Long-Term Follow-Up of Patients Needing Extracorporeal Membrane Oxygenation Following a Critical Course of COVID-19
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Allen, S.; Holena, D.; McCunn, M.; Kohl, B.; Sarani, B. A Review of the Fundamental Principles and Evidence Base in the Use of Extracorporeal Membrane Oxygenation (ECMO) in Critically Ill Adult Patients. J. Intensive Care Med. 2011, 26, 13–26. [Google Scholar] [CrossRef]
- Lim, H. The physiology of extracorporeal membrane oxygenation: The Fick principle. Perfusion 2021, 38, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Makdisi, G.; Wang, I.-W. Extra Corporeal Membrane Oxygenation (ECMO) review of a lifesaving technology. J. Thorac. Dis. 2015, 7, E166–E176. [Google Scholar] [CrossRef]
- Lee, S.H. Awakening in extracorporeal membrane oxygenation as a bridge to lung transplantation. Acute Crit. Care 2022, 37, 26–34. [Google Scholar] [CrossRef]
- Nöbauer-Huhmann, I.-M.; Eibenberger, K.; Schaefer-Prokop, C.; Steltzer, H.; Schlick, W.; Strasser, K.; Fridrich, P.; Herold, C.J. Changes in lung parenchyma after acute respiratory distress syndrome (ARDS): Assessment with high-resolution computed tomography. Eur. Radiol. 2001, 11, 2436–2443. [Google Scholar] [CrossRef]
- Neff, T.A.; Stocker, R.; Frey, H.-R.; Stein, S.; Russi, E.W. Long-term Assessment of Lung Function in Survivors of Severe ARDS. Chest 2003, 123, 845–853. [Google Scholar] [CrossRef]
- Lindén, V.B.; Lidegran, M.K.; Frisén, G.; Dahlgren, P.; Frenckner, B.; Larsen, F. ECMO in ARDS: A long-term follow-up study regarding pulmonary morphology and function and health-related quality of life. Acta Anaesthesiol. Scand. 2009, 53, 489–495. [Google Scholar] [CrossRef]
- Supady, A.; Combes, A.; Barbaro, R.P.; Camporota, L.; Diaz, R.; Fan, E.; Giani, M.; Hodgson, C.; Hough, C.L.; Karagiannidis, C.; et al. Respiratory indications for ECMO: Focus on COVID-19. Intensive Care Med. 2022, 48, 1326–1337. [Google Scholar] [CrossRef] [PubMed]
- Combes, A.; Hajage, D.; Capellier, G.; Demoule, A.; Lavoué, S.; Guervilly, C.; Da Silva, D.; Zafrani, L.; Tirot, P.; Veber, B.; et al. Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome. N. Engl. J. Med. 2018, 378, 1965–1975. [Google Scholar] [CrossRef] [PubMed]
- Graham, B.L.; Steenbruggen, I.; Miller, M.R.; Barjaktarevic, I.Z.; Cooper, B.G.; Hall, G.L.; Hallstrand, T.S.; Kaminsky, D.A.; McCarthy, K.; McCormack, M.C.; et al. Standardization of Spirometry 2019 Update. An Official American Thoracic Society and European Respiratory Society Technical Statement. Am. J. Respir. Crit. Care Med. 2019, 200, e70–e88. [Google Scholar] [CrossRef]
- Desai, A.D.; Lavelle, M.; Boursiquot, B.C.; Wan, E.Y. Long-term complications of COVID-19. Am. J. Physiol. Cell Physiol. 2022, 322, C1–C11. [Google Scholar] [CrossRef]
- Genzor, S.; Jakubec, P.; Sova, M.; Mizera, J.; Joppa, P.; Burget, R.; Pobeha, P. Clinical presentation and pulmonary function tests in post-acute COVID-19 patients. Biomed. Pap. 2022. [Google Scholar] [CrossRef] [PubMed]
- Boaventura, P.; Macedo, S.; Ribeiro, F.; Jaconiano, S.; Soares, P. Post-COVID-19 Condition: Where Are We Now? Life 2022, 12, 517. [Google Scholar] [CrossRef]
- Sova, M.; Sovova, E.; Ozana, J.; Moravcova, K.; Sovova, M.; Jelinek, L.; Mizera, J.; Genzor, S. Post-COVID Syndrome and Cardiorespiratory Fitness—26-Month Experience of Single Center. Life 2023, 13, 684. [Google Scholar] [CrossRef]
- Raman, B.; Cassar, M.P.; Tunnicliffe, E.M.; Filippini, N.; Griffanti, L.; Alfaro-Almagro, F.; Okell, T.; Sheerin, F.; Xie, C.; Mahmod, M.; et al. Medium-term effects of SARS-CoV-2 infection on multiple vital organs, exercise capacity, cognition, quality of life and mental health, post-hospital discharge. EclinicalMedicine 2021, 31, 100683. [Google Scholar] [CrossRef]
- Steinbeis, F.; Thibeault, C.; Doellinger, F.; Ring, R.M.; Mittermaier, M.; Ruwwe-Glösenkamp, C.; Alius, F.; Knape, P.; Meyer, H.J.; Lippert, L.J.; et al. Severity of respiratory failure and computed chest tomography in acute COVID-19 correlates with pulmonary function and respiratory symptoms after infection with SARS-CoV-2: An observational longitudinal study over 12 months. Respir. Med. 2022, 191, 106709. [Google Scholar] [CrossRef]
- Ego, A.; Taton, O.; Brasseur, A.; Laurent, Y.; Taccone, F.S.M.; Courcelle, R. Six-Month Pulmonary Function After Venovenous Extracorporeal Membrane Oxygenation for Coronavirus Disease 2019 Patients. Crit. Care Explor. 2021, 3, e0494. [Google Scholar] [CrossRef]
- Grasselli, G.; Scaravilli, V.; Tubiolo, D.; Russo, R.; Crimella, F.; Bichi, F.; Morlacchi, L.C.; Scotti, E.; Patrini, L.; Gattinoni, L.; et al. Quality of Life and Lung Function in Survivors of Extracorporeal Membrane Oxygenation for Acute Respiratory Distress Syndrome. Anesthesiology 2019, 130, 572–580. [Google Scholar] [CrossRef]
- Ricard, J.-D.; Dreyfuss, D.; Saumon, G. Ventilator-induced lung injury. Eur. Respir. J. Suppl. 2003, 42, 2s–9s. [Google Scholar] [CrossRef]
- Schmidt, M.; Pellegrino, V.; Combes, A.; Scheinkestel, C.; Cooper, D.J.; Hodgson, C. Mechanical ventilation during extracorporeal membrane oxygenation. Crit. Care 2014, 18, 203. [Google Scholar] [CrossRef]
- Salton, F.; Confalonieri, P.; Campisciano, G.; Cifaldi, R.; Rizzardi, C.; Generali, D.; Pozzan, R.; Tavano, S.; Bozzi, C.; Lapadula, G.; et al. Cytokine Profiles as Potential Prognostic and Therapeutic Markers in SARS-CoV-2-Induced ARDS. J. Clin. Med. 2022, 11, 2951. [Google Scholar] [CrossRef]
- Baratella, E.; Bussani, R.; Zanconati, F.; Marrocchio, C.; Fabiola, G.; Braga, L.; Maiocchi, S.; Berlot, G.; Volpe, M.C.; Moro, E.; et al. Radiological–pathological signatures of patients with COVID-19-related pneumomediastinum: Is there a role for the Sonic hedgehog and Wnt5a pathways? ERJ Open Res. 2021, 7, 1–4. [Google Scholar] [CrossRef]
- Bahl, A.; Johnson, S.; Maine, G.; Garcia, M.H.; Nimmagadda, S.; Qu, L.; Chen, N.-W. Vaccination reduces need for emergency care in breakthrough COVID-19 infections: A multicenter cohort study. Lancet Reg. Health Am. 2021, 4, 100065. [Google Scholar] [CrossRef] [PubMed]
- Seeßle, J.; Waterboer, T.; Hippchen, T.; Simon, J.; Kirchner, M.; Lim, A.; Müller, B.; Merle, U. Persistent Symptoms in Adult Patients 1 Year After Coronavirus Disease 2019 (COVID-19): A Prospective Cohort Study. Clin. Infect. Dis. 2022, 74, 1191–1198. [Google Scholar] [CrossRef] [PubMed]
- González, J.; Zuil, M.; Benítez, I.D.; de Gonzalo-Calvo, D.; Aguilar, M.; Santisteve, S.; Vaca, R.; Minguez, O.; Seck, F.; Torres, G.; et al. One Year Overview and Follow-Up in a Post-COVID Consultation of Critically Ill Patients. Front. Med. 2022, 9, 897990. [Google Scholar] [CrossRef]
- Flacco, M.E.; Acuti Martellucci, C.; Baccolini, V.; De Vito, C.; Renzi, E.; Villari, P.; Manzoli, L. Risk of reinfection and disease after SARS-CoV -2 primary infection: Meta-analysis. Eur. J. Clin. Investig. 2022, 52, e13845. [Google Scholar] [CrossRef]
- Khan, I.R.; Saulle, M.; Oldham, M.A.; Weber, M.T.; Schifitto, G.; Lee, H.B. Cognitive, Psychiatric, and Quality of Life Outcomes in Adult Survivors of Extracorporeal Membrane Oxygenation Therapy: A Scoping Review of the Literature. Crit. Care Med. 2020, 48, e959–e970. [Google Scholar] [CrossRef]
- Risnes, I.; Heldal, A.; Wagner, K.; Boye, B.; Haraldsen, I.; Leganger, S.; Møkleby, K.; Svennevig, J.L.; Malt, U. Psychiatric Outcome after Severe Cardio-Respiratory Failure Treated with Extracorporeal Membrane Oxygenation: A Case-Series. Psychosomatics 2013, 54, 418–427. [Google Scholar] [CrossRef] [PubMed]
- Park, H.Y.; Song, I.; Cho, H.; Oh, T.K. Insomnia disorder and long-term mortality in adult patients treated with extracorporeal membrane oxygenation in South Korea. J. Sleep Res. 2022, 31, e13454. [Google Scholar] [CrossRef] [PubMed]
- Fernando, S.M.; Scott, M.; Talarico, R.; Fan, E.; McIsaac, D.I.; Sood, M.M.; Myran, D.T.; Herridge, M.S.; Needham, D.M.; Hodgson, C.L.; et al. Association of Extracorporeal Membrane Oxygenation With New Mental Health Diagnoses in Adult Survivors of Critical Illness. JAMA 2022, 328, 1827–1836. [Google Scholar] [CrossRef]
- Nehal, K.R.; Steendam, L.M.; Ponce, M.C.; van der Hoeven, M.; Smit, G.S.A. Worldwide Vaccination Willingness for COVID-19: A Systematic Review and Meta-Analysis. Vaccines 2021, 9, 1071. [Google Scholar] [CrossRef] [PubMed]
- Sciscent, B.Y.; Eisele, C.D.; Ho, L.; King, S.D.; Jain, R.; Golamari, R.R. COVID-19 reinfection: The role of natural immunity, vaccines, and variants. J. Community Hosp. Intern. Med. Perspect. 2021, 11, 733–739. [Google Scholar] [CrossRef] [PubMed]
- Fox, T.; Geppert, J.; Dinnes, J.; Scandrett, K.; Bigio, J.; Sulis, G.; Hettiarachchi, D.; Mathangasinghe, Y.; Weeratunga, P.; Wickramasinghe, D.; et al. Antibody tests for identification of current and past infection with SARS-CoV-2. Cochrane Database Syst. Rev. 2022, 11, CD013652. [Google Scholar] [CrossRef]
- Gan, L.; Chen, Y.; Tan, J.; Wang, X.; Zhang, D. Does potential antibody-dependent enhancement occur during SARS-CoV-2 infection after natural infection or vaccination? A meta-analysis. BMC Infect. Dis. 2022, 22, 742. [Google Scholar] [CrossRef]
- Guzmán-Martínez, O.; Guardado, K.; Varela-Cardoso, M.; Trujillo-Rivera, A.; Marín-Hernández, A.; Ortiz-León, M.C.; Gómez-Ñañez, I.; Gutiérrez, M.; Espinosa, R.; Sampieri, C.L.; et al. Generation and persistence of S1 IgG and neutralizing antibodies in post-COVID-19 patients. Infection 2022, 50, 447–456. [Google Scholar] [CrossRef]
- van Prehn, J.; Reigadas, E.; Vogelzang, E.H.; Bouza, E.; Hristea, A.; Guery, B.; Krutova, M.; Norén, T.; Allerberger, F.; Coia, J.E.; et al. European Society of Clinical Microbiology and Infectious Diseases: 2021 update on the treatment guidance document for Clostridioides difficile infection in adults. Clin. Microbiol. Infect. 2021, 27 (Suppl 2), S1–S21. [Google Scholar] [CrossRef]
Parameter | Mean | SD |
---|---|---|
Age (in the acute phase) | 47.8 | 15.0 |
BMI | 34.7 | 8.0 |
Hypoxemic index at ECMO connection | 76.6 | 16.3 |
Quick SOFA score at time of admission | 2 | 0.8 |
Number of days from positive COVID test result to admission | 3.2 | 3.2 |
Days spent in hospital before orotracheal intubation | 4.5 | 4.2 |
Days spent on mechanical ventilation before ECMO | 1.9 | 1.1 |
Days spent on ECMO support | 9.4 | 2.3 |
Days spent on mechanical ventilation after ECMO | 9.3 | 14.8 |
Days spent on high-flow oxygen support after ECMO | 2.2 | 2.9 |
Days spent on low-flow oxygen support after ECMO | 8 | 8.2 |
Comorbid Disease/Condition | n | % |
---|---|---|
Hypertension | 9 | 52.9 |
Diabetes | 4 | 23.5 |
Hypothyroidism | 4 | 23.5 |
Hyperlipidemia | 4 | 23.5 |
Pregnancy | 2 | 11.8 |
Smoking | 3 | 17.6 |
Former smoking | 2 | 11.8 |
Parameter | Mean | SD |
---|---|---|
VC (% of predicted) | 82.1 | 10.4 |
FEV1 (% of predicted) | 87.8 | 11.2 |
TLC (% of predicted) | 87.6 | 14.2 |
RV (% of predicted) | 103.0 | 27.5 |
DLCO (% of predicted) | 60.0 | 19.9 |
KCO (% of predicted) | 81.3 | 18.7 |
6MWT distance | 353.8 | 94.4 |
6MWT distance (% of predicted) | 66.7 | 20.0 |
Parameter | Visit 2 (6 Months) | Mean Improvement vs. Visit 1 | Visit 3 (1 Year) | Mean Improvement vs. Visit 2 |
---|---|---|---|---|
Number of Patients Completed Visit | n = 12 | n = 10 | ||
VC (% of predicted) | 86.8 | 250 mL (6.2%) | 92.1 | 210 mL (7.5%) |
FEV1 (% of predicted) | 92.5 | 170 mL (5.1%) | 99.6 | 300 mL (8.7%) |
TLC (% of predicted) | 87.2 | 180 mL (3.2%) | 94.8 | 0 mL (0%) |
RV (% of predicted) | 97.1 | 50 mL (1.3%) | 105.0 | 210 mL (8.5%) |
DLCO (% of predicted) | 70.9 | 21.1% | 70.6 | 3.8% |
KCO (% of predicted) | 93.8 | 18.6% | 90.6 | 3.5% |
Complaint/Condition | Number of Reporting Patients | Confirmation of Diagnosis |
---|---|---|
Epilepsy | 1 | 1 |
Decreased cutaneous sensitivity | 6 | 2 |
Paraesthesia | 6 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Genzor, S.; Pobeha, P.; Šimek, M.; Jakubec, P.; Mizera, J.; Vykopal, M.; Sova, M.; Vaněk, J.; Praško, J. Long-Term Follow-Up of Patients Needing Extracorporeal Membrane Oxygenation Following a Critical Course of COVID-19. Life 2023, 13, 1054. https://doi.org/10.3390/life13041054
Genzor S, Pobeha P, Šimek M, Jakubec P, Mizera J, Vykopal M, Sova M, Vaněk J, Praško J. Long-Term Follow-Up of Patients Needing Extracorporeal Membrane Oxygenation Following a Critical Course of COVID-19. Life. 2023; 13(4):1054. https://doi.org/10.3390/life13041054
Chicago/Turabian StyleGenzor, Samuel, Pavol Pobeha, Martin Šimek, Petr Jakubec, Jan Mizera, Martin Vykopal, Milan Sova, Jakub Vaněk, and Jan Praško. 2023. "Long-Term Follow-Up of Patients Needing Extracorporeal Membrane Oxygenation Following a Critical Course of COVID-19" Life 13, no. 4: 1054. https://doi.org/10.3390/life13041054
APA StyleGenzor, S., Pobeha, P., Šimek, M., Jakubec, P., Mizera, J., Vykopal, M., Sova, M., Vaněk, J., & Praško, J. (2023). Long-Term Follow-Up of Patients Needing Extracorporeal Membrane Oxygenation Following a Critical Course of COVID-19. Life, 13(4), 1054. https://doi.org/10.3390/life13041054