The Utility of Contrast-Enhanced Magnetic Resonance Imaging in Uterine Cervical Cancer: A Systematic Review
Abstract
:Simple Summary
Abstract
1. Introduction
- Stage I, confined to the cervix: IA (invasive carcinoma with a maximum depth of invasion ≤5 mm) and IB (invasive carcinoma with a maximum depth of invasion >5 mm and divided according to dimensions into IB1, IB2, and IB3, with invasions of ≤2 cm, >2 cm–≤4 cm and >4 cm, respectively);
- Stage II: remains unchanged with IIA (invasive carcinoma limited to the 2/3 of the vagina without parametrial invasion and divided according to dimensions into IIA1 and IIA2, with invasions of ≤4 cm and >4 cm, respectively) and IIB (invasive carcinoma limited to the 2/3 of the vagina with parametrial invasion);
- Stage III: invasion of the lower third of the vagina (IIIA), involvement of the pelvic sidewall and/or hydronephrosis or non-functional kidney (IIIB), and the presence of lymph node metastases (including micrometastases) in pelvic (IIIC1) and/or paraaortic regions (IIIC2);
- Stage IV: remains unchanged with IVA (represented by extension to the adjacent organs, including biopsy-proven invasion of the bladder or rectal mucosa) and IVB (represented by distant metastases, including lymph node metastases beyond pelvic and paraaortic regions).
2. Materials and Methods
2.1. Information Sources and Search Strategy
2.2. Eligibility Criteria
- Presence of CE-MRI sequences;
- Diagnosis of uterine cervical cancer.
- Review articles;
- Non-English articles;
- Abstract texts without full paper;
- Studies about combined imaging techniques (e.g., PET-MRI).
2.3. Study Selection
2.4. Data Extraction
- Study characteristics (publication year and design);
- Patient’s characteristics (number of patients);
- Characteristics of MRI contrast sequences;
- Objective of the study;
- Outcome measured;
- Results obtained;
- Statistical relevance of the results obtained when adequately stated.
2.5. Quality Assessment
3. Results
3.1. Study Results
- 29 on the diagnosis;
- 3 on post-treatment evaluation;
- 5 on recurrence;
- 4 on prognosis;
- 37 on prediction of treatment outcome;
- 19 on radiomics.
- 18 papers in the years 1990–1999;
- 9 papers in the years 2000–2009;
- 41 papers in the years 2010–2020;
- 30 papers in the years 2020–2022.
- Single post-contrast phase (12 papers);
- Dynamic contrast sequences (53 papers);
- Perfusion sequences (33 papers).
- 62 articles do not have DWI sequences;
- 36 articles have the DWI sequences but only in 8 papers was there a comparison between DWI and CE-MRI.
3.2. Quality Assessment
3.2.1. Risk of Bias
3.2.2. Applicability Concerns
4. Discussion
4.1. CE-MRI at Diagnosis
4.1.1. Differentiation between Benign or Malignant Lesions
4.1.2. Origin of the Tumor (Endometrial vs. Endocervical)
4.1.3. Utility in Fertility-Sparing
4.1.4. Staging
4.2. Post-Treatment Evaluation
4.2.1. Detection of Tumor Recurrence after Fertility-Sparing Treatment
4.2.2. Detection after CCRT
4.3. Evaluation of Suspected Recurrence
4.4. Prognosis
4.5. Prediction of Treatment Response
4.6. Radiomics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singh, D.; Vignat, J.; Lorenzoni, V.; Eslahi, M.; Ginsburg, O.; Lauby-Secretan, B.; Arbyn, M.; Basu, P.; Bray, F.; Vaccarella, S. Global Estimates of Incidence and Mortality of Cervical Cancer in 2020: A Baseline Analysis of the WHO Global Cervical Cancer Elimination Initiative. Lancet Glob. Health 2023, 11, e197–e206. [Google Scholar] [CrossRef] [PubMed]
- Burd, E.M. Human Papillomavirus and Cervical Cancer. Clin. Microbiol. Rev. 2003, 16, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, I.; Harshithkumar, R.; More, A.; Mukherjee, A. Human Papilloma Virus: An Unraveled Enigma of Universal Burden of Malignancies. Pathogens 2023, 12, 564. [Google Scholar] [CrossRef] [PubMed]
- Harper, D.M.; DeMars, L.R. HPV Vaccines – A Review of the First Decade. Gynecol. Oncol. 2017, 146, 196–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, K.; Wang, W.; Liu, X.; Meng, Q.; Zhang, F. Comparison of Treatment Outcomes between Squamous Cell Carcinoma and Adenocarcinoma of Cervix after Definitive Radiotherapy or Concurrent Chemoradiotherapy. Radiat. Oncol. 2018, 13, 249. [Google Scholar] [CrossRef] [Green Version]
- Cibula, D.; Pötter, R.; Planchamp, F.; Avall-Lundqvist, E.; Fischerova, D.; Haie Meder, C.; Köhler, C.; Landoni, F.; Lax, S.; Lindegaard, J.C.; et al. The European Society of Gynaecological Oncology/European Society for Radiotherapy and Oncology/European Society of Pathology Guidelines for the Management of Patients With Cervical Cancer. Int. J. Gynecol. Cancer 2018, 28, 641–655. [Google Scholar] [CrossRef]
- Devine, C.; Viswanathan, C.; Faria, S.; Marcal, L.; Sagebiel, T.L. Imaging and Staging of Cervical Cancer. Semin. Ultrasound CT MRI 2019, 40, 280–286. [Google Scholar] [CrossRef]
- Manganaro, L.; Lakhman, Y.; Bharwani, N.; Gui, B.; Gigli, S.; Vinci, V.; Rizzo, S.; Kido, A.; Cunha, T.M.; Sala, E.; et al. Staging, Recurrence and Follow-up of Uterine Cervical Cancer Using MRI: Updated Guidelines of the European Society of Urogenital Radiology after Revised FIGO Staging 2018. Eur. Radiol. 2021, 31, 7802–7816. [Google Scholar] [CrossRef]
- Whiting, P.F. QUADAS-2: A Revised Tool for the Quality Assessment of Diagnostic Accuracy Studies. Ann. Intern. Med. 2011, 155, 529. [Google Scholar] [CrossRef]
- Kuang, F.; Yan, Z.; Li, H.; Feng, H. Diagnostic Accuracy of Diffusion-Weighted MRI for Differentiation of Cervical Cancer and Benign Cervical Lesions at 3.0T: Comparison with Routine MRI and Dynamic Contrast-Enhanced MRI. J. Magn. Reson. Imaging 2015, 42, 1094–1099. [Google Scholar] [CrossRef]
- Vargas, H.A.; Akin, O.; Zheng, J.; Moskowitz, C.; Soslow, R.; Abu-Rustum, N.; Barakat, R.R.; Hricak, H. The Value of MR Imaging When the Site of Uterine Cancer Origin Is Uncertain. Radiology 2011, 258, 785–792. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Lin, G.; Chen, Y.-R.; Yen, T.-C.; Wang, C.-C.; Ng, K.-K. Role of Magnetic Resonance Imaging and Apparent Diffusion Coefficient at 3T in Distinguishing between Adenocarcinoma of the Uterine Cervix and Endometrium. Chang. Gung. Med. J. 2011, 34, 93–100. [Google Scholar]
- He, H.; Bhosale, P.; Wei, W.; Ramalingam, P.; Iyer, R. MRI Is Highly Specific in Determining Primary Cervical versus Endometrial Cancer When Biopsy Results Are Inconclusive. Clin. Radiol. 2013, 68, 1107–1113. [Google Scholar] [CrossRef]
- Lin, M.; Zhang, Q.; Song, Y.; Yu, X.; Ouyang, H.; Xie, L.; Shang, Y. Differentiation of Endometrial Adenocarcinoma from Adenocarcinoma of Cervix Using Kinetic Parameters Derived from DCE-MRI. Eur. J. Radiol. 2020, 130, 109190. [Google Scholar] [CrossRef]
- Akita, A.; Shinmoto, H.; Hayashi, S.; Akita, H.; Fujii, T.; Mikami, S.; Tanimoto, A.; Kuribayashi, S. Comparison of T2-Weighted and Contrast-Enhanced T1-Weighted MR Imaging at 1.5 T for Assessing the Local Extent of Cervical Carcinoma. Eur. Radiol. 2011, 21, 1850–1857. [Google Scholar] [CrossRef]
- Lakhman, Y.; Akin, O.; Park, K.J.; Sarasohn, D.M.; Zheng, J.; Goldman, D.A.; Sohn, M.J.; Moskowitz, C.S.; Sonoda, Y.; Hricak, H.; et al. Stage IB1 Cervical Cancer: Role of Preoperative MR Imaging in Selection of Patients for Fertility-Sparing Radical Trachelectomy. Radiology 2013, 269, 149–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhardwaj, R.; Boruah, D.K.; Gogoi, B.B.; Zahir, F.; Sharma, A. Added-Value of Diffusion-Weighted Imaging (DWI) and Dynamic Contrast-Enhanced (DCE-MRI) Magnetic Resonance Imaging in the Preoperative Assessment of Cervical Cancer. J. Obstet. Gynaecol. India 2022, 72, 330–340. [Google Scholar] [CrossRef]
- Bai, Z.; Shi, J.; Wang, J.; Zhong, J.; Zeng, W.; Yang, Z.; Hu, H.; Shen, J. ADC and Kinetic Parameter of Primary Tumor: Surrogate Imaging Markers for Fertility-Sparing Vaginal Radical Trachelectomy in Patients with Stage IB Cervical Cancer. Eur. J. Radiol. 2022, 155, 110467. [Google Scholar] [CrossRef]
- Bakai, O.A.; Golovko, T.S.; Ganich, A.V.; Gavriluk, O.N.; Ashykhmin, A.V. Radiation Research to Determine Local Tumor Invasion in Patients with Cervical Cancer. Exp. Oncol. 2019, 41, 57–60. [Google Scholar] [CrossRef]
- Fridsten, S.; Hellström, A.-C.; Hellman, K.; Sundin, A.; Söderén, B.; Blomqvist, L. Preoperative MR Staging of Cervical Carcinoma: Are Oblique and Contrast-Enhanced Sequences Necessary? Acta Radiol. Open 2016, 5, 2058460116679460. [Google Scholar] [CrossRef] [Green Version]
- Hanabayashi, T.; Imai, A.; Itoh, N.; Tamaya, T. Enhanced Magnetic Resonance Imaging Evaluation for Spread of Cervical Carcinoma. Int. J. Gynaecol. Obstet. 1993, 43, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Hricak, H.; Hamm, B.; Semelka, R.C.; Cann, C.E.; Nauert, T.; Secaf, E.; Stern, J.L.; Wolf, K.J. Carcinoma of the Uterus: Use of Gadopentetate Dimeglumine in MR Imaging. Radiology 1991, 181, 95–106. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, Y.K.; Kido, A.; Moribata, Y.; Chigusa, Y.; Himoto, Y.; Kurata, Y.; Otani, S.; Yajima, R.; Nishio, N.; Kuwahara, R.; et al. Diagnostic Accuracy of Magnetic Resonance Imaging for International Federation of Gynecology and Obstetrics 2018 IB to IIB Cervical Cancer Staging: Comparison Among Magnetic Resonance Sequences and Pathologies. J. Comput. Assist. Tomogr. 2021, 45, 829–836. [Google Scholar] [CrossRef] [PubMed]
- Scheidler, J.; Heuck, A.F.; Steinborn, M.; Kimmig, R.; Reiser, M.F. Parametrial Invasion in Cervical Carcinoma: Evaluation of Detection at MR Imaging with Fat Suppression. Radiology 1998, 206, 125–129. [Google Scholar] [CrossRef] [PubMed]
- Sironi, S.; De Cobelli, F.; Scarfone, G.; Colombo, E.; Bolis, G.; Ferrari, A.; DelMaschio, A. Carcinoma of the Cervix: Value of Plain and Gadolinium-Enhanced MR Imaging in Assessing Degree of Invasiveness. Radiology 1993, 188, 797–801. [Google Scholar] [CrossRef] [PubMed]
- Sironi, S.; Bellomi, M.; Villa, G.; Rossi, S.; Del Maschio, A. Clinical Stage I Carcinoma of the Uterine Cervix Value of Preoperative Magnetic Resonance Imaging in Assessing Parametrial Invasion. Tumori 2002, 88, 291–295. [Google Scholar] [CrossRef] [Green Version]
- Thurnher, S.A. MR Imaging of Pelvic Masses in Women: Contrast-Enhanced vs Unenhanced Images. AJR Am. J. Roentgenol. 1992, 159, 1243–1250. [Google Scholar] [CrossRef] [Green Version]
- Tsuda, K.; Murakami, T.; Kurachi, H.; Ogawa, H.; Oi, H.; Miyake, A.; Narumi, Y.; Nakamura, H. MR Imaging of Cervical Carcinoma: Comparison among T2-Weighted, Dynamic, and Postcontrast T1-Weighted Images with Histopathological Correlation. Abdom. Imaging 1997, 22, 103–107. [Google Scholar] [CrossRef]
- Abe, Y.; Yamashita, Y.; Namimoto, T.; Takahashi, M.; Katabuchi, H.; Tanaka, N.; Okamura, H. Carcinoma of the Uterine Cervix. High-Resolution Turbo Spin-Echo MR Imaging with Contrast-Enhanced Dynamic Scanning and T2-Weighting. Acta Radiol. 1998, 39, 322–326. [Google Scholar] [CrossRef]
- Hawighorst, H.; Knapstein, P.G.; Weikel, W.; Knopp, M.V.; Schaeffer, U.; Brix, G.; Essig, M.; Hoffmann, U.; Zuna, I.; Schönberg, S.; et al. Cervical Carcinoma: Comparison of Standard and Pharmacokinetic MR Imaging. Radiology 1996, 201, 531–539. [Google Scholar] [CrossRef]
- Lin, Y.; Chen, Z.; Kuang, F.; Li, H.; Zhong, Q.; Ma, M. Evaluation of International Federation of Gynecology and Obstetrics Stage IB Cervical Cancer: Comparison of Diffusion-Weighted and Dynamic Contrast-Enhanced Magnetic Resonance Imaging at 3.0 T. J. Comput. Assist. Tomogr. 2013, 37, 989–994. [Google Scholar] [CrossRef]
- Postema, S.; Pattynama, P.M.; Bröker, S.; van der Geest, R.J.; van Rijswijk, C.S.; Baptist Trimbos, J. Fast Dynamic Contrast-Enhanced Colour-Coded MRI in Uterine Cervix Carcinoma: Useful for Tumour Staging? Clin. Radiol. 1998, 53, 729–734. [Google Scholar] [CrossRef]
- Postema, S.; Pattynama, P.M.; van Rijswijk, C.S.; Trimbos, J.B. Cervical Carcinoma: Can Dynamic Contrast-Enhanced MR Imaging Help Predict Tumor Aggressiveness? Radiology 1999, 210, 217–220. [Google Scholar] [CrossRef]
- Seki, H.; Azumi, R.; Kimura, M.; Sakai, K. Stromal Invasion by Carcinoma of the Cervix: Assessment with Dynamic MR Imaging. AJR Am. J. Roentgenol. 1997, 168, 1579–1585. [Google Scholar] [CrossRef]
- Murakami, T.; Kurachi, H.; Nakamura, H.; Tsuda, K.; Miyake, A.; Tomoda, K.; Hori, S.; Kozuka, T. Cervical Invasion of Endometrial Carcinoma--Evaluation by Parasagittal MR Imaging. Acta Radiol. 1995, 36, 248–253. [Google Scholar] [CrossRef]
- Van Vierzen, P.B.; Massuger, L.F.; Ruys, S.H.; Barentsz, J.O. Fast Dynamic Contrast Enhanced MR Imaging of Cervical Carcinoma. Clin. Radiol. 1998, 53, 183–192. [Google Scholar] [CrossRef]
- Yamashita, Y.; Takahashi, M.; Sawada, T.; Miyazaki, K.; Okamura, H. Carcinoma of the Cervix: Dynamic MR Imaging. Radiology 1992, 182, 643–648. [Google Scholar] [CrossRef]
- Yu, X.; Lin, M.; Ye, F.; Ouyang, H.; Chen, Y.; Zhou, C.; Su, Z. Comparison of Contrast-Enhanced Isotropic 3D-GRE-T1WI Sequence versus Conventional Non-Isotropic Sequence on Preoperative Staging of Cervical Cancer. PLoS ONE 2015, 10, e0122053. [Google Scholar] [CrossRef]
- Li, X.-X.; Lin, T.-T.; Liu, B.; Wei, W. Diagnosis of Cervical Cancer With Parametrial Invasion on Whole-Tumor Dynamic Contrast-Enhanced Magnetic Resonance Imaging Combined With Whole-Lesion Texture Analysis Based on T2- Weighted Images. Front. Bioeng. Biotechnol. 2020, 8, 590. [Google Scholar] [CrossRef]
- Song, J.; Hu, Q.; Ma, Z.; Zhang, J.; Chen, T. Value of Diffusion-Weighted and Dynamic Contrast-Enhanced MR in Predicting Parametrial Invasion in Cervical Stromal Ring Focally Disrupted Stage IB-IIA Cervical Cancers. Abdom. Radiol. 2019, 44, 3166–3174. [Google Scholar] [CrossRef]
- Huang, J.-W.; Song, J.-C.; Chen, T.; Yang, M.; Ma, Z.-L. Making the Invisible Visible: Improving Detectability of MRI-Invisible Residual Cervical Cancer after Conisation by DCE-MRI. Clin. Radiol. 2019, 74, 166.e15–166.e21. [Google Scholar] [CrossRef] [PubMed]
- Green, J.A.; Kirwan, J.M.; Tierney, J.F.; Symonds, P.; Fresco, L.; Collingwood, M.; Williams, C.J. Survival and Recurrence after Concomitant Chemotherapy and Radiotherapy for Cancer of the Uterine Cervix: A Systematic Review and Meta-Analysis. Lancet 2001, 358, 781–786. [Google Scholar] [CrossRef] [PubMed]
- Höckel, M.; Schlenger, K.; Hamm, H.; Knapstein, P.G.; Hohenfellner, R.; Rösler, H.P. Five-Year Experience with Combined Operative and Radiotherapeutic Treatment of Recurrent Gynecologic Tumors Infiltrating the Pelvic Wall. Cancer 1996, 77, 1918–1933. [Google Scholar] [CrossRef]
- Boss, E.A.; Massuger, L.F.; Pop, L.A.; Verhoef, L.C.; Huisman, H.J.; Boonstra, H.; Barentsz, J.O. Post-Radiotherapy Contrast Enhancement Changes in Fast Dynamic MRI of Cervical Carcinoma. J. Magn. Reson. Imaging 2001, 13, 600–606. [Google Scholar] [CrossRef] [Green Version]
- Jalaguier-Coudray, A.; Villard-Mahjoub, R.; Delouche, A.; Delarbre, B.; Lambaudie, E.; Houvenaeghel, G.; Minsat, M.; Tallet, A.; Sabatier, R.; Thomassin-Naggara, I. Value of Dynamic Contrast-Enhanced and Diffusion-Weighted MR Imaging in the Detection of Pathologic Complete Response in Cervical Cancer after Neoadjuvant Therapy: A Retrospective Observational Study. Radiology 2017, 284, 432–442. [Google Scholar] [CrossRef] [Green Version]
- Lucas, R.; Lopes Dias, J.; Cunha, T.M. Added Value of Diffusion-Weighted MRI in Detection of Cervical Cancer Recurrence: Comparison with Morphologic and Dynamic Contrast-Enhanced MRI Sequences. Diagn. Interv. Radiol. 2015, 21, 368–375. [Google Scholar] [CrossRef] [Green Version]
- Liyanage, S.H.; Roberts, C.A.; Rockall, A.G. MRI and PET Scans for Primary Staging and Detection of Cervical Cancer Recurrence. Womens Health 2010, 6, 251–269. [Google Scholar] [CrossRef] [Green Version]
- Schieda, N.; Malone, S.C.; Al Dandan, O.; Ramchandani, P.; Siegelman, E.S. Multi-Modality Organ-Based Approach to Expected Imaging Findings, Complications and Recurrent Tumour in the Genitourinary Tract after Radiotherapy. Insights Imaging 2014, 5, 25–40. [Google Scholar] [CrossRef] [Green Version]
- Gadducci, A.; Tana, R.; Cosio, S.; Cionini, L. Treatment Options in Recurrent Cervical Cancer (Review). Oncol. Lett. 2010, 1, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Fulcher, A.S.; O’Sullivan, S.G.; Segreti, E.M.; Kavanagh, B.D. Recurrent Cervical Carcinoma: Typical and Atypical Manifestations. RadioGraphics 1999, 19, S103–S116. [Google Scholar] [CrossRef]
- Yamashita, Y.; Harada, M.; Torashima, M.; Takahashi, M.; Miyazaki, K.; Tanaka, N.; Okamura, H. Dynamic MR Imaging of Recurrent Postoperative Cervical Cancer. J. Magn. Reson. Imaging 1996, 6, 167–171. [Google Scholar] [CrossRef]
- Hricak, H.; Swift, P.S.; Campos, Z.; Quivey, J.M.; Gildengorin, V.; Göranson, H. Irradiation of the Cervix Uteri: Value of Unenhanced and Contrast-Enhanced MR Imaging. Radiology 1993, 189, 381–388. [Google Scholar] [CrossRef]
- Hawighorst, H.; Knapstein, P.G.; Schaeffer, U.; Knopp, M.V.; Brix, G.; Hoffmann, U.; Zuna, I.; Essig, M.; van Kaick, G. Pelvic Lesions in Patients with Treated Cervical Carcinoma: Efficacy of Pharmacokinetic Analysis of Dynamic MR Images in Distinguishing Recurrent Tumors from Benign Conditions. AJR Am. J. Roentgenol. 1996, 166, 401–408. [Google Scholar] [CrossRef]
- Mahajan, A.; Engineer, R.; Chopra, S.; Mahanshetty, U.; Juvekar, S.L.; Shrivastava, S.K.; Desekar, N.; Thakur, M.H. Role of 3T Multiparametric-MRI with BOLD Hypoxia Imaging for Diagnosis and Post Therapy Response Evaluation of Postoperative Recurrent Cervical Cancers. Eur. J. Radiol. Open 2016, 3, 22–30. [Google Scholar] [CrossRef] [Green Version]
- Bai, Z.; Shi, J.; Yang, Z.; Zeng, W.; Hu, H.; Zhong, J.; Duan, X.; Wang, X.; Shen, J. Quantitative Kinetic Parameters of Primary Tumor Can Be Used to Predict Pelvic Lymph Node Metastasis in Early-Stage Cervical Cancer. Abdom. Radiol. 2021, 46, 1129–1136. [Google Scholar] [CrossRef]
- Wang, W.; Fan, X.; Yang, J.; Wang, X.; Gu, Y.; Chen, M.; Jiang, Y.; Liu, L.; Zhang, M. Preliminary MRI Study of Extracellular Volume Fraction for Identification of Lymphovascular Space Invasion of Cervical Cancer. J. Magn. Reson. Imaging 2022. [Google Scholar] [CrossRef]
- Kim, S.H.; Cho, S.H. Assessment of Pelvic Lymph Node Metastasis in FIGO IB and IIA Cervical Cancer Using Quantitative Dynamic Contrast-Enhanced MRI Parameters. Diagn. Interv. Radiol. 2020, 26, 382–389. [Google Scholar] [CrossRef]
- Zhang, X.; Dong, Y.; Song, Q.; Zhu, Y.; Pang, H.; Luo, Y.; Yu, T.; Liu, F.; Guo, Y. The Role of Multiparametric Magnetic Resonance Imaging in the Study of Primary Tumor and Pelvic Lymph Node Metastasis in Stage IB1-IIA1 Cervical Cancer. J. Comput. Assist. Tomogr. 2020, 44, 750–758. [Google Scholar] [CrossRef]
- Andersen, E.K.F.; Hole, K.H.; Lund, K.V.; Sundfør, K.; Kristensen, G.B.; Lyng, H.; Malinen, E. Dynamic Contrast-Enhanced MRI of Cervical Cancers: Temporal Percentile Screening of Contrast Enhancement Identifies Parameters for Prediction of Chemoradioresistance. Int. J. Radiat. Oncol. Biol. Phys. 2012, 82, e485–e492. [Google Scholar] [CrossRef]
- Andersen, E.K.F.; Hole, K.H.; Lund, K.V.; Sundfør, K.; Kristensen, G.B.; Lyng, H.; Malinen, E. Pharmacokinetic Parameters Derived from Dynamic Contrast Enhanced MRI of Cervical Cancers Predict Chemoradiotherapy Outcome. Radiother. Oncol. 2013, 107, 117–122. [Google Scholar] [CrossRef]
- Dedieu, V.; Bailly, C.; Vincent, C.; Achard, J.-L.; Le Bouedec, G.; Penault-Llorca, F.; Verrelle, P.; Vincensini, D. Capillary Permeability and Extracellular Volume Fraction in Uterine Cervical Cancer as Patient Outcome Predictors: Measurements by Using Dynamic MRI Spin-Lattice Relaxometry. J. Magn. Reson. Imaging 2008, 27, 846–853. [Google Scholar] [CrossRef] [PubMed]
- Gaustad, J.-V.; Rofstad, E.K. Assessment of Hypoxic Tissue Fraction and Prediction of Survival in Cervical Carcinoma by Dynamic Contrast-Enhanced MRI. Front. Oncol. 2021, 11, 668916. [Google Scholar] [CrossRef] [PubMed]
- Hompland, T.; Lund, K.V.; Ellingsen, C.; Kristensen, G.B.; Rofstad, E.K. Peritumoral Interstitial Fluid Flow Velocity Predicts Survival in Cervical Carcinoma. Radiother. Oncol. 2014, 113, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Sun, Z.; Ma, W.-L.; Ren, J.; Zhang, G.-W.; Wei, M.-Q.; Hou, W.-H.; Hou, B.-X.; Wei, L.-C.; Huan, Y.; et al. DCE-MRI Quantitative Parameters as Predictors of Treatment Response in Patients With Locally Advanced Cervical Squamous Cell Carcinoma Underwent CCRT. Front. Oncol. 2020, 10, 585738. [Google Scholar] [CrossRef] [PubMed]
- Loncaster, J.A.; Carrington, B.M.; Sykes, J.R.; Jones, A.P.; Todd, S.M.; Cooper, R.; Buckley, D.L.; Davidson, S.E.; Logue, J.P.; Hunter, R.D.; et al. Prediction of Radiotherapy Outcome Using Dynamic Contrast Enhanced MRI of Carcinoma of the Cervix. Int. J. Radiat. Oncol. Biol. Phys. 2002, 54, 759–767. [Google Scholar] [CrossRef]
- Lund, K.V.; Simonsen, T.G.; Hompland, T.; Kristensen, G.B.; Rofstad, E.K. Short-Term Pretreatment DCE-MRI in Prediction of Outcome in Locally Advanced Cervical Cancer. Radiother. Oncol. 2015, 115, 379–385. [Google Scholar] [CrossRef]
- Lund, K.V.; Simonsen, T.G.; Kristensen, G.B.; Rofstad, E.K. Pretreatment Late-Phase DCE-MRI Predicts Outcome in Locally Advanced Cervix Cancer. Acta Oncol. 2017, 56, 675–681. [Google Scholar] [CrossRef] [Green Version]
- Lund, K.V.; Simonsen, T.G.; Kristensen, G.B.; Rofstad, E.K. DCE-MRI of Locally-Advanced Carcinoma of the Uterine Cervix: Tofts Analysis versus Non-Model-Based Analyses. Radiat. Oncol. 2020, 15, 79. [Google Scholar] [CrossRef] [Green Version]
- Mannelli, L.; Patterson, A.J.; Zahra, M.; Priest, A.N.; Graves, M.J.; Lomas, D.J.; Tan, L.T.; Crawford, R.; Brenton, J.; Sala, E. Evaluation of Nonenhancing Tumor Fraction Assessed by Dynamic Contrast-Enhanced MRI Subtraction as a Predictor of Decrease in Tumor Volume in Response to Chemoradiotherapy in Advanced Cervical Cancer. AJR Am. J. Roentgenol. 2010, 195, 524–527. [Google Scholar] [CrossRef]
- Mayr, N.A.; Yuh, W.T.; Arnholt, J.C.; Ehrhardt, J.C.; Sorosky, J.I.; Magnotta, V.A.; Berbaum, K.S.; Zhen, W.; Paulino, A.C.; Oberley, L.W.; et al. Pixel Analysis of MR Perfusion Imaging in Predicting Radiation Therapy Outcome in Cervical Cancer. J. Magn. Reson. Imaging 2000, 12, 1027–1033. [Google Scholar] [CrossRef]
- Qin, F.; Pang, H.; Ma, J.; Zhao, M.; Jiang, X.; Tong, R.; Yu, T.; Luo, Y.; Dong, Y. Combined Dynamic Contrast Enhanced MRI Parameter with Clinical Factors Predict the Survival of Concurrent Chemo-Radiotherapy in Patients with 2018 FIGO IIICr Stage Cervical Cancer. Eur. J. Radiol. 2021, 141, 109787. [Google Scholar] [CrossRef]
- Simonsen, T.G.; Lund, K.V.; Hompland, T.; Kristensen, G.B.; Rofstad, E.K. DCE-MRI-Derived Measures of Tumor Hypoxia and Interstitial Fluid Pressure Predict Outcomes in Cervical Carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2018, 102, 1193–1201. [Google Scholar] [CrossRef] [Green Version]
- Torheim, T.; Groendahl, A.R.; Andersen, E.K.F.; Lyng, H.; Malinen, E.; Kvaal, K.; Futsaether, C.M. Cluster Analysis of Dynamic Contrast Enhanced MRI Reveals Tumor Subregions Related to Locoregional Relapse for Cervical Cancer Patients. Acta Oncol. 2016, 55, 1294–1298. [Google Scholar] [CrossRef] [Green Version]
- Zahra, M.A.; Tan, L.T.; Priest, A.N.; Graves, M.J.; Arends, M.; Crawford, R.A.F.; Brenton, J.D.; Lomas, D.J.; Sala, E. Semiquantitative and Quantitative Dynamic Contrast-Enhanced Magnetic Resonance Imaging Measurements Predict Radiation Response in Cervix Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2009, 74, 766–773. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Z.; Zhao, R. Dynamic Contrast-Enhanced Magnetic Resonance Imaging of Advanced Cervical Carcinoma: The Advantage of Perfusion Parameters From the Peripheral Region in Predicting the Early Response to Radiotherapy. Int. J. Gynecol. Cancer 2018, 28, 1342–1349. [Google Scholar] [CrossRef]
- Zhang, Q.; Guo, J.; Ouyang, H.; Chen, S.; Zhao, X.; Yu, X. Added-Value of Dynamic Contrast-Enhanced MRI on Prediction of Tumor Recurrence in Locally Advanced Cervical Cancer Treated with Chemoradiotherapy. Eur. Radiol. 2022, 32, 2529–2539. [Google Scholar] [CrossRef]
- Zheng, X.; Guo, W.; Dong, J.; Qian, L. Prediction of Early Response to Concurrent Chemoradiotherapy in Cervical Cancer: Value of Multi-Parameter MRI Combined with Clinical Prognostic Factors. Magn. Reson. Imaging 2020, 72, 159–166. [Google Scholar] [CrossRef]
- Zhang, A.; Song, J.; Ma, Z.; Chen, T. Combined Dynamic Contrast-Enhanced Magnetic Resonance Imaging and Diffusion-Weighted Imaging to Predict Neoadjuvant Chemotherapy Effect in FIGO Stage IB2-IIA2 Cervical Cancers. Radiol. Med. 2020, 125, 1233–1242. [Google Scholar] [CrossRef]
- Semple, S.I.K.; Harry, V.N.; Parkin, D.E.; Gilbert, F.J. A Combined Pharmacokinetic and Radiologic Assessment of Dynamic Contrast-Enhanced Magnetic Resonance Imaging Predicts Response to Chemoradiation in Locally Advanced Cervical Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2009, 75, 611–617. [Google Scholar] [CrossRef]
- Park, J.J.; Kim, C.K.; Park, S.Y.; Simonetti, A.W.; Kim, E.; Park, B.K.; Huh, S.J. Assessment of Early Response to Concurrent Chemoradiotherapy in Cervical Cancer: Value of Diffusion-Weighted and Dynamic Contrast-Enhanced MR Imaging. Magn. Reson. Imaging 2014, 32, 993–1000. [Google Scholar] [CrossRef]
- Himoto, Y.; Fujimoto, K.; Kido, A.; Matsumura, N.; Baba, T.; Daido, S.; Kiguchi, K.; Shitano, F.; Konishi, I.; Togashi, K. Assessment of the Early Predictive Power of Quantitative Magnetic Resonance Imaging Parameters during Neoadjuvant Chemotherapy for Uterine Cervical Cancer. Int. J. Gynecol. Cancer 2014, 24, 751–757. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Mayr, N.A.; Lo, S.S.; Grecula, J.C.; Wang, J.Z.; Jia, G.; Yuh, W.T. Characterizing At-Risk Voxels by Using Perfusion Magnetic Resonance Imaging for Cervical Cancer during Radiotherapy. J. Cancer Sci. Ther. 2012, 4, 254–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayr, N.A.; Huang, Z.; Wang, J.Z.; Lo, S.S.; Fan, J.M.; Grecula, J.C.; Sammet, S.; Sammet, C.L.; Jia, G.; Zhang, J.; et al. Characterizing Tumor Heterogeneity with Functional Imaging and Quantifying High-Risk Tumor Volume for Early Prediction of Treatment Outcome: Cervical Cancer as a Model. Int. J. Radiat. Oncol. Biol. Phys. 2012, 83, 972–979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, Y.; Liu, H.; Ding, Y.; Zhang, Y.; Liao, C.; Jin, Y.; Ai, C. Combined Dynamic DCE-MRI and Diffusion-Weighted Imaging to Evaluate the Effect of Neoadjuvant Chemotherapy in Cervical Cancer. Tumori 2020, 106, 155–164. [Google Scholar] [CrossRef]
- Gong, Q.Y.; Brunt, J.N.; Romaniuk, C.S.; Oakley, J.P.; Tan, L.T.; Roberts, N.; Whitehouse, G.H.; Jones, B. Contrast Enhanced Dynamic MRI of Cervical Carcinoma during Radiotherapy: Early Prediction of Tumour Regression Rate. Br. J. Radiol. 1999, 72, 1177–1184. [Google Scholar] [CrossRef]
- Kim, J.-H.; Kim, C.K.; Park, B.K.; Park, S.Y.; Huh, S.J.; Kim, B. Dynamic Contrast-Enhanced 3-T MR Imaging in Cervical Cancer before and after Concurrent Chemoradiotherapy. Eur. Radiol. 2012, 22, 2533–2539. [Google Scholar] [CrossRef]
- Mayr, N.A.; Wang, J.Z.; Zhang, D.; Grecula, J.C.; Lo, S.S.; Jaroura, D.; Montebello, J.; Zhang, H.; Li, K.; Lu, L.; et al. Longitudinal Changes in Tumor Perfusion Pattern during the Radiation Therapy Course and Its Clinical Impact in Cervical Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2010, 77, 502–508. [Google Scholar] [CrossRef]
- Yang, W.; Qiang, J.W.; Tian, H.P.; Chen, B.; Wang, A.J.; Zhao, J.G. Multi-Parametric MRI in Cervical Cancer: Early Prediction of Response to Concurrent Chemoradiotherapy in Combination with Clinical Prognostic Factors. Eur. Radiol. 2018, 28, 437–445. [Google Scholar] [CrossRef]
- Yuh, W.T.C.; Mayr, N.A.; Jarjoura, D.; Wu, D.; Grecula, J.C.; Lo, S.S.; Edwards, S.M.; Magnotta, V.A.; Sammet, S.; Zhang, H.; et al. Predicting Control of Primary Tumor and Survival by DCE MRI during Early Therapy in Cervical Cancer. Invest. Radiol. 2009, 44, 343–350. [Google Scholar] [CrossRef] [Green Version]
- Mayr, N.A.; Wang, J.Z.; Zhang, D.; Montebello, J.F.; Grecula, J.C.; Lo, S.S.; Fowler, J.M.; Yuh, W.T.C. Synergistic Effects of Hemoglobin and Tumor Perfusion on Tumor Control and Survival in Cervical Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2009, 74, 1513–1521. [Google Scholar] [CrossRef]
- Dickie, B.R.; Rose, C.J.; Kershaw, L.E.; Withey, S.B.; Carrington, B.M.; Davidson, S.E.; Hutchison, G.; West, C.M.L. The Prognostic Value of Dynamic Contrast-Enhanced MRI Contrast Agent Transfer Constant K(Trans) in Cervical Cancer Is Explained by Plasma Flow Rather than Vessel Permeability. Br. J. Cancer 2017, 116, 1436–1443. [Google Scholar] [CrossRef]
- Lu, H.; Wu, Y.; Liu, X.; Huang, H.; Jiang, H.; Zhu, C.; Man, Y.; Liu, P.; Li, X.; Chen, Z.; et al. The Role of Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Predicting Treatment Response for Cervical Cancer Treated with Concurrent Chemoradiotherapy. Cancer Manag. Res. 2021, 13, 6065–6078. [Google Scholar] [CrossRef]
- Onal, C.; Erbay, G.; Guler, O.C. Treatment Response Evaluation Using the Mean Apparent Diffusion Coefficient in Cervical Cancer Patients Treated with Definitive Chemoradiotherapy. J. Magn. Reson. Imaging 2016, 44, 1010–1019. [Google Scholar] [CrossRef]
- Mayr, N.A.; Yuh, W.T.; Magnotta, V.A.; Ehrhardt, J.C.; Wheeler, J.A.; Sorosky, J.I.; Davis, C.S.; Wen, B.C.; Martin, D.D.; Pelsang, R.E.; et al. Tumor Perfusion Studies Using Fast Magnetic Resonance Imaging Technique in Advanced Cervical Cancer: A New Noninvasive Predictive Assay. Int. J. Radiat. Oncol. Biol. Phys. 1996, 36, 623–633. [Google Scholar] [CrossRef]
- Mayr, N.A.; Yuh, W.T.C.; Jajoura, D.; Wang, J.Z.; Lo, S.S.; Montebello, J.F.; Porter, K.; Zhang, D.; McMeekin, D.S.; Buatti, J.M. Ultra-Early Predictive Assay for Treatment Failure Using Functional Magnetic Resonance Imaging and Clinical Prognostic Parameters in Cervical Cancer. Cancer 2010, 116, 903–912. [Google Scholar] [CrossRef]
- Hu, Q.; Shi, J.; Zhang, A.; Duan, S.; Song, J.; Chen, T. Added Value of Radiomics Analysis in MRI Invisible Early-Stage Cervical Cancers. Br. J. Radiol. 2022, 95, 20210986. [Google Scholar] [CrossRef]
- Fang, J.; Zhang, B.; Wang, S.; Jin, Y.; Wang, F.; Ding, Y.; Chen, Q.; Chen, L.; Li, Y.; Li, M.; et al. Association of MRI-Derived Radiomic Biomarker with Disease-Free Survival in Patients with Early-Stage Cervical Cancer. Theranostics 2020, 10, 2284–2292. [Google Scholar] [CrossRef]
- Torheim, T.; Malinen, E.; Kvaal, K.; Lyng, H.; Indahl, U.G.; Andersen, E.K.F.; Futsaether, C.M. Classification of Dynamic Contrast Enhanced MR Images of Cervical Cancers Using Texture Analysis and Support Vector Machines. IEEE Trans. Med. Imaging 2014, 33, 1648–1656. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, X.; Zhang, B.; Liu, X.; Xuan, D.; Xia, Y.; Zhang, X. Classifying Early Stages of Cervical Cancer with MRI-Based Radiomics. Magn. Reson. Imaging 2022, 89, 70–76. [Google Scholar] [CrossRef]
- Park, S.-H.; Hahm, M.H.; Bae, B.K.; Chong, G.O.; Jeong, S.Y.; Na, S.; Jeong, S.; Kim, J.-C. Magnetic Resonance Imaging Features of Tumor and Lymph Node to Predict Clinical Outcome in Node-Positive Cervical Cancer: A Retrospective Analysis. Radiat. Oncol. 2020, 15, 86. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.E.; Kim, C.K. Magnetic Resonance Imaging-Based Texture Analysis for the Prediction of Postoperative Clinical Outcome in Uterine Cervical Cancer. Abdom. Radiol. 2022, 47, 352–361. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Li, H.; Wang, S.; Dong, D.; Yin, F.; Chen, A.; Wang, S.; Zhao, G.; Fang, M.; Tian, J.; et al. MR-Based Radiomics Nomogram of Cervical Cancer in Prediction of the Lymph-Vascular Space Invasion Preoperatively. J. Magn. Reson. Imaging 2019, 49, 1420–1426. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Li, J.; Kan, Y.; Yu, T.; Chang, S.; Sha, X.; Zheng, H.; Luo, Y.; Wang, S. MRI Based Radiomics Approach With Deep Learning for Prediction of Vessel Invasion in Early-Stage Cervical Cancer. IEEE/ACM Trans. Comput. Biol. Bioinform. 2021, 18, 995–1002. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Song, J.; Duan, S.; Cheng, W.; Chen, T.; Liu, X. MRI Radiomics Combined with Clinicopathologic Features to Predict Disease-Free Survival in Patients with Early-Stage Cervical Cancer. Br. J. Radiol. 2022, 95, 20211229. [Google Scholar] [CrossRef]
- Wang, M.; Perucho, J.A.U.; Tse, K.Y.; Chu, M.M.Y.; Ip, P.; Lee, E.Y.P. MRI Texture Features Differentiate Clinicopathological Characteristics of Cervical Carcinoma. Eur. Radiol. 2020, 30, 5384–5391. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, J.; Zhang, Q.; Wang, S.; Zhang, J.; An, J.; Xie, L.; Yu, X.; Zhao, X. MRI-Based Radiomics Value for Predicting the Survival of Patients with Locally Advanced Cervical Squamous Cell Cancer Treated with Concurrent Chemoradiotherapy. Cancer Imaging 2022, 22, 35. [Google Scholar] [CrossRef]
- Huang, G.; Cui, Y.; Wang, P.; Ren, J.; Wang, L.; Ma, Y.; Jia, Y.; Ma, X.; Zhao, L. Multi-Parametric Magnetic Resonance Imaging-Based Radiomics Analysis of Cervical Cancer for Preoperative Prediction of Lymphovascular Space Invasion. Front. Oncol. 2021, 11, 663370. [Google Scholar] [CrossRef]
- Zhou, Y.; Gu, H.-L.; Zhang, X.-L.; Tian, Z.-F.; Xu, X.-Q.; Tang, W.-W. Multiparametric Magnetic Resonance Imaging-Derived Radiomics for the Prediction of Disease-Free Survival in Early-Stage Squamous Cervical Cancer. Eur. Radiol. 2022, 32, 2540–2551. [Google Scholar] [CrossRef]
- Wang, W.; Jiao, Y.; Zhang, L.; Fu, C.; Zhu, X.; Wang, Q.; Gu, Y. Multiparametric MRI-Based Radiomics Analysis: Differentiation of Subtypes of Cervical Cancer in the Early Stage. Acta Radiol. 2022, 63, 847–856. [Google Scholar] [CrossRef]
- Lu, Y.; Peng, W.; Song, J.; Chen, T.; Wang, X.; Hou, Z.; Yan, Z.; Koh, T.S. On the Potential Use of Dynamic Contrast-Enhanced (DCE) MRI Parameters as Radiomic Features of Cervical Cancer. Med. Phys. 2019, 46, 5098–5109. [Google Scholar] [CrossRef]
- Kan, Y.; Dong, D.; Zhang, Y.; Jiang, W.; Zhao, N.; Han, L.; Fang, M.; Zang, Y.; Hu, C.; Tian, J.; et al. Radiomic Signature as a Predictive Factor for Lymph Node Metastasis in Early-Stage Cervical Cancer: Radiomic Signature of LNM in Cervical Cancer. J. Magn. Reson. Imaging 2019, 49, 304–310. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Shi, D.; Dou, S.; Shi, L.; Liu, M.; Dong, L.; Chang, X.; Wang, M. Radiomics Analysis of Multiparametric MRI Evaluates the Pathological Features of Cervical Squamous Cell Carcinoma. J. Magn. Reson. Imaging 2019, 49, 1141–1148. [Google Scholar] [CrossRef]
- Hou, L.; Zhou, W.; Ren, J.; Du, X.; Xin, L.; Zhao, X.; Cui, Y.; Zhang, R. Radiomics Analysis of Multiparametric MRI for the Preoperative Prediction of Lymph Node Metastasis in Cervical Cancer. Front. Oncol. 2020, 10, 1393. [Google Scholar] [CrossRef]
- Bowen, S.R.; Yuh, W.T.C.; Hippe, D.S.; Wu, W.; Partridge, S.C.; Elias, S.; Jia, G.; Huang, Z.; Sandison, G.A.; Nelson, D.; et al. Tumor Radiomic Heterogeneity: Multiparametric Functional Imaging to Characterize Variability and Predict Response Following Cervical Cancer Radiation Therapy: MRI & PET Cervical Tumor Heterogeneity. J. Magn. Reson. Imaging 2018, 47, 1388–1396. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avesani, G.; Perazzolo, A.; Amerighi, A.; Celli, V.; Panico, C.; Sala, E.; Gui, B. The Utility of Contrast-Enhanced Magnetic Resonance Imaging in Uterine Cervical Cancer: A Systematic Review. Life 2023, 13, 1368. https://doi.org/10.3390/life13061368
Avesani G, Perazzolo A, Amerighi A, Celli V, Panico C, Sala E, Gui B. The Utility of Contrast-Enhanced Magnetic Resonance Imaging in Uterine Cervical Cancer: A Systematic Review. Life. 2023; 13(6):1368. https://doi.org/10.3390/life13061368
Chicago/Turabian StyleAvesani, Giacomo, Alessio Perazzolo, Andrea Amerighi, Veronica Celli, Camilla Panico, Evis Sala, and Benedetta Gui. 2023. "The Utility of Contrast-Enhanced Magnetic Resonance Imaging in Uterine Cervical Cancer: A Systematic Review" Life 13, no. 6: 1368. https://doi.org/10.3390/life13061368
APA StyleAvesani, G., Perazzolo, A., Amerighi, A., Celli, V., Panico, C., Sala, E., & Gui, B. (2023). The Utility of Contrast-Enhanced Magnetic Resonance Imaging in Uterine Cervical Cancer: A Systematic Review. Life, 13(6), 1368. https://doi.org/10.3390/life13061368