectasis. Life, 13(2), 444. https://doi.org/10.3390/life13020444