Homo sapiens—A Species Not Designed for Space Flight: Health Risks in Low Earth Orbit and Beyond, Including Potential Risks When Traveling beyond the Geomagnetic Field of Earth
Abstract
:1. Introduction
1.1. Purpose of the Review
1.2. Background
2. Responses of Humans to Space Flight and Living in LEO
2.1. Effects on Elements of the Musculoskeletal System (MSK)
2.2. Countermeasures to Prevent or Reverse Space-Flight Effects on the MSK System
2.3. Vascular Alterations in Microgravity and Living in LEO
2.4. Functional and Structural Brain Changes in LEO and Microgravity
2.5. Summary of Astronaut Responses to Microgravity and Living in LEO
- A number of physiologic systems are affected by spending time in LEO. The main stressor appears to be microgravity, but other factors include stress, sleep/circadian rhythm changes, and nutrition, and the affected systems include the musculoskeletal system elements (muscle and bone), the cardiovascular system, the ocular system, and the neural systems, although it is not always clear what are primary effects versus indirect effects;
- Human responses to LEO are very heterogenous, whether it be the rate of bone loss, cardiovascular adaptations, or functional and structural alterations in the brain. Interestingly, this heterogeneity may be silent on Earth, but could potentially contribute to disease development, particularly in conditions arising during aging;
- The gut microbiome also appears to be altered during space flight and when living in LEO, a finding that could also lead to alterations in the relationship with the host and that may require separate countermeasures, such as prebiotics [101];
- Diseases arising during space flight or when living in LEO may not present with the same symptoms and may not respond to interventions the same as on Earth, since the set point for the integrated biological systems would be altered. While not discussed, the immune system of astronauts and animal models is altered during space flight [102,103,104], a factor that may further complicate disease development and intervention efficacy and one that may require specific countermeasures [105];
- Space flight or living in LEO appears to lead to epigenetic changes in astronauts [106]. While some changes were observed to be reversable once returning to Earth, this may not be the case for all of the changes, and the changes may continue with prolonged time in space;
- As a number of system stressors arise from living in LEO, the impact on systems such as the brain and cardiovascular systems is complex. Individually, such stressors may evoke responses, but the combined and integrated effect of stressors such as microgravity-mediated fluid redistribution, radiation, calcium regulations, and magnetic storms pose considerable risk to a long-term mission, particularly for those astronauts who may have some underlying subclinical disease or a genetic predilection for disease.
3. Additional Risks of Space Flight into Deep Space and Living on Planets such as Mars
3.1. Background
3.2. Increased Risk from Space Radiation
3.3. Potential Influence of the GMF Loss on Astronaut Function
Potential Responses to Loss of the Influence of the GMF of Earth
Option A—No Effect
Option B—Loss of the GMF has a Significant Impact on Cognition and Cardiovascular Regulation
Option C—The Lack of a GMF Will Have a Significant Impact on the Offspring of Astronauts Who Are Conceived, Develop, and then Grow in an Environment Lacking a GMF
4. Is It Possible to Assess the Potential Impact of Endogenous Magnetic Fields on Individuals Prior to Deep-Space Travel?
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adamopoulos, K.; Koutsouris, D.; Zaravinos, A.; Lambrou, G. Gravitational influence on human living systems and the evolution of species on earth. Molecules 2021, 26, 2784. [Google Scholar] [CrossRef]
- Hart, D.A. Learning from human responses to deconditioning environments: Improved understanding of the “use it or lose it” principle. Front. Sports Act. Living 2021, 3, 685845. [Google Scholar] [CrossRef] [PubMed]
- Valkovic, V. A possible mechanism for the influence of geomagnetic field on the evolution of life. Orig. Life 1977, 8, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Erdmann, W.; Kmita, H.; Kosicki, J.Z.; Kaczmarek, T. How the geomagnetic field influences life on earth—An integrated approach to Geomagnetobiology. Orig. Life Evol. Biosph. 2021, 51, 231–257. [Google Scholar] [CrossRef]
- Schaefer, N.K.; Shapiro, B.; Green, R.E. An ancestral recombination graph of human, neanderthal, and Denisovan genomes. Sci. Adv. 2021, 7, eabc0776. [Google Scholar] [CrossRef] [PubMed]
- Koller, D.; Wendt, F.R.; Pathak, G.A.; De Lillo, A.; De Angelis, F.; Cabrera-Mendoza, B.; Tucci, S.; Polimanti, R. Denisovan and neanderthal archaic introgression differentially impacted the genetics of complex traits in modern populations. BMC Biol. 2022, 20, 249. [Google Scholar] [CrossRef]
- Harvati, K.; Reyes-Centeno, H. Evolution of homo in the middle and late Pleistocene. J. Hum. Evol. 2022, 173, 103279. [Google Scholar] [CrossRef]
- Beer, A.E.; Quebbeman, J.F. Immunological mechanisms of survival and “rejection” of the fetal allograft. Mead Johns. Symp. Périnat. Dev. Med. 1986, 24, 20–26. [Google Scholar]
- Reed, E.; Beer, A.E.; Hutcherson, H.; King, D.W.; Suciu-Foca, N. The alloantibody response of pregnant women and its suppression by soluble HLA antigens and anti-idiotypic antibodies. J. Reprod. Immunol. 1991, 20, 115–128. [Google Scholar] [CrossRef]
- Ray, E.K. Introduction: Are aging and space effects similar? Exp. Gerontol. 1991, 26, 123–129. [Google Scholar] [CrossRef]
- Hart, D.A. Influence of space environments in system physiologic and molecular integrity: Redefining the concept of human health beyond the boundary conditions of earth. J. Biomed. Sci. Eng. 2019, 12, 400–408. [Google Scholar] [CrossRef] [Green Version]
- Hart, D.A. Potential impact of space environments on developmental and maturational programs which evolved to meet the boundary conditions of earth: Will maturing humans be able to establish a functional biologic system set point under non-earth conditions? J. Biomed. Sci. Eng. 2019, 12, 500–513. [Google Scholar] [CrossRef] [Green Version]
- Hart, D.A.; Zernicke, R.F. Optimal human functioning requires exercise across the lifespan: Mobility in a 1g environment is intrinsic to the integrity of multiple biological systems. Front. Physiol. 2020, 11, 156. [Google Scholar] [CrossRef] [Green Version]
- Scott, A.; Khan, K.M.; Duronio, V.; Hart, D.A. Mechanotransduction in human bone: In vitro cellular physiology that under-pins bone changes with exercise. Sports Med. 2008, 38, 139–160. [Google Scholar] [CrossRef]
- Natsu-Ume, T.; Majima, T.; Reno, C.; Shrive, N.G.; Frank, C.B.; Hart, D.A. Menisci of the rabbit knee require mechanical loading to maintain homeostasis: Cyclic hydrostatic compression in vitro prevents derepression of catabolic genes. J. Orthop. Sci. 2005, 10, 396–405. [Google Scholar] [CrossRef] [PubMed]
- Kos, O.; Hughson, R.; Hart, D.; Clément, G.; Frings-Meuthen, P.; Linnarsson, D.; Paloski, W.; Rittweger, J.; Wuyts, F.; Zange, J.; et al. Elevated serum soluble CD200 and CD200R as surrogate markers of bone loss under bed rest conditions. Bone 2014, 60, 33–40. [Google Scholar] [CrossRef] [Green Version]
- Hart, D.A. Are we learning as much as possible from spaceflight to better understand health and risks to health on earth, as well as in space? J. Biomed. Sci. Eng. 2018, 11, 109–118. [Google Scholar] [CrossRef] [Green Version]
- Moosavi, D.; Wolovsky, D.; Depompeis, A.; Uher, D.; Lennington, D.; Bodden, R.; Garber, C. The effects of spaceflight microgravity on the musculoskeletal system of humans and animals, with an emphasis on exercise as a countermeasure: A systematic scoping review. Physiol. Res. 2021, 70, 119–151. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.A.; Ayon, R.J.; Tang, H.; Makino, A.; Yuan, J.X.-J. Calcium-sensing receptor regulates cytosolic [Ca2+] and plays a major role in the development of pulmonary hypertension. Front. Physiol. 2016, 7, 517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valentim, M.A.; Brahmbhatt, A.N.; Tupling, A.R. Skeletal and cardiac muscle calcium transport regulation in health and disease. Biosci. Rep. 2022, 42, bsr20211997. [Google Scholar] [CrossRef]
- Dixon, R.E. Nanoscale organization, regulation, and dynamic reorganization of cardiac calcium channels. Front. Physiol. 2022, 12, 810408. [Google Scholar] [CrossRef]
- Beghi, S.; Furmanik, M.; Jaminon, A.; Veltrop, R.; Rapp, N.; Wichapong, K.; Bidar, E.; Buschini, A.; Schurgers, L.J. Calcium signalling in heart and vessels: Role of calmodulin and downstream calmodulin-dependent protein kinases. Int. J. Mol. Sci. 2022, 23, 16139. [Google Scholar] [CrossRef] [PubMed]
- Gleitze, S.; Paula-Lima, A.; Núñez, M.T.; Hidalgo, C. The calcium-iron connection in ferroptosis-mediated neuronal death. Free. Radic. Biol. Med. 2021, 175, 28–41. [Google Scholar] [CrossRef]
- McKinney, A.A.; Petrova, R.; Panagiotakos, G. Calcium and activity-dependent signaling in the developing cerebral cortex. Development 2022, 149, 198853. [Google Scholar] [CrossRef] [PubMed]
- Cimini, V.; Van Noorden, S.; Terlizzi, C.; Altobelli, G.G. Calcium/calmodulin-dependent kinases in the hypothalamus, pituitary, and pineal gland: An overview. Int. J. Endocrinol. 2022, 2022, 1103346. [Google Scholar] [CrossRef] [PubMed]
- Al-Khannaq, M.; Lytton, J. Regulation of K+-dependent Na+/Ca2+-exchangers. Int. J. Mol. Sci. 2022, 24, 598. [Google Scholar] [CrossRef]
- Danish, M.; Ahmad, R. Functional pleiotropy of calcium binding protein regucalcin in signaling and diseases. Cell Signal. 2023, 102, 110533. [Google Scholar] [CrossRef]
- Bettis, T.; Kim, B.-J.; Hamrick, M.W. Impact of muscle atrophy on bone metabolism and bone strength: Implications for muscle-bone crosstalk with aging and disuse. Osteoporos. Int. 2018, 29, 1713–1720. [Google Scholar] [CrossRef]
- Camera, D.M.; Smiles, W.J.; Hawley, J.A. Exercise-induced skeletal muscle signaling pathways and human athletic performance. Free. Radic. Biol. Med. 2016, 98, 131–143. [Google Scholar] [CrossRef]
- Sibonga, J.; Matsumoto, T.; Jones, J.; Shapiro, J.; Lang, T.; Shackelford, L.; Smith, S.; Young, M.; Keyak, J.; Kohri, K.; et al. Resistive exercise in astronauts on prolonged spaceflights provides partial protection against spaceflight-induced bone loss. Bone 2019, 128, 112037. [Google Scholar] [CrossRef]
- Gabel, L.; Liphardt, A.-M.; Hulme, P.A.; Heer, M.; Zwart, S.R.; Sibonga, J.D.; Smith, S.M.; Boyd, S.K. Pre-flight exercise and bone metabolism predict unloading-induced bone loss due to spaceflight. Br. J. Sports Med. 2022, 56, 196–203. [Google Scholar] [CrossRef]
- Okada, R.; Fujita, S.-I.; Suzuki, R.; Hayashi, T.; Tsubouchi, H.; Kato, C.; Sadaki, S.; Kanai, M.; Fuseya, S.; Inoue, Y.; et al. Transcriptome analysis of gravitational effects on mouse skeletal muscles under microgravity and artificial 1 g onboard environment. Sci. Rep. 2021, 11, 9168. [Google Scholar] [CrossRef]
- De Martino, E.; Hides, J.; Elliott, J.M.; Hoggarth, M.; Zange, J.; Lindsay, K.; Debuse, D.; Winnard, A.; Beard, D.; Cook, J.A.; et al. Lumbar muscle atrophy and increased relative intramuscular lipid concentration are not mitigated by daily artificial gravity after 60-day head-down tilt bed rest. J. Appl. Physiol. 2021, 131, 356–368. [Google Scholar] [CrossRef]
- Frost, H.M. The mechanostat: A proposed pathogenic mechanism of osteoporosis and the bone mass effects of mechanical and nonmechanical agents. Bone Miner. 1987, 2, 73–85. [Google Scholar] [PubMed]
- Frost, H.M. From Wolff’s Law to the mechanostat: A new “face” of physiology *. J. Orthop. Sci. 1998, 3, 282–286. [Google Scholar] [CrossRef] [PubMed]
- Frost, H.M. A 2003 update of bone physiology and Wolff’s Law for clinicians. Angle Orthod. 2004, 74, 3–15. [Google Scholar] [CrossRef]
- Buccoliero, C.; Oranger, A.; Colaianni, G.; Pignataro, P.; Zerlotin, R.; Lovero, R.; Errede, M.; Grano, M. The effect of irisin on bone cells in vivo and in vitro. Biochem. Soc. Trans. 2021, 49, 477–484. [Google Scholar] [CrossRef] [PubMed]
- Ardavani, A.; Aziz, H.; Phillips, B.E.; Doleman, B.; Ramzan, I.; Mozaffar, B.; Atherton, P.J.; Idris, I. Indicators of response to exercise training: A systematic review and meta-analysis. BMJ Open 2021, 11, e044676. [Google Scholar] [CrossRef]
- Hart, D.A.; Zernicke, R.F.; Shrive, N.G. Homo sapiens may incorporate daily acute cycles of “conditioning-deconditioning” to maintain musculoskeletal integrity: Need to integrate with biological clocks and circadian rhythm mediators. Int. J. Mol. Sci. 2022, 23, 9949. [Google Scholar] [CrossRef]
- Wan, Q.; Qin, W.; Ma, Y.; Shen, M.; Li, J.; Zhang, Z.; Chen, J.; Tay, F.R.; Niu, L.; Jiao, K. Crosstalk between bone and nerves within bone. Adv. Sci. 2021, 8, 2003390. [Google Scholar] [CrossRef]
- Gerosa, L.; Lombardi, G. Bone-to-brain: A round trip in the adaptation to mechanical stimuli. Front. Physiol. 2021, 12, 623893. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zhang, Z.; Zhao, J.; Meyers, C.A.; Lee, S.; Qin, Q.; James, A.W. Interaction between the nervous and skeletal systems. Front. Cell Dev. Biol. 2022, 10, 976736. [Google Scholar] [CrossRef] [PubMed]
- Fielding, C.; Méndez-Ferrer, S. Neuronal regulation of bone marrow stem cell niches. F1000Research 2020, 9, 614. [Google Scholar] [CrossRef]
- Zhang, X.; Hassan, M.G.; Scheller, E.L. Neural regulation of bone marrow adipose tissue. Best Pract. Res. Clin. Endocrinol. Metab. 2021, 35, 101522. [Google Scholar] [CrossRef]
- Hart, D.A. One of the primary functions of tissue-resident pluripotent pericytes cells may be to regulate normal organ growth and maturation: Implications for attempts to repair tissues later in life. Int. J. Mol. Sci. 2022, 23, 5496. [Google Scholar] [CrossRef]
- LeBlanc, A.; Matsumoto, T.; Jones, J.; Shapiro, J.; Lang, T.; Shackelford, L.; Smith, S.M.; Evans, H.; Spector, E.; Ploutz-Snyder, R.; et al. Bisphosphonates as a supplement to exercise to protect bone during long-duration spaceflight. Osteoporos. Int. 2013, 24, 2105–2114. [Google Scholar] [CrossRef]
- Antoniou, G.; Benetos, I.S.; Vlamis, J.; Pneumaticos, S.G. Bone mineral density post a spinal cord injury: A review of the current literature guidelines. Cureus 2022, 14, 23434. [Google Scholar] [CrossRef]
- Bauman, W.A. Pharmacological approaches for bone health in persons with spinal cord injury. Curr. Opin. Pharmacol. 2021, 60, 346–359. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.-F. Vascular adaptation to microgravity: What have we learned? J. Appl. Physiol. 2001, 91, 2415–2430. [Google Scholar] [CrossRef]
- Hughson, R.L.; Shoemaker, J.K. Vascular health in space. J. Gravit. Physiol. 2004, 11, P71–P74. [Google Scholar]
- Zuj, K.A.; Arbeille, P.; Shoemaker, J.K.; Blaber, A.P.; Greaves, D.K.; Xu, D.; Hughson, R.L.; Zhang, L.-F.; Hargens, A.R.; Marshall-Goebel, K.; et al. Impaired cerebrovascular autoregulation and reduced CO2 reactivity after long duration spaceflight. Am. J. Physiol. Heart Circ. Physiol. 2012, 302, H2592–H2598. [Google Scholar] [CrossRef]
- Bimpong-Buta, N.-Y.; Jirak, P.; Wernly, B.; Lichtenauer, M.; Masyuk, M.; Muessig, J.M.; Braun, K.; Kaya, S.; Kelm, M.; Jung, C. Analysis of human microcirculation in weightlessness: Study protocol and pre-study experiments. Clin. Hemorheol. Microcirc. 2018, 70, 119–127. [Google Scholar] [CrossRef]
- Iwasaki, K.; Ogawa, Y.; Kurazumi, T.; Imaduddin, S.M.; Mukai, C.; Furukawa, S.; Yanagida, R.; Kato, T.; Konishi, T.; Shinojima, A.; et al. Long-duration spaceflight alters estimated intracranial pressure and cerebral blood velocity. J. Physiol. 2021, 599, 1067–1081. [Google Scholar] [CrossRef]
- Taylor, C.R.; Hanna, M.; Behnke, B.J.; Stabley, J.N.; McCullough, D.J.; Davis, R.T., 3rd; Ghosh, P.; Papadopoulos, A.; Muller-Delp, J.M.; Delp, M.D. Spaceflight-induced alterations in cerebral artery vasoconstrictor, mechanical, and structural properties: Im-plications for elevated cerebral perfusion and intracranial pressure. FASEB J. 2013, 27, 2282–2292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.M.C.; Ribeiro, L.C.; Martin, D.S.; Zwart, S.R.; Feiveson, A.H.; Laurie, S.S.; Macias, B.R.; Crucian, B.E.; Krieger, S.; Weber, D.; et al. Arterial structure and function during and after long-duration spaceflight. J. Appl. Physiol. 2020, 129, 108–123. [Google Scholar] [CrossRef] [PubMed]
- Platts, S.H.; Merz, C.N.B.; Barr, Y.; Fu, Q.; Gulati, M.; Hughson, R.; Levine, B.D.; Mehran, R.; Stachenfeld, N.; Wenger, N.K. Effects of sex and gender on adaptation to space: Cardiovascular alterations. J. Women’s Health 2014, 23, 950–955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hughson, R.L.; Robertson, A.D.; Arbeille, P.; Shoemaker, J.K.; Rush, J.W.E.; Fraser, K.S.; Greaves, D.K. Increased postflight carotid artery stiffness and inflight insulin resistance resulting from 6-mo spaceflight in male and female astronauts. Am. J. Physiol. Heart Circ. Physiol. 2016, 310, H628–H638. [Google Scholar] [CrossRef] [Green Version]
- Kramer, L.A.; Hasan, K.M.; Stenger, M.B.; Sargsyan, A.; Laurie, S.S.; Otto, C.; Ploutz-Snyder, R.J.; Marshall-Goebel, K.; Riascos, R.F.; Macias, B.R. Intracranial effects of microgravity: A prospective longitudinal MRI study. Radiology 2020, 295, 640–648. [Google Scholar] [CrossRef] [Green Version]
- Jasien, J.V.; Laurie, S.S.; Lee, S.M.C.; Martin, D.S.; Kemp, D.T.; Ebert, D.J.; Ploutz-Snyder, R.J.; Marshall-Goebel, K.; Alferova, I.V.; Sargsyan, A.E.; et al. Noninvasive indicators of intracranial pressure before, during, and after long-duration spaceflight. J. Appl. Physiol. 2022, 133, 721–731. [Google Scholar] [CrossRef]
- Buckey, J.C.; Phillips, S.D.; Anderson, A.; Chepko, A.B.; Archambault-Leger, V.; Gui, J.; Fellows, A.M. Microgravity-induced ocular changes are related to body weight. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2018, 315, R496–R499. [Google Scholar] [CrossRef]
- Hughson, R.L.; Irving, E.L. Spaceflight not an eye-popping experience for astronauts. J. Physiol. 2021, 599, 1011–1012. [Google Scholar] [CrossRef]
- Wostyn, P.; Gibson, C.R.; Mader, T.H. The odyssey of the ocular and cerebrospinal fluids during a mission to Mars: The “ocular glymphatic system” under pressure. Eye 2022, 36, 686–691. [Google Scholar] [CrossRef] [PubMed]
- Mao, X.W.; Nishiyama, N.C.; Byrum, S.D.; Stanbouly, S.; Jones, T.; Drew, A.; Sridharan, V.; Boerma, M.; Tackett, A.J.; Zawieja, D.; et al. Characterization of mouse ocular response to a 35-day spaceflight mission: Evidence of blood-retinal barrier disruption and ocular adaptations. Sci. Rep. 2019, 9, 8215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khossravi, E.A.; Hargens, A.R. Visual disturbances during prolonged space missions. Curr. Opin. Ophthalmol. 2021, 32, 69–73. [Google Scholar] [CrossRef]
- Huang, A.S.; Stenger, M.B.; Macias, B.R. Gravitational influence on intraocular pressure: Implications for spaceflight and disease. J. Glaucoma 2019, 28, 756–764. [Google Scholar] [CrossRef]
- Wåhlin, A.; Holmlund, P.; Fellows, A.M.; Malm, J.; Buckey, J.C.; Eklund, A. Optic nerve length before and after spaceflight. Ophthalmology 2020, 128, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Hughson, R.L. Recent findings in cardiovascular physiology with space travel. Respir. Physiol. Neurobiol. 2009, 169 (Suppl. S1), 538–541. [Google Scholar] [CrossRef]
- Zhang, L.-F. Region-specific vascular remodeling and its prevention by artificial gravity in weightless environment. Eur. J. Appl. Physiol. 2013, 113, 2873–2895. [Google Scholar] [CrossRef]
- Watkins, W.; Hargens, A.R.; Seidl, S.; Clary, E.M.; Macias, B.R. Lower-body negative pressure decreases noninvasively measured intracranial pressure and internal jugular vein cross-sectional area during head-down tilt. J. Appl. Physiol. 2017, 123, 260–266. [Google Scholar] [CrossRef] [Green Version]
- Harris, K.M.; Petersen, L.G.; Weber, T. Reviving lower body negative pressure as a countermeasure to prevent pathological vascular and ocular changes in microgravity. NPJ Microgravity 2020, 6, 38. [Google Scholar] [CrossRef]
- Baevsky, R.; Petrov, V.; Chernikova, A. Regulation of autonomic nervous system in space and magnetic storms. Adv. Space Res. 1998, 22, 227–234. [Google Scholar] [CrossRef]
- Patel, S. The effects of microgravity and space radiation on cardiovascular health: From low-earth orbit and beyond. Int. J. Cardiol. Heart Vasc. 2020, 30, 100595. [Google Scholar] [CrossRef] [PubMed]
- Rikhi, R.; Samra, G.; Arustamyan, M.; Patel, J.; Zhou, L.; Bungo, B.; Moudgil, R. Radiation induced cardiovascular disease: An odyssey of bedside-bench-bedside approach. Life Sci. Space Res. 2020, 27, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Davis, C.M.; Allen, A.R.; Bowles, D.E. Consequences of space radiation on the brain and cardiovascular system. J. Environ. Sci. Health C Toxicol. Carcinog. 2021, 39, 180–218. [Google Scholar] [CrossRef]
- Hamilton, D.R.; Murray, J.D.; Ball, C.G. Cardiac health for astronauts: Coronary calcification scores and CRP as criteria for selection and retention. Aviat. Space Environ. Med. 2006, 77, 377–387. [Google Scholar]
- Clément, G.; Ngo-Anh, J.T. Space physiology II: Adaptation of the central nervous system to space flight—Past, current, and future studies. Eur. J. Appl. Physiol. 2013, 113, 1655–1672. [Google Scholar] [CrossRef] [PubMed]
- Desai, R.I.; Limoli, C.L.; Stark, C.E.; Stark, S.M. Impact of spaceflight stressors on behavior and cognition: A molecular, neurochemical, and neurobiological perspective. Neurosci. Biobehav. Rev. 2022, 138, 104676. [Google Scholar] [CrossRef] [PubMed]
- Marfia, G.; Navone, S.E.; Guarnaccia, L.; Campanella, R.; Locatelli, M.; Miozzo, M.; Perelli, P.; Della Morte, G.; Catamo, L.; Tondo, P.; et al. Space flight and central nervous system: Friends or enemies? Challenges and opportunities for neuroscience and neuro-oncology. J. Neurosci. Res. 2022, 100, 1649–1663. [Google Scholar] [CrossRef]
- Salazar, A.P.; McGregor, H.R.; Hupfeld, K.E.; Beltran, N.E.; Kofman, I.S.; De Dios, Y.E.; Riascos, R.F.; Reuter-Lorenz, P.A.; Bloomberg, J.J.; Mulavara, A.P.; et al. Changes in working memory brain activity and task-based connectivity after long-duration spaceflight. Cereb. Cortex 2022, 16, bhac232. [Google Scholar] [CrossRef] [PubMed]
- Doroshin, A.; Jillings, S.; Jeurissen, B.; Tomilovskaya, E.; Pechenkova, E.; Nosikova, I.; Rumshiskaya, A.; Litvinova, L.; Rukavishnikov, I.; De Laet, C.; et al. Brain connectometry changes in space travelers after long-duration spaceflight. Front. Neural Circuits 2022, 16, 815838. [Google Scholar] [CrossRef]
- Marušič, U.; Meeusen, R.; Pišot, R.; Kavcic, V. The brain in micro- and hypergravity: The effects of changing gravity on the brain electrocortical activity. Eur. J. Sport Sci. 2014, 14, 813–822. [Google Scholar] [CrossRef]
- Zwart, S.R.; Mulavara, A.P.; Williams, T.J.; George, K.; Smith, S.M. The role of nutrition in space exploration: Implications for sensorimotor, cognition, behavior and the cerebral changes due to the exposure to radiation, altered gravity, and isolation/confinement hazards of spaceflight. Neurosci. Biobehav. Rev. 2021, 127, 307–331. [Google Scholar] [CrossRef] [PubMed]
- McGregor, H.R.; Lee, J.K.; Mulder, E.R.; De Dios, Y.E.; Beltran, N.E.; Kofman, I.S.; Bloomberg, J.J.; Mulavara, A.P.; Seidler, R.D. Brain connectivity and behavioral changes in a spaceflight analog environment with elevated CO2. Neuroimage 2021, 225, 117450. [Google Scholar] [CrossRef]
- Cekanaviciute, E.; Rosi, S.; Costes, S.V. Central nervous system responses to simulated galactic cosmic rays. Int. J. Mol. Sci. 2018, 19, 3669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tays, G.D.; Hupfeld, K.E.; McGregor, H.R.; Salazar, A.P.; De Dios, Y.E.; Beltran, N.E.; Reuter-Lorenz, P.A.; Kofman, I.S.; Wood, S.J.; Bloomberg, J.J.; et al. The effects of long duration spaceflight on sensorimotor control and cognition. Front. Neural Circuits 2021, 15, 723504. [Google Scholar] [CrossRef]
- Roy-O’Reilly, M.; Mulavara, A.; Williams, T. A review of alterations to the brain during spaceflight and the potential relevance to crew in long-duration space exploration. NPJ Microgravity 2021, 7, 5. [Google Scholar] [CrossRef] [PubMed]
- Clément, G.R.; Boyle, R.D.; George, K.A.; Nelson, G.R.; Reschke, M.F.; Williams, T.J.; Paloski, W.H. Challenges to the central nervous system during human spaceflight missions to Mars. J. Neurophysiol. 2020, 123, 2037–2063. [Google Scholar] [CrossRef]
- Kokhan, V.S.; Matveeva, M.I.; Mukhametov, A.; Shtemberg, A.S. Risk of defeats in the central nervous system during deep space missions. Neurosci. Biobehav. Rev. 2016, 71, 621–632. [Google Scholar] [CrossRef]
- Barkaszi, I.; Ehmann, B.; Tölgyesi, B.; Balázs, L.; Altbäcker, A. Are head-down tilt bedrest studies capturing the true nature of spaceflight-induced cognitive changes? A review. Front. Physiol. 2022, 13, 1008508. [Google Scholar] [CrossRef]
- Tays, G.D.; McGregor, H.R.; Lee, J.K.; Beltran, N.; Kofman, I.S.; De Dios, Y.E.; Mulder, E.; Bloomberg, J.J.; Mulavara, A.P.; Wood, S.J.; et al. The effects of 30 minutes of artificial gravity on cognitive and sensorimotor performance in a spaceflight analog environment. Front. Neural Circuits 2022, 16, 784280. [Google Scholar] [CrossRef] [PubMed]
- Seidler, R.D.; Stern, C.; Basner, M.; Stahn, A.C.; Wuyts, F.L.; Zu Eulenburg, P. Future research directions to identify risks and mitigation strategies for neurostructural, ocular, and behavioral changes induced by human spaceflight: A NASA-ESA expert group consensus report. Front. Neural Circuits 2022, 16, 876789. [Google Scholar] [CrossRef] [PubMed]
- Sihver, L. Biological protection in deep space missions. J. Biomed. Phys. Eng. 2021, 11, 663–674. [Google Scholar] [CrossRef]
- Moore, T.M.; Basner, M.; Nasrini, J.; Hermosillo, E.; Kabadi, S.; Roalf, D.R.; McGuire, S.; Ecker, A.J.; Ruparel, K.; Port, A.M.; et al. Validation of the cognition test battery for spaceflight in a sample of highly educated adults. Aerosp. Med. Hum. Perform. 2017, 88, 937–946. [Google Scholar] [CrossRef] [PubMed]
- Malkani, S.; Chin, C.R.; Cekanaviciute, E.; Mortreux, M.; Okinula, H.; Tarbier, M.; Schreurs, A.-S.; Shirazi-Fard, Y.; Tahimic, C.G.; Rodriguez, D.N.; et al. Circulating miRNA spaceflight signature reveals targets for countermeasure development. Cell Rep. 2020, 33, 108448. [Google Scholar] [CrossRef]
- Gaines, D.; Nestorova, G.G. Extracellular vesicles-derived microRNAs expression as biomarkers for neurological radiation injury: Risk assessment for space exploration. Life Sci. Space Res. 2022, 32, 54–62. [Google Scholar] [CrossRef]
- Goukassian, D.; Arakelyan, A.; Brojakowska, A.; Bisserier, M.; Hakobyan, S.; Hadri, L.; Rai, A.K.; Evans, A.; Sebastian, A.; Truongcao, M.; et al. Space flight associated changes in astronauts’ plasma-derived small extracellular vesicle microRNA: Biomarker identification. Clin. Transl. Med. 2022, 12, e845. [Google Scholar] [CrossRef]
- Stella, A.B.; Ajčević, M.; Furlanis, G.; Manganotti, P. Neurophysiological adaptations to spaceflight and simulated microgravity. Clin. Neurophysiol. 2020, 132, 498–504. [Google Scholar] [CrossRef] [PubMed]
- Kharlamova, A.; Proshchina, A.; Gulimova, V.; Krivova, Y.; Soldatov, P.; Saveliev, S. Cerebellar morphology and behavioural correlations of the vestibular function alterations in weightlessness. Neurosci. Biobehav. Rev. 2021, 126, 314–328. [Google Scholar] [CrossRef] [PubMed]
- Carriot, J.; Mackrous, I.; Cullen, K.E. Challenges to the vestibular system in space: How the brain responds and adapts to microgravity. Front. Neural Circuits 2021, 15, 760313. [Google Scholar] [CrossRef]
- Hirayama, J.; Hattori, A.; Takahashi, A.; Furusawa, Y.; Tabuchi, Y.; Shibata, M.; Nagamatsu, A.; Yano, S.; Maruyama, Y.; Matsubara, H.; et al. Physiological consequences of space flight, including abnormal bone metabolism, space radiation injury, and circadian clock dysregulation: Implications of melatonin use and regulation as a countermeasure. J. Pineal Res. 2023, 74, e12834. [Google Scholar] [CrossRef]
- Turroni, S.; Magnani, M.; Kc, P.; Lesnik, P.; Vidal, H.; Heer, M. Gut microbiome and space travelers’ health: State of the art and possible pro/prebiotic strategies for long-term space missions. Front. Physiol. 2020, 11, 553929. [Google Scholar] [CrossRef]
- Dhar, S.; Kaeley, D.K.; Kanan, M.J.; Yildirim-Ayan, E. Mechano-immunomodulation in space: Mechanisms involving microgravity-induced changes in T cells. Life 2021, 11, 1043. [Google Scholar] [CrossRef] [PubMed]
- Akiyama, T.; Horie, K.; Hinoi, E.; Hiraiwa, M.; Kato, A.; Maekawa, Y.; Takahashi, A.; Furukawa, S. How does spaceflight affect the acquired immune system? NPJ Microgravity 2020, 6, 14. [Google Scholar] [CrossRef]
- ElGindi, M.; Sapudom, J.; Ibrahim, I.; Al-Sayegh, M.; Chen, W.; Garcia-Sabaté, A.; Teo, J. May the force be with you (or not): The immune system under microgravity. Cells 2021, 10, 1941. [Google Scholar] [CrossRef] [PubMed]
- Crucian, B.E.; Makedonas, G.; Sams, C.F.; Pierson, D.L.; Simpson, R.; Stowe, R.P.; Smith, S.M.; Zwart, S.R.; Krieger, S.S.; Rooney, B.; et al. Countermeasures-based improvements in stress, immune system dysregulation and latent herpesvirus reactivation onboard the international space station—Relevance for deep space missions and terrestrial medicine. Neurosci. Biobehav. Rev. 2020, 115, 68–76. [Google Scholar] [CrossRef]
- Garrett-Bakelman, F.E.; Darshi, M.; Green, S.J.; Gur, R.C.; Lin, L.; Macias, B.R.; McKenna, M.J.; Meydan, C.; Mishra, T.; Nasrini, J.; et al. The NASA twins study: A multidimensional analysis of a year-long human spaceflight. Science 2019, 364, eaau8650. [Google Scholar] [CrossRef] [PubMed]
- Loriè, E.P.; Baatout, S.; Choukér, A.; Buchheim, J.-I.; Baselet, B.; Russo, C.D.; Wotring, V.; Monici, M.; Morbidelli, L.; Gagliardi, D.; et al. The future of personalized medicine in space: From observations to countermeasures. Front. Bioeng. Biotechnol. 2021, 9, 739747. [Google Scholar] [CrossRef]
- Sishc, B.J.; Zawaski, J.; Saha, J.; Carnell, L.S.; Fabre, K.M.; Elgart, S.R. The need for biological countermeasures to mitigate the risk of space radiation-induced carcinogenesis, cardiovascular disease, and central nervous system deficiencies. Life Sci. Space Res. 2022, 35, 4–8. [Google Scholar] [CrossRef]
- Putt, K.S.; Du, Y.; Fu, H.; Zhang, Z.-Y. High-throughput screening strategies for space-based radiation countermeasure discovery. Life Sci. Space Res. 2022, 35, 88–104. [Google Scholar] [CrossRef]
- Guo, Z.; Zhou, G.; Hu, W. Carcinogenesis induced by space radiation: A systematic review. Neoplasia 2022, 32, 100828. [Google Scholar] [CrossRef]
- Ahrari, K.; Omolaoye, T.S.; Goswami, N.; Alsuwaidi, H.; du Plessis, S.S. Effects of space flight on sperm function and integrity: A systematic review. Front. Physiol. 2022, 13, 904375. [Google Scholar] [CrossRef] [PubMed]
- Hall, E.; Brenner, D.; Worgul, B.; Smilenov, L. Genetic susceptibility to radiation. Adv. Space Res. 2005, 35, 249–253. [Google Scholar] [CrossRef]
- Cucinotta, F.A.; Saganti, P.B. Race and ethnic group dependent space radiation cancer risk predictions. Sci. Rep. 2022, 12, 2028. [Google Scholar] [CrossRef] [PubMed]
- Marchetti, C.; Ataseven, B.; Cassani, C.; Sassu, C.M.; Congedo, L.; D’Indinosante, M.; Cappuccio, S.; Rhiem, K.; Hahrem, E.; Cordisco, E.L.; et al. Ovarian cancer onset across different BRCA mutation types: A view to a more tailored approach for BRCA mutated patients. Int. J. Gynecol. Cancer 2023, 33, 257–262. [Google Scholar] [CrossRef]
- Kladova, O.A.; Fedorova, O.S.; Kuznetsov, N.A. The role of natural polymorphic variants of DNA polymerase β in DNA repair. Int. J. Mol. Sci. 2022, 23, 2390. [Google Scholar] [CrossRef]
- Jia, N.; Guo, C.; Nakazawa, Y.; Heuvel, D.V.D.; Luijsterburg, M.S.; Ogi, T. Dealing with transcription-blocking DNA damage: Repair mechanisms, RNA polymerase II processing and human disorders. DNA Repair 2021, 106, 103192. [Google Scholar] [CrossRef]
- Meyers, G.R.; Samouda, H.; Bohn, T. Short chain fatty acid metabolism in relation to gut microbiota and genetic variability. Nutrients 2022, 14, 5361. [Google Scholar] [CrossRef]
- Huang, Z.; Liu, K.; Ma, W.; Li, D.; Mo, T.; Liu, Q. The gut microbiome in human health and disease—Where are we and where are we going? A bibliometric analysis. Front. Microbiol. 2022, 13, 1018594. [Google Scholar] [CrossRef] [PubMed]
- Andrioaie, I.-M.; Duhaniuc, A.; Nastase, E.V.; Iancu, L.S.; Luncă, C.; Trofin, F.; Anton-Păduraru, D.-T.; Dorneanu, O.-S. The role of the gut microbiome in psychiatric disorders. Microorganisms 2022, 10, 2436. [Google Scholar] [CrossRef]
- Lavrinienko, A.; Mappes, T.; Tukalenko, E.; Mousseau, T.; Møller, A.P.; Knight, R.; Morton, J.T.; Thompson, L.R.; Watts, P.C. Environmental radiation alters the gut microbiome of the bank vole Myodes glareolus. ISME J. 2018, 12, 2801–2806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirkpatrick, A.W.; Hamilton, D.R.; McKee, J.L.; McDonald, B.; Pelosi, P.; Ball, C.G.; Roberts, D.J.; McBeth, P.B.; Coccolini, F.; Ansaloni, L.; et al. Do we have the guts to go? The abdominal compartment, intra-abdominal hypertension, the human microbiome and exploration class space missions. Can. J. Surg. 2020, 63, E581–E593. [Google Scholar] [CrossRef]
- Caswell, G.; Eshelby, B. Skin microbiome considerations for long haul space flights. Front. Cell Dev. Biol. 2022, 10, 956432. [Google Scholar] [CrossRef] [PubMed]
- LaPelusa, M.; Donoviel, D.; Branzini, S.E.; Carlson, P.E.; Culler, S.; Cheema, A.K.; Kaddurah-Daouk, R.; Kelly, D.; de Cremoux, I.; Knight, R.; et al. Microbiome for Mars: Surveying microbiome connections to healthcare with implications for long-duration human spaceflight, virtual workshop, July 13, 2020. Microbiome 2021, 9, 2. [Google Scholar] [CrossRef] [PubMed]
- Zhan, A.; Luo, Y.; Qin, H.; Lin, W.; Tian, L. Hypomagnetic field exposure affecting gut microbiota, reactive oxygen species levels, and colonic cell proliferation in mice. Bioelectromagnetics 2022, 43, 462–475. [Google Scholar] [CrossRef]
- McLaughlin, M.F.; Donoviel, D.B.; Jones, J.A. Novel indications for commonly used medications as radiation protectants in spaceflight. Aerosp. Med. Hum. Perform. 2017, 88, 665–676. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Xue, Y.; Yang, J.; Shang, P.; Yuan, X. Biological effects of hypomagnetic field: Ground-based data for space exploration. Bioelectromagnetics 2021, 42, 516–531. [Google Scholar] [CrossRef]
- van Eijk, H.G.; de Jong, G. The physiology of iron, transferrin, and ferritin. Biol. Trace Element Res. 1992, 35, 13–24. [Google Scholar] [CrossRef]
- McFadden, J. The conscious electromagnetic information (Cemi) field theory. J. Conscious. Stud. 2002, 9, 45–60. [Google Scholar]
- Arturo, M.; Banaclocha, M. Magnetic storage of information in the human cerebral cortex: A hypothesis for memory. Int. J. Neurosci. 2005, 115, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Banaclocha, M.A.M.; Bókkon, I.; Banaclocha, H.M. Long-term memory in brain magnetite. Med. Hypotheses 2010, 74, 254–257. [Google Scholar] [CrossRef]
- Pockett, S. The electromagnetic field theory of consciousness. J. Conscious. Stud. 2012, 19, 191–223. [Google Scholar] [CrossRef]
- Goult, B.T. The mechanical basis of memory—The Mesh CODE theory. Front. Mol. Neurosci. 2021, 14, 592951. [Google Scholar] [CrossRef] [PubMed]
- Carles, C.; Esquirol, Y.; Turuban, M.; Piel, C.; Migault, L.; Pouchieu, C.; Bouvier, G.; Fabbro-Peray, P.; Lebailly, P.; Baldi, I. Residential proximity to power lines and risk of brain tumor in the general population. Environ. Res. 2020, 185, 109473. [Google Scholar] [CrossRef] [PubMed]
- Kazemi, M.; Sahraei, H.; Aliyari, H.; Tekieh, E.; Saberi, M.; Tavacoli, H.; Meftahi, G.H.; Ghanaati, H.; Salehi, M.; Hajnasrollah, M. Effects of the extremely low frequency electromagnetic fields on NMDA-receptor gene expression and visual working memory in male rhesus macaques. Basic Clin. Neurosci. J. 2018, 9, 167–176. [Google Scholar] [CrossRef] [Green Version]
- Ohtani, S.; Ushiyama, A.; Maeda, M.; Wada, K.; Suzuki, Y.; Hattori, K.; Kunugita, N.; Ishii, K. Global analysis of transcriptional expression in mice exposed to intermediate frequency magnetic fields utilized for wireless power transfer systems. Int. J. Environ. Res. Public Health 2019, 16, 1851. [Google Scholar] [CrossRef] [Green Version]
- Jeong, Y.J.; Son, Y.; Choi, H.D.; Kim, N.; Lee, Y.S.; Ko, Y.G.; Lee, H.J. Behavioral changes and gene profile alterations after chronic 1,950-MHz radiofrequency exposure: An observation in C57BL/6 mice. Brain Behav. 2020, 10, e01815. [Google Scholar] [CrossRef] [PubMed]
- Lameth, J.; Arnaud-Cormos, D.; Lévêque, P.; Boillée, S.; Edeline, J.-M.; Mallat, M. Effects of a single head exposure to GSM-1800 MHz signals on the transcriptome profile in the rat cerebral cortex: Enhanced gene responses under proinflammatory conditions. Neurotox. Res. 2020, 38, 105–123. [Google Scholar] [CrossRef]
- Kim, J.H.; Yu, D.-H.; Kim, H.-J.; Huh, Y.H.; Cho, S.-W.; Lee, J.-K.; Kim, H.-G.; Kim, H.R. Exposure to 835 MHz radiofrequency electromagnetic field induces autophagy in hippocampus but not in brain stem of mice. Toxicol. Ind. Health 2018, 34, 23–35. [Google Scholar] [CrossRef] [Green Version]
- Huegel, J.; Chan, P.Y.W.; Weiss, S.N.; Nuss, C.A.; Raja, H.; Waldorff, E.I.; Zhang, N.; Ryaby, J.T.; Soslowsky, L.J.; Kuntz, A.F. Pulsed electromagnetic field therapy alters early healing in a rat model of rotator cuff injury and repair: Potential mechanisms. J. Orthop. Res. 2022, 40, 1593–1603. [Google Scholar] [CrossRef]
- Lee, H.-J.; Jin, H.; Ahn, Y.H.; Kim, N.; Pack, J.K.; Choi, H.-D.; Lee, Y.-S. Effects of intermediate frequency electromagnetic fields: A review of animal studies. Int. J. Radiat. Biol. 2023, 99, 166–182. [Google Scholar] [CrossRef]
- Drzewiecka, E.M.; Kozlowska, W.; Paukszto, L.; Zmijewska, A.; Wydorski, P.J.; Jastrzebski, J.P.; Franczak, A. Effect of the Electromagnetic Field (EMF) radiation on transcriptomic profile of pig myometrium during the peri-implantation period—An in vitro study. Int. J. Mol. Sci. 2021, 22, 7322. [Google Scholar] [CrossRef]
- Mustafa, E.; Makinistian, L.; Luukkonen, J.; Juutilainen, J.; Naarala, J. Do 50/60 Hz magnetic fields influence oxidative or DNA damage responses in human SH-SY5Y neuroblastoma cells? Int. J. Radiat. Biol. 2022, 98, 1581–1591. [Google Scholar] [CrossRef] [PubMed]
- Dittmann, K.H.; Mayer, C.; Stephan, H.; Mieth, C.; Bonin, M.; Lechmann, B.; Rodemann, H.P. Exposure of primary osteoblasts to combined magnetic and electric fields induced spatiotemporal endochondral ossification characteristic gene- and protein expression profiles. J. Exp. Orthop. 2022, 9, 39. [Google Scholar] [CrossRef]
- Ahadzi, G.M.; Liston, A.D.; Bayford, R.H.; Holder, D.S. Neuromagnetic field strength outside the human head due to impedance changes from neuronal depolarization. Physiol. Meas. 2004, 25, 365–378. [Google Scholar] [CrossRef]
- Seki, Y.; Miyashita, T.; Kandori, A.; Maki, A.; Koizumi, H. Simultaneous measurement of neuronal activity and cortical hemodynamics by unshielded magnetoencephalography and near-infrared spectroscopy. J. Biomed. Opt. 2012, 17, 1070011. [Google Scholar] [CrossRef] [Green Version]
- Cao, F.; An, N.; Xu, W.; Wang, W.; Yang, Y.; Xiang, M.; Gao, Y.; Ning, X. Co-registration comparison of on-scalp magnetoencephalography and magnetic resonance imaging. Front. Neurosci. 2021, 15, 706785. [Google Scholar] [CrossRef] [PubMed]
- Rea, M.; Holmes, N.; Hill, R.M.; Boto, E.; Leggett, J.; Edwards, L.J.; Woolger, D.; Dawson, E.; Shah, V.; Osborne, J.; et al. Precision magnetic field modelling and control for wearable magnetoencephalography. Neuroimage 2021, 241, 118401. [Google Scholar] [CrossRef]
- Petrosino, N.J.; Cosmo, C.; Berlow, Y.A.; Zandvakili, A.; Wout-Frank, M.V.; Philip, N.S. Transcranial magnetic stimulation for post-traumatic stress disorder. Ther. Adv. Psychopharmacol. 2021, 11, 1–19. [Google Scholar] [CrossRef]
- Kasprzycka, W.; Naurecka, M.L.; Sierakowski, B.M.; Putko, P.; Mierczyk, Z.; Chabik, G.; Dec, S.; Gaździński, S.; Rola, R. Recognition and processing of visual information after neuronavigated transcranial magnetic stimulation session. Brain Sci. 2022, 12, 1241. [Google Scholar] [CrossRef] [PubMed]
- Kletetschka, G.; Bazala, R.; Takáč, M.; Svecova, E. Magnetic domains oscillation in the brain with neurodegenerative disease. Sci. Rep. 2022, 11, 714. [Google Scholar] [CrossRef]
- Wang, C.X.; Hilburn, I.A.; Wu, D.-A.; Mizuhara, Y.; Cousté, C.P.; Abrahams, J.N.H.; Bernstein, S.E.; Matani, A.; Shimojo, S.; Kirschvink, J.L. Transduction of the geomagnetic field as evidenced from alpha-band activity in the human brain. Eneuro 2019, 6, eneuro.0483-18.2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roman, A.; Tombarkiewicz, B. Prolonged weakening of the geomagnetic field (GMF) affects the immune system of rats. Bioelectromagnetics 2009, 30, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Luo, Y.; Zhan, A.; Ren, J.; Qin, H.; Pan, Y. Hypomagnetic field induces the production of reactive oxygen species and cognitive deficits in mice hippocampus. Int. J. Mol. Sci. 2022, 23, 3622. [Google Scholar] [CrossRef]
- Zhang, X.; Li, J.-F.; Wu, Q.-J.; Li, B.; Jiang, J.-C. Effects of hypomagnetic field on noradrenergic activities in the brainstem of golden hamster. Bioelectromagnetics 2007, 28, 155–158. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Lu, H.; Xi, W.; Zhou, X.; Xu, S.; Zhang, K.; Jiang, J.; Li, Y.; Guo, A. Exposure to hypomagnetic field space for multiple generations causes amnesia in Drosophila melanogaster. Neurosci. Lett. 2004, 371, 190–195. [Google Scholar] [CrossRef]
- Oh, I.-T.; Kwon, H.-J.; Kim, S.-C.; Kim, H.-J.; Lohmann, K.J.; Chae, K.-S. Behavioral evidence for geomagnetic imprinting and transgenerational inheritance in fruit flies. Proc. Natl. Acad. Sci. USA 2019, 117, 1216–1222. [Google Scholar] [CrossRef]
- Mo, W.C.; Liu, Y.; Cooper, H.M.; He, R.Q. Altered development of Xenopus embryos in a hypomagnetic field. Bioelectromagnetics 2012, 33, 238–246. [Google Scholar] [CrossRef]
- Herries, A.I.; Shaw, J. Palaeomagnetic analysis of the Sterkfontein palaeocave deposits: Implications for the age of the hominin fossils and stone tool industries. J. Hum. Evol. 2011, 60, 523–539. [Google Scholar] [CrossRef]
- Agliassa, C.; Narayana, R.; Bertea, C.M.; Rodgers, C.T.; Maffei, M.E. Reduction of the geomagnetic field delays Arabidopsis thaliana flowering time through downregulation of flowering-related genes. Bioelectromagnetics 2018, 39, 361–374. [Google Scholar] [CrossRef] [Green Version]
- Narayana, R.; Fliegmann, J.; Paponov, I.; Maffei, M.E. Reduction of geomagnetic field (GMF) to near null magnetic field (NNMF) affects Arabidopsis thaliana root mineral nutrition. Life Sci. Space Res. 2018, 19, 43–50. [Google Scholar] [CrossRef]
- Shabrangy, A.; Ghatak, A.; Zhang, S.; Priller, A.; Chaturvedi, P.; Weckwerth, W. Magnetic field induced changes in the shoot and root proteome of barley (Hordeum vulgare L.). Front. Plant Sci. 2021, 12, 622795. [Google Scholar] [CrossRef]
- Hafeez, M.B.; Zahra, N.; Ahmad, N.; Shi, Z.; Raza, A.; Wang, X.; Li, J. Growth, physiological, biochemical and molecular changes in plants induced by magnetic fields: A review. Plant Biol. 2022, 25, 8–23. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.L.; Wang, X.S.; Xiao, R.; Liu, Y.; He, R.Q. Tubulin assembly is disordered in a hypogeomagnetic field. Biochem. Biophys. Res. Commun. 2008, 376, 363–368. [Google Scholar] [CrossRef]
- Fu, J.-P.; Mo, W.-C.; Liu, Y.; Bartlett, P.F.; He, R.-Q. Elimination of the geomagnetic field stimulates the proliferation of mouse neural progenitor and stem cells. Protein Cell 2016, 7, 624–637. [Google Scholar] [CrossRef] [Green Version]
- Mo, W.-C.; Zhang, Z.-J.; Wang, D.-L.; Liu, Y.; Bartlett, P.F.; He, R.-Q. Shielding of the geomagnetic field alters actin assembly and inhibits cell motility in human neuroblastoma cells. Sci. Rep. 2016, 6, 22624. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.-M.; Fu, J.-P.; Mo, W.-C.; Zhang, H.-T.; Liu, Y.; He, R.-Q. Shielded geomagnetic field accelerates glucose consumption in human neuroblastoma cells by promoting anaerobic glycolysis. Biochem. Biophys. Res. Commun. 2022, 601, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Feychting, M.; Ahlbom, A. Magnetic fields and cancer in children residing near Swedish high-voltage power lines. Am. J. Epidemiol. 1993, 138, 467–481. [Google Scholar] [CrossRef]
- Repacholi, M. Concern that “EMF” magnetic fields from power lines cause cancer. Sci. Total. Environ. 2012, 426, 454–458. [Google Scholar] [CrossRef] [PubMed]
- Amoon, A.T.; Swanson, J.; Magnani, C.; Johansen, C.; Kheifets, L. Pooled analysis of recent studies of magnetic fields and childhood leukemia. Environ. Res. 2022, 204, 111993. [Google Scholar] [CrossRef] [PubMed]
- Brabant, C.; Geerinck, A.; Beaudart, C.; Tirelli, E.; Geuzaine, C.; Bruyere, O. Exposure to magnetic fields and childhood leukemia: A systematic review and meat-analysis of cas-control and cohort studies. Rev. Environ. Health, 2022; Online ahead of print. [Google Scholar] [CrossRef]
- Balmori, A. Evidence for a health risk by RF on humans living around mobile phone base stations: From radiofrequency sickness to cancer. Environ. Res. 2022, 214, 113851. [Google Scholar] [CrossRef] [PubMed]
- Castaño-Vinyals, G.; Sadetzki, S.; Vermeulen, R.; Momoli, F.; Kundi, M.; Merletti, F.; Maslanyj, M.; Calderon, C.; Wiart, J.; Lee, A.-K.; et al. Wireless phone use in childhood and adolescence and neuroepithelial brain tumours: Results from the international MOBI-Kids study. Environ. Int. 2022, 160, 107069. [Google Scholar] [CrossRef] [PubMed]
- Stahn, A.C.; Kühn, S. Extreme environments for understanding brain and cognition. Trends Cogn. Sci. 2022, 26, 1–3. [Google Scholar] [CrossRef]
- Shirah, B.H.; Ibrahim, B.M.; Aladdin, Y.; Sen, J. Space neuroscience: Current understanding and future research. Neurol. Sci. 2022, 43, 4649–4654. [Google Scholar] [CrossRef] [PubMed]
- Mhatre, S.D.; Iyer, J.; Puukila, S.; Paul, A.M.; Tahimic, C.G.; Rubinstein, L.; Lowe, M.; Alwood, J.S.; Sowa, M.B.; Bhattacharya, S.; et al. Neuro-consequences of the spaceflight environment. Neurosci. Biobehav. Rev. 2022, 132, 908–935. [Google Scholar] [CrossRef]
- Mo, W.; Liu, Y.; He, R. Hypomagnetic field, an ignorable environmental factor in space? Sci. China Life Sci. 2014, 57, 726–728. [Google Scholar] [CrossRef] [Green Version]
- Smith, S.M.; Zwart, S.R. Spaceflight-related ocular changes: The potential role of genetics, and the potential of B vitamins as a countermeasure. Curr. Opin. Clin. Nutr. Metab. Care 2018, 21, 481–488. [Google Scholar] [CrossRef]
Tissue/System | Response | Effective Counter Measures | Presumed Cause |
---|---|---|---|
MSK System | |||
Muscle | Atrophy | Exercise protocols | Microgravity |
Bone | Atrophy | Partial (Exercise/Drugs) | Microgravity |
Ligaments | ??—Not reported | ||
Tendons | ??—Not reported | ||
CV System | |||
Heart | Arrhythmia, LV mass, b Cardiac output | Compression, Artificial gravity | Microgravity, Radiation? |
Vascular | |||
Fluid | Redistribution | Artificial gravity/Compression | Microgravity |
Tissue | Altered function | No—most recover on return | Microgravity |
Remodeling | May persist | Microgravity | |
Eyes | Altered vision (fluid and/or neural) | Glasses—some recover on return | Microgravity |
Immune System | Viral reactivation, White blood cells | Stress reduction | Stress, Circadian disruption |
DNA | Epigenetic | None—some reversible on return | ??—likely multi-causal c |
Bone Marrow | Fat infiltration, Hematopoiesis? | None—recovery on return | Microgravity, Others? |
Neural | |||
Central | Cognition, Behavior, Working memory, Structural alterations | None presently | Microgravity, Others? |
Peripheral | Neuromuscular Vestibular Cardiovascular | Exercise | Microgravity |
Species | Acute/Chronic | Systems Affected | Reference |
---|---|---|---|
Rats a | Chronic | Immune System | [152] |
Mice b | Chronic | Cognition/Hippocampus | [153] |
Hamsters c | Chronic | Noradrenergic/Brain Stem | [154] |
Drosophila | Chronic | Amnesia | [155] |
Drosophila | Chronic | Behavior | [156] |
Xenopus | Chronic | Development/Embryos | [157] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hart, D.A. Homo sapiens—A Species Not Designed for Space Flight: Health Risks in Low Earth Orbit and Beyond, Including Potential Risks When Traveling beyond the Geomagnetic Field of Earth. Life 2023, 13, 757. https://doi.org/10.3390/life13030757
Hart DA. Homo sapiens—A Species Not Designed for Space Flight: Health Risks in Low Earth Orbit and Beyond, Including Potential Risks When Traveling beyond the Geomagnetic Field of Earth. Life. 2023; 13(3):757. https://doi.org/10.3390/life13030757
Chicago/Turabian StyleHart, David A. 2023. "Homo sapiens—A Species Not Designed for Space Flight: Health Risks in Low Earth Orbit and Beyond, Including Potential Risks When Traveling beyond the Geomagnetic Field of Earth" Life 13, no. 3: 757. https://doi.org/10.3390/life13030757
APA StyleHart, D. A. (2023). Homo sapiens—A Species Not Designed for Space Flight: Health Risks in Low Earth Orbit and Beyond, Including Potential Risks When Traveling beyond the Geomagnetic Field of Earth. Life, 13(3), 757. https://doi.org/10.3390/life13030757