Molecular Insights into Royal Jelly Anti-Inflammatory Properties and Related Diseases
Abstract
:1. Introduction
2. Chemical Composition
2.1. Proteins and Amino Acids
2.2. Carbohydrates
2.3. Lipids and Fatty Acids
2.4. Other Constituents
3. RJ as an Adjuvant in Inflammatory Diseases
3.1. RJ in Multiple Sclerosis
3.2. RJ in Inflammatory Bowel Disease
3.3. RJ in Rheumatoid Arthritis
4. Additional Anti-Inflammatory Effects of RJ
5. Other Bioactive Effects of RJ
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Uthaibutra, V.; Kaewkod, T.; Prapawilai, P.; Pandith, H.; Tragoolpua, Y. Inhibition of Skin Pathogenic Bacteria, Antioxidant and Anti-Inflammatory Activity of Royal Jelly from Northern Thailand. Molecules. 2023, 28, 996. [Google Scholar] [CrossRef]
- Salama, S.; Shou, Q.; Abd El-Wahed, A.A.; Elias, N.; Xiao, J.; Swillam, A.; Umair, M.; Guo, Z.; Daglia, M.; Wang, K.; et al. Royal Jelly: Beneficial Properties and Synergistic Effects with Chemotherapeutic Drugs with Particular Emphasis in Anticancer Strategies. Nutrients 2022, 14, 4166. [Google Scholar] [CrossRef]
- Guo, J.; Wang, Z.; Chen, Y.; Cao, J.; Tian, W.; Ma, B.; Dong, Y. Active Components and Biological Functions of Royal Jelly. J. Funct. Food 2021, 82, 104514. [Google Scholar] [CrossRef]
- Clarke, M.; Peter, M. Australian Royal Jelly Market Opportunity Assessment Based on Production That Uses New Labour Saving Technology. 2017. Available online: https://www.agrifutures.com.au/wp-content/uploads/publications/17-017.pdf (accessed on 3 July 2023).
- Ahmad, S.; Campos, M.G.; Fratini, F.; Altaye, S.Z.; Li, J. New Insights into the Biological and Pharmaceutical Properties of Royal Jelly. Mol. Sci. 2020, 21, 382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collazo, N.; Carpena, M.; Nuñez-Estevez, B.; Otero, P.; Simal-Gandara, J.; Prieto, M.A. Health Promoting Properties of Bee Royal Jelly: Food of the Queens. Nutrients 2021, 13, 543. [Google Scholar] [CrossRef] [PubMed]
- Sesta, G. Determination of sugars in royal jelly by HPLC. Apidologie 2006, 37, 84–90. [Google Scholar] [CrossRef] [Green Version]
- Sabatini, A.G.; Marcazzan, G.L.; Caboni, M.F.; Bogdanov, S.; Almeida-Muradian, L. Quality and standardization of royal jelly. J. ApiProd. ApiMed. Sci. 2009, 1, 1–6. [Google Scholar] [CrossRef]
- Terada, Y.; Narukawa, M.; Watanabe, T. Specific hydroxy fatty acids in royal jelly activate TRPA1. J. Agric. Food Chem. 2011, 59, 2627–2635. [Google Scholar] [CrossRef]
- Kolayli, S.; Sahin, H.; Can, Z.; Yildiz, O.; Malkoc, M.; Asadov, A. A member of complementary medicinal food: Anatolian royal jellies, their chemical compositions, and antioxidant properties. J. Evid. Based Complement. Alt. Med. 2016, 21, NP43–NP48. [Google Scholar] [CrossRef] [Green Version]
- Fratini, F.; Cilia, G.; Mancini, S.; Felicioli, A. Royal Jelly: An ancient remedy with remarkable antibacterial properties. Microbiol. Res. 2016, 192, 130–141. [Google Scholar] [CrossRef]
- Lin, N.; Chen, S.; Zhang, H.; Li, J.; Fu, L. Quantification of Major Royal Jelly Protein 1 in Fresh Royal Jelly by Ultraperformance Liquid Chromatography−Tandem Mass Spectrometry. J. Agric. Food Chem. 2018, 66, 1270–1278. [Google Scholar] [CrossRef] [PubMed]
- Maghsoudlou, A.; Mahoonak, A.S.; Mohebodini, H.; Toldra, F. Royal Jelly: Chemistry, Storage and Bioactivities. J. Apic. Sci. 2019, 63, 17–40. [Google Scholar] [CrossRef] [Green Version]
- Schmitzová, J.; Klaudiny, J.; Albert, Š.; Schroder, W.; Schreckengost, W.; Hanes, J.; Judova, J.; Simuth, J. A family of major royal jelly proteins of the honeybee Apis mellifera L. CMLS Cell Mol. Life Sci. 1998, 54, 1020–1030. [Google Scholar] [CrossRef]
- Buttstedt, A. 10-Hydroxy-Δ2-decenoic acid’s role in the fibril formation of the major royal jelly protein 1/apisimin/24-methylenecholesterol complex isolated from honeybee (Apis mellifera) royal jelly. Eur. J. Entomol. 2022, 119, 448–453. [Google Scholar] [CrossRef]
- Mureşan, C.I.; Buttstedt, A. pH-dependent stability of honey bee (Apis mellifera) major royal jelly proteins. Sci. Rep. 2019, 9, 9014. [Google Scholar] [CrossRef] [Green Version]
- Ozcan, S.; Senyuva, H.Z. Improved and simplified liquid chromatography/ atmospheric pressure chemical ionization mass spectrometry method for the analysis of underivatized free amino acids in various foods. J. Chromatogr. A 2006, 1135, 179–185. [Google Scholar] [CrossRef]
- Jie, H.; Li, P.M.; Zhao, G.J.; Feng, X.L.; Zeng, D.J.; Zhang, C.L.; Lei, M.Y.; Yu, M.; Chen, Q. Amino acid composition of royal jelly harvested at different times after larval transfer. Genet. Mol. Res. 2016, 15, 15038306. [Google Scholar] [CrossRef]
- Mărgăoan, R.; Mărghitaş, L.A.; Dezmirean, D.S.; Bobiş, O.; Bonta, V.; Cătană, C.; Urcan, A.; Mureşan, C.I.; Margin, M.G. Comparative study on quality parameters of royal jelly, apilarnil and queen bee larvae triturate. Bull. UASVM Cluj-Napoca 2017, 74, 51–58. [Google Scholar] [CrossRef] [Green Version]
- Kunugi, H.; Ali, A.M. Royal Jelly and Its Components Promote Healthy Aging and Longevity: From Animal Models to Humans. Int. J. Mol. Sci. 2019, 20, 4662. [Google Scholar] [CrossRef] [Green Version]
- Kocot, J.; Kiełczykowska, M.; Luchowska-Kocot, D.; Kurzepa, J.; Musik, I. Antioxidant potential of propolis, bee pollen, and royal jelly: Possible medical application. Oxid. Med. Cell Longev. 2018, 2018, 7074209. [Google Scholar] [CrossRef]
- Melliou, E.; Chinou, I. Chemistry and bioactivities of royal jelly. In Studies in Natural Products Chemistry; Elsevier: Amsterdam, The Netherlands, 2014; Volume 43, pp. 261–290. [Google Scholar]
- Yan, S.; Wang, X.; Sun, M.; Wang, W.; Wu, L.; Xue, X. Investigation of the lipidomic profile of royal jelly from different botanical origins using UHPLC-IM-Q-TOF-MS and GC-MS. LWT 2022, 169, 113894. [Google Scholar] [CrossRef]
- López-Gutiérrez, N.; Aguilera-Luiz, M.D.M.; Romero-González, R.; Vidal, J.L.M.; Garrido Frenich, A. Fast analysis of polyphenols in royal jelly products using automated TurboFlow™-liquid chromatography-Orbitrap high resolution mass spectrometry. J. Chromatogr. B 2014, 973, 17–28. [Google Scholar] [CrossRef] [PubMed]
- Kanbur, M.; Eraslan, G.; Beyaz, L.; Silici, S.; Liman, B.C.; Altinordulu, Ş.; Aasever, A. The effects of royal jelly on liver damage induced by paracetamol in mice. Exp. Toxicol. Pathol. 2009, 61, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Adaškevičiūtė, V.; Kaškonienė, V.; Kaškonas, P.; Barčauskaitė, K.; Maruška, A. Comparison of physicochemical properties of bee pollen with other bee products. Biomolecules 2019, 9, 819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagameri, L.; Baci, G.M.; Dezmirean, D.S. Royal jelly as a nutraceutical natural product with focus on its antibacterial activity. Pharmaceutics 2022, 14, 1142. [Google Scholar] [CrossRef] [PubMed]
- Al-Kahtani, S.N.; Taha, E.-K.A. Post grafting time significantly influences royal jelly yield and content of macro and trace elements. PLoS ONE 2020, 15, e0238751. [Google Scholar] [CrossRef]
- Al-Kahtani, S.N.; Taha, E.-K.A. Effect of harvest time on royal jelly yield and chemical composition. J. Kans. Entomol. Soc. 2020, 93, 132–139. [Google Scholar] [CrossRef]
- Botezan, S.; Baci, G.-M.; Bagameri, L.; Pașca, C.; Dezmirean, D.S. Current Status of the Bioactive Properties of Royal Jelly: A Comprehensive Review with a Focus on Its Anticancer, Anti-Inflammatory, and Antioxidant Effects. Molecules 2023, 28, 1510. [Google Scholar] [CrossRef]
- El-Seedi, H.R.; Eid, N.; Abd El-Wahed, A.A.; Rateb, M.E.; Afifi, H.S.; Algethami, A.F.; Zhao, C.; Al Naggar, Y.; Alsharif, S.M.; Tahir, H.E.; et al. HoneyBee Products: Preclinical and Clinical Studies of Their Anti-inflammatory and Immunomodulatory Properties. Front. Nutr. 2022, 8, 761267. [Google Scholar] [CrossRef] [PubMed]
- Gu, H.; Song, I.B.; Han, H.J.; Lee, N.Y.; Cha, J.Y.; Son, Y.K.; Kwon, J. Anti-inflammatory and immune-enhancing effects of enzyme-treated royal jelly. Appl. Biol. Chem. 2018, 61, 227–233. [Google Scholar] [CrossRef] [Green Version]
- Hegazi, A.G.; Al-Menabbawy, K.; Abd El Rahman, E.; Helal, S.I. Novel Therapeutic Modality Employing Apitherapy for Controlling of Multiple Sclerosis. J. Clin. Cell Immunol. 2015, 6, 299. [Google Scholar] [CrossRef] [Green Version]
- Podbielska, M.; O’Keeffe, J.; Pokryszko-Dragan, A. New Insights into Multiple Sclerosis Mechanisms: Lipid on the Track to Control Inflammation and Neurodegeneration. Int. J. Mol. Sci. 2021, 22, 7319. [Google Scholar] [CrossRef] [PubMed]
- Lohrasbi, M.; Taghian, F.; Jalali Dehkordi, K.; Hosseini, S.A. The functional mechanisms of synchronizing royal jelly consumption and physical activity on rat with multiple sclerosis-like behaviors hallmarks based on bioinformatics analysis, and experimental survey. BMC Neurosci. 2022, 23, 34. [Google Scholar] [CrossRef]
- Kheirdeh, M.; Koushkie Jahromi, M.; Brühl, A.B.; Brand, S. The Effect of Exercise Training and Royal Jelly on Hippocampal Cannabinoid-1-Receptors and Pain Threshold in Experimental Autoimmune Encephalomyelitis in Rats as Animal Model of Multiple Sclerosis. Nutrients. 2022, 14, 4119. [Google Scholar] [CrossRef]
- Oshvandi, K.; Aghamohammadi, M.; Kazemi, F.; Masoumi, S.Z.; Mazdeh, M.; Molavi Vardanjani, M. Effect of royal jelly capsule on quality of life of patients with multiple sclerosis: A double-blind randomized controlled clinical trial. Iran. Red Crescent Med. J. 2020, 22, e74. [Google Scholar] [CrossRef]
- Seyedian, S.S.; Nokhostin, F.; Malamir, M.D. A review of the diagnosis, prevention, and treatment methods of inflammatory bowel disease. J. Med. Life 2019, 12, 113–122. [Google Scholar] [CrossRef]
- Guan, Q. A Comprehensive Review and Update on the Pathogenesis of Inflammatory Bowel Disease. J. Immunol. Res. 2019, 2019, 7247238. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Chou, W.; Widowati, D.A.; Lin, I.; Peng, C. 10-Hydroxy-2-Decenoic Acid of Royal Jelly Exhibits Bactericide and Anti-Inflammatory Activity in Human Colon Cancer Cells. BMC Complement. Altern. Med. 2018, 18, 202. [Google Scholar] [CrossRef]
- Karaca, T.; Uz, Y.H.; Demirtas, S.; Karaboga, I.; Can, G. Protective effect of royal jelly in 2,4,6 trinitrobenzene sulfonic acid-induced colitis in rats. Iran. J. Basic Med. Sci. 2015, 18, 370–379. [Google Scholar] [PubMed]
- Guo, J.; Ma, B.; Wang, Z.; Chen, Y.; Tian, W.; Dong, Y. Royal Jelly Protected against Dextran-Sulfate-Sodium-Induced Colitis by Improving the Colonic Mucosal Barrier and Gut Microbiota. Nutrients 2022, 14, 2069. [Google Scholar] [CrossRef] [PubMed]
- Münstedt, K. Rheumatoid arthritis—Is there a role for apitherapy? J. Aphyter. Nat. 2022, 5, 103–118. [Google Scholar] [CrossRef]
- Dalal, D.S.; Durán, J.; Brar, T.; Alqadi, R.; Halladay, C.W.; Lakhani, A.; Rudolph, J.L. Efficacy and safety of biological agents in the older rheumatoid arthritis patients compared to Young: A systematic review and meta-analysis. Semin. Arthritis Rheum. 2019, 48, 799–807. [Google Scholar] [CrossRef] [PubMed]
- Nattagh-Eshtivani, E.; Jokar, M.H.; Tabesh, H.; Nematy, M.; Safarian, M.; Pahlavani, N.; Maddahi, M.; Khosravi, M. The effect of propolis supplementation on inflammatory factors and oxidative status in women with rheumatoid arthritis: Design and research protocol of a double-blind, randomized controlled. Contemp. Clin. Trials Comm. 2021, 23, 100807. [Google Scholar] [CrossRef]
- Yang, X.Y.; Yang, D.S.; Wei, Z.; Wang, J.M.; Li, C.Y.; Hui, Y.; Lei, K.F.; Chen, X.F.; Shen, N.H.; Jin, L.Q.; et al. 10-Hydroxy-2-decenoic acid from Royal jelly: A potential medicine for RA. J. Ethnopharmacol. 2010, 128, 314–321. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, W.; Zou, H.; Lin, Y.; Lin, K.; Zhou, Z.; Qiang, J.; Lin, J.; Chuka, C.M.; Ge, R.; et al. 10-Hydroxy-2-decenoic acid inhibiting the proliferation of fibroblast-like synoviocytes by PI3K–AKT pathway. Int. Immunopharmacol. 2015, 28, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.F.; Wang, K.; Zhang, Y.Z.; Zheng, Y.F.; Hu, F.L. In Vitro Anti-Inflammatory Effects of Three Fatty Acids from Royal Jelly. Mediat. Inflamm. 2016, 2016, 3583684. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.-F.; You, M.-M.; Liu, Y.-C.; Shi, Y.-Z.; Wang, K.; Lu, Y.-Y.; Hu, F.-L. Potential protective effect of Trans-10-hydroxy-2-decenoic acid on the inflammation induced by Lipoteichoic acid. J. Funct. Foods 2018, 45, 491–498. [Google Scholar] [CrossRef]
- You, M.M.; Chen, Y.F.; Pan, Y.M.; Liu, Y.C.; Tu, J.; Wang, K.; Hu, F.L. Royal Jelly Attenuates LPS-Induced Inflammation in BV-2 Microglial Cells through Modulating NF-κB and p38/JNK Signaling Pathways. Mediat. Inflamm. 2018, 2018, 7834381. [Google Scholar] [CrossRef] [Green Version]
- Mihajlovic, D.; Vucevic, D.; Chinou, I.; Colic, M. Royal jelly fatty acids modulate proliferation and cytokine production by human peripheral blood mononuclear cells. Eur. Food Res. Technol. 2014, 238, 881–887. [Google Scholar] [CrossRef]
- Erem, C.; Deger, O.; Ovali, E.; Barlak, Y. The effects of royal jelly on autoimmunity in Graves’ disease. Endocrine 2006, 30, 175–183. [Google Scholar] [CrossRef]
- Arzi, A.; Olapour, S.; Yaghooti, H.; Karampour, N.S. Effect of Royal Jelly on Formalin Induced-Inflammation in Rat Hind Paw. Jundishapur J. Nat. Pharm. Prod. 2015, 10, e22466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minegaki, N.; Koshizuka, T.; Hatasa, K.; Kondo, H.; Kato, H.; Tannaka, M.; Takahashi, K.; Tsuji, M.; Inoue, N. The C-Terminal Penta-Peptide Repeats of Major Royal Jelly Protein 3 Ameliorate the Progression of Inflammation “in Vivo” and “in Vitro”. Biol. Pharmaceutic. Bull. 2022, 45, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Fatmawati, F.; Erizka, E.; Hidayat, R. Royal Jelly (Bee Product) Decreases Inflammatory Response in Wistar Rats Induced with Ultraviolet Radiation. Open Access Maced. J. Med. Sci. 2019, 7, 2723–2727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pourmobini, H.; Kazemi Arababadi, M.; Salahshoor, M.R.; Roshankhah, S.; Taghavi, M.M.; Taghipour, Z.; Shabanizadeh, A. The effect of royal jelly and silver nanoparticles on liver and kidney inflammation. Avicenna J. Phytomed. 2021, 11, 218–223. [Google Scholar] [PubMed]
- Salahshoor, M.R.; Jalili, C.; Roshankhah, S. Can royal jelly protect against renal ischemia/reperfusion injury in rats? Chin. J. Physiol. 2019, 62, 131. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Zhang, R.; Wang, L.; Lin, T.; Wang, G.; Peng, J.; Su, S. The in vitro and in vivo wound-healing effects of royal jelly derived from Apis mellifera L. during blossom seasons of Castanea mollissima Bl. and Brassica napus L. in South China exhibited distinct patterns. BMC Complement. Med. Ther. 2020, 20, 357. [Google Scholar] [CrossRef]
- Petelin, A.; Lah, T.T.; Kopinc, R.; Deželak, M.; Bizjak, M.; Pražnikar, Z.J. Effects of Royal Jelly Administration on Lipid Profile, Satiety, Inflammation, and Antioxidant Capacity in Asymptomatic Overweight Adults. Evid.-Based Complement. Altern. Med. 2019, 2019, 4969720. [Google Scholar] [CrossRef] [Green Version]
- Chansuwan, W.; Khamhae, M.; Yang, Z.; Sirinupong, N. Hydrolase-treated royal jelly attenuates LPS-induced inflammation and IgE-antigen-mediated allergic reaction. Funct. Foods Health Dis. 2020, 10, 127–142. [Google Scholar] [CrossRef] [Green Version]
- Coutinho, D.; Karibasappa, S.N.; Mehta, D.S. Royal Jelly Antimicrobial Activity against Periodontopathic Bacteria. J. Interdiscip. Dent. 2018, 8, 17–22. [Google Scholar]
- Khosla, A.; Gupta, S.J.; Jain, A.; Shetty, D.C.; Sharma, N. Evaluation and Comparison of the Antimicrobial Activity of Royal Jelly-A Holistic Healer against Periodontopathic Bacteria. J. Indian Soc. Periodontol. 2020, 24, 221–226. [Google Scholar] [CrossRef]
- Nainu, F.; Masyita, A.; Bahar, M.A.; Raihan, M.; Prova, S.R.; Mitra, S.; Emran, T.B.; Simal-Gandara, J. Pharmaceutical Prospects of Bee Products: Special Focus on Anticancer, Antibacterial, Antiviral, and Antiparasitic Properties. Antibiotics 2021, 10, 822. [Google Scholar] [CrossRef] [PubMed]
- Bălan, A.; Moga, M.A.; Dima, L.; Toma, S.; Neculau, E.A.; Anastasiu, C.V. Royal Jelly—A Traditional and Natural Remedy for Postmenopausal Symptoms and Aging-Related Pathologies. Molecules 2020, 25, 3291. [Google Scholar] [CrossRef] [PubMed]
- Miyata, Y.; Sakai, H. Anti-Cancer and Protective Effects of Royal Jelly for Therapy-Induced Toxicities in Malignancies. Int. J. Mol. Sci. 2018, 19, 3270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sver, L.; Orsolić, N.; Tadić, Z.; Njari, B.; Valpotić, I.; Basić, I. A royal jelly as a new potential immunomodulator in rats and mice. Comp. Immunol. Microbiol. Infect. Dis. 1996, 19, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, I.; Taniguchi, Y.; Kunikata, T.; Kohno, K.; Iwaki, K.; Ikeda, M.; Kurimoto, M. Major royal jelly protein 3 modulates immune responses in vitro and in vivo. Life Sci. 2003, 73, 2029–2045. [Google Scholar] [CrossRef] [PubMed]
- Natarajan, O.; Angeloni, J.T.; Bilodeau, M.F.; Russi, K.E.; Dong, Y.; Cao, M. The Immunomodulatory Effects of Royal Jelly on Defending Against Bacterial Infections in the Caenorhabditis elegans Model. J. Med. Food. 2021, 358–369. [Google Scholar] [CrossRef] [PubMed]
- Karaca, T.; Simşek, N.; Uslu, S.; Kalkan, Y.; Can, I.; Kara, A.; Yoruk, M. The effect of royal jelly on CD3+, CD5+, CD45+, T-cell and CD68+ cell distribution in the colon of rats with acetic acid-induced colitis. Allergol. Immunopathol. 2012, 40, 357–361. [Google Scholar] [CrossRef]
- Wang, W.; Li, X.; Li, D.; Pan, F.; Fang, X.; Peng, W.; Tian, W. Effects of Major Royal Jelly Proteins on the Immune Response and Gut Microbiota Composition in Cyclophosphamide-Treated Mice. Nutrients 2023, 15, 974. [Google Scholar] [CrossRef]
- Bahaaldin-beygi, M.; Kariminik, A.; Kazemi Arababadi, M. Royal jelly significantly alters inflammatiom pathways in patients with chronic hepatitis B. Indian J. Exp. Biol. 2022, 50, 875–879. [Google Scholar] [CrossRef]
- Lima, W.G.; Brito, J.C.M.; da Cruz Nizer, W.S. Bee products as a source of promising therapeutic and chemoprophylaxis strategies against COVID-19 (SARS-CoV-2). Phytother. Res. 2021, 35, 743–750. [Google Scholar] [CrossRef]
- Habashy, N.H.; Abu-Serie, M.M. The potential antiviral effect of major royal jelly protein2 and its isoform X1 against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): Insight on their sialidase activity and molecular docking. J. Funct. Foods 2020, 75, 104282. [Google Scholar] [CrossRef] [PubMed]
- Amirkhani, R.; Zarei, A.; Gholampour, M.; Tavakoli, H.; Ramazani, A. Honey and royal jelly natural products as possible antiviral nominations to combat SARS-CoV-2 main protease. Euras. Chem. Comm. 2022, 4, 567–579. [Google Scholar] [CrossRef]
- Dania, F.; Bazelidze, N.; Chinou, I.; Melliou, E.; Rallis, M.; Papaioannou, G. In vivo antidiabetic activity of Greek propolis and royal jelly. Planta Med. 2008, 74, PH43. [Google Scholar] [CrossRef]
- Nohair, S.F.A. Antidiabetic efficacy of a honey-royal jelly mixture: Biochemical study in rats. Int. J. Health Sci. 2021, 15, 4–9. [Google Scholar]
- Maleki, V.; Jafari-Vayghan, V.; Saleh-Ghadimi, S.; Adibian, M.; Kheirouri, S.; Alizadeh, M. Effects of Royal jelly on metabolic variables in diabetes mellitus: A systematic review. Complement. Ther. Med. 2019, 43, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Omer, K.; Gelkopf, M.J.; Newton, G. Effectiveness of royal jelly supplementation in glycemic regulation: A systematic review. World J. Diabetes 2019, 10, 96–113. [Google Scholar] [CrossRef] [PubMed]
Effect | Key Players | Mechanism | Type of Study | References |
---|---|---|---|---|
Immuno-regulatory | RJ | ↓ total proteins and immunoglobulins, ↑ plaque-forming splenocytes, ↑ antibody production, and immunocompetent cell proliferation | In vivo (CBA mice) | [67] |
MRJP3 | Suppression of IL-4 production, inhibition of serum anti-OVA IgE and IgG1 levels | In vivo (Mice) | [68] | |
RJ | Innate immunity modulation through IIS/DAF-16, p38 MAPK, and Wnt signaling pathways | In vivo (C. elegans) | [69] | |
RJ | ↓ inflammation, ↑ cell regeneration | In vivo (Rats) | [70] | |
MRJPs | Positive effects on immunoglobulin content, immune factor level, and proliferation of spleen lymphocytes | In vivo (Mice) | [71] | |
RJ | Modulation of immune responses via downregulation of NLRP1 | Clinical (human patients) | [72] | |
RJ | Induction of antibody production, maturation of immune cells, stimulation of the innate and adaptive immune responses | Review | [73] | |
Antiviral | RJ | Inhibition of HSV-1 | In vitro (Vero cells) | [74] |
MRJP2 and MRJP2 isoform X1 | Sialic acid hydrolysis, attachment prevention (high binding affinity to viral receptor-binding sites), inhibition of SARS-CoV-2 enzymes, prevention of hemoglobin attack | In vitro (WI-38 lung cells) | [75] | |
Erlose, Kaempferol glucoside, Iridin, Luteolin glucoside (Cynaroside) | Antiviral affinity (binding to COVID-19 binding sites through H-bonding), blocking of SARS-CoV-2 protease (through hydrogen bond and π-π T-shaped interactions) | In vivo and in vitro tests | [76] | |
Antidiabetic | RJ-propolis | Hypoglycemic and antioxidant activity | In vivo (Mice) | [77] |
RJ-honey | ↓ plasma VLDL-C and TG, normalization of glycemic control indices | In vivo (Rats) | [78] | |
RJ | ↓ FBS, ↓ HbA1c, ↓ HOM A-I R, improvement in serum levels of triglycerides, cholesterol, HDL, LDL, VLDL, and Apo-A1, ↓ oxidative stress, ↑ antioxidant enzymes | Review | [78] | |
RJ | Glycemic regulation (fasting blood glucose and glucose clearance as the most affected parameters) | Review | [78] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bagameri, L.; Botezan, S.; Bobis, O.; Bonta, V.; Dezmirean, D.S. Molecular Insights into Royal Jelly Anti-Inflammatory Properties and Related Diseases. Life 2023, 13, 1573. https://doi.org/10.3390/life13071573
Bagameri L, Botezan S, Bobis O, Bonta V, Dezmirean DS. Molecular Insights into Royal Jelly Anti-Inflammatory Properties and Related Diseases. Life. 2023; 13(7):1573. https://doi.org/10.3390/life13071573
Chicago/Turabian StyleBagameri, Lilla, Sara Botezan, Otilia Bobis, Victorita Bonta, and Daniel Severus Dezmirean. 2023. "Molecular Insights into Royal Jelly Anti-Inflammatory Properties and Related Diseases" Life 13, no. 7: 1573. https://doi.org/10.3390/life13071573
APA StyleBagameri, L., Botezan, S., Bobis, O., Bonta, V., & Dezmirean, D. S. (2023). Molecular Insights into Royal Jelly Anti-Inflammatory Properties and Related Diseases. Life, 13(7), 1573. https://doi.org/10.3390/life13071573