Exploring the Therapeutic Potential of Natural Products in Polycystic Ovarian Syndrome (PCOS): A Mini-Review of Lipid Profile, Blood Glucose, and Ovarian Histological Improvements
Abstract
:1. Introduction
2. Methods
3. Literature Review
3.1. Natural Products
3.2. Lipid Profile Improvement
3.2.1. Low-Density Lipoprotein (LDL)
3.2.2. High-Density Lipoprotein (HDL)
3.2.3. Triglycerides (TGs)
3.3. Blood Glucose Improvement
3.4. Sex Hormone Improvement
3.4.1. Testosterone
3.4.2. Progesterone
3.4.3. Luteinizing Hormone (LH)
3.4.4. Follicle-Stimulating Hormone (FSH)
3.5. Histological Change Improvement
3.6. The Efficacy of Natural Products and Drug Therapy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kurzrock, R.; Cohen, P.R. Polycystic Ovary Syndrome in Men: Stein–Leventhal Syndrome Revisited. Med. Hypotheses 2007, 68, 480–483. [Google Scholar] [CrossRef]
- Sikiru, A.B.; Adeniran, M.A.; Akinola, K.; Behera, H.; Kalaignazhal, G.; Egena, S.S.A. Unraveling the Complexity of the Molecular Pathways Associated with Polycystic Ovary Syndrome (PCOS) and Identifying Molecular Targets for Therapeutic Development: A Review of Literature. Middle East. Fertil. Soc. J. 2023, 28, 16. [Google Scholar] [CrossRef]
- Azziz, R.; Carmina, E.; Chen, Z.; Dunaif, A.; Laven, J.S.E.; Legro, R.S.; Lizneva, D.; Natterson-Horowtiz, B.; Teede, H.J.; Yildiz, B.O. Polycystic Ovary Syndrome. Nat. Rev. Dis. Primers 2016, 2, 16057. [Google Scholar] [CrossRef]
- Zhu, T.; Cui, J.; Goodarzi, M.O. Polycystic Ovary Syndrome and Risk of Type 2 Diabetes, Coronary Heart Disease, and Stroke. Diabetes 2021, 70, 627–637. [Google Scholar] [CrossRef]
- Escobar-Morreale, H.F. Polycystic Ovary Syndrome: Definition, Aetiology, Diagnosis and Treatment. Nat. Rev. Endocrinol. 2018, 14, 270–284. [Google Scholar] [CrossRef] [PubMed]
- Sermondade, N.; Huberlant, S.; Bourhis-Lefebvre, V.; Arbo, E.; Gallot, V.; Colombani, M.; Fréour, T. Female Obesity Is Negatively Associated with Live Birth Rate Following IVF: A Systematic Review and Meta-Analysis. Hum. Reprod. Update 2019, 25, 439–451. [Google Scholar] [CrossRef]
- Chen, W.; Pang, Y. Metabolic Syndrome and PCOS: Pathogenesis and the Role of Metabolites. Metabolites 2021, 11, 869. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wu, Q.; Hao, Y.; Jiao, M.; Wang, X.; Jiang, S.; Han, L. Measuring the Global Disease Burden of Polycystic Ovary Syndrome in 194 Countries: Global Burden of Disease Study 2017. Hum. Reprod. 2021, 36, 1108–1119. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, H.; Qiao, L.; Liang, J.; Yao, H.; Lin, X.; Gao, Y. Study of Burden in Polycystic Ovary Syndrome at Global, Regional, and National Levels from 1990 to 2019. Healthcare 2023, 11, 562. [Google Scholar] [CrossRef]
- Jin, P.; Xie, Y. Treatment Strategies for Women with Polycystic Ovary Syndrome. Gynecol. Endocrinol. 2018, 34, 272–277. [Google Scholar] [CrossRef]
- Alahmadi, A.A.; Alzahrani, A.A.; Ali, S.S.; Alahmadi, B.A.; Arab, R.A.; El-Shitany, N.A.E.A. Both Matricaria Chamomilla and Metformin Extract Improved the Function and Histological Structure of Thyroid Gland in Polycystic Ovary Syndrome Rats through Antioxidant Mechanism. Biomolecules 2020, 10, 88. [Google Scholar] [CrossRef]
- Bednarska, S.; Siejka, A. The Pathogenesis and Treatment of Polycystic Ovary Syndrome: What’s New? Adv. Clin. Exp. Med. 2017, 26, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.W.; Tan, Y. Effectiveness of Co-Treatment with Traditional Chinese Medicine and Letrozole for Polycystic Ovary Syndrome: A Meta-Analysis. J. Integr. Med. 2017, 15, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Palanisamy, C.P.; Cui, B.; Zhang, H.; Panagal, M.; Paramasivam, S.; Chinnaiyan, U.; Jeyaraman, S.; Murugesan, K.; Rostagno, M.; Sekar, V.; et al. Anti-Ovarian Cancer Potential. of Phytocompound and Extract from South. African Medicinal Plants and Their Role in the Development of Chemotherapeutic Agents. Am. J. Cancer Res. 2021, 11, 1828. [Google Scholar]
- Chakraborty, P. Herbal Genomics as Tools for Dissecting New Metabolic Pathways of Unexplored Medicinal Plants and Drug Discovery. Biochim. Open 2018, 6, 9–16. [Google Scholar] [CrossRef]
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Orhan, I.E.; Banach, M.; Rollinger, J.M.; Barreca, D.; Weckwerth, W.; Bauer, R.; Bayer, E.A.; et al. Natural Products in Drug Discovery: Advances and Opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef] [PubMed]
- Khatoon, E.; Banik, K.; Harsha, C.; Sailo, B.L.; Thakur, K.K.; Khwairakpam, A.D.; Vikkurthi, R.; Devi, T.B.; Gupta, S.C.; Kunnumakkara, A.B. Phytochemicals in Cancer Cell Chemosensitization: Current Knowledge and Future Perspectives. Semin. Cancer Biol. 2022, 80, 306–339. [Google Scholar] [CrossRef] [PubMed]
- Kukula-Koch, W.A.; Widelski, J. Alkaloids. In Pharmacognosy; Elsevier: Amsterdam, The Netherlands, 2017; pp. 163–198. [Google Scholar]
- Fajardo Morales, V.; Araya, M.; Manosalva, L. Berberis Darwinii Hook; Springer: Berlin/Heidelberg, Germany, 2021; pp. 127–133. [Google Scholar]
- Riley, D.S. Mahonia Aquifolium. In Materia Medica of New and Old Homeopathic Medicines; Springer International Publishing: Cham, Switzerland, 2022; pp. 167–169. [Google Scholar]
- Tamane, P.; Mahadik, K.; Pokharkar, V. Buccal Spray of Standardized Berberis Aristata Extract Causes Tumour Regression, Chemoprotection and Downregulation of Inflammatory Mediators in Oral Cancer Hamster Model. J. Ethnopharmacol. 2023, 317, 116732. [Google Scholar] [CrossRef]
- Ionescu, O.-M.; Frincu, F.; Mehedintu, A.; Plotogea, M.; Cirstoiu, M.; Petca, A.; Varlas, V.; Mehedintu, C. Berberine-A Promising Therapeutic Approach to Polycystic Ovary Syndrome in Infertile/Pregnant Women. Life 2023, 13, 125. [Google Scholar] [CrossRef]
- Li, X.; Ma, J.; Guo, L.; Dong, C.; Zhu, G.; Hong, W.; Chen, C.; Wang, H.; Wu, X. Identification of Bioactive Compounds and Potential Mechanisms of Kuntai Capsule in the Treatment of Polycystic Ovary Syndrome by Integrating Network Pharmacology and Bioinformatics. Oxid. Med. Cell Longev. 2022, 2022, 3145938. [Google Scholar] [CrossRef]
- Chen, T.; Jia, F.; Yu, Y.; Zhang, W.; Wang, C.; Zhu, S.; Zhang, N.; Liu, X. Potential Role of Quercetin in Polycystic Ovary Syndrome and Its Complications: A Review. Molecules 2022, 27, 4476. [Google Scholar] [CrossRef] [PubMed]
- Pourteymour Fard Tabrizi, F.; Hajizadeh-Sharafabad, F.; Vaezi, M.; Jafari-Vayghan, H.; Alizadeh, M.; Maleki, V. Quercetin and Polycystic Ovary Syndrome, Current Evidence and Future Directions: A Systematic Review. J. Ovarian Res. 2020, 13, 11. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Li, D.; Kuang, H.; Feng, X.; Ai, W.; Wang, Y.; Shi, S.; Chen, J.; Fan, R. Berberine Increases Glucose Uptake and Intracellular ROS Levels by Promoting Sirtuin 3 Ubiquitination. Biomed. Pharmacother. 2020, 121, 109563. [Google Scholar] [CrossRef]
- Sülsen, V.P.; Lizarraga, E.; Mamadalieva, N.Z.; Lago, J.H.G. Potential of Terpenoids and Flavonoids from Asteraceae as Anti-Inflammatory, Antitumor, and Antiparasitic Agents. Evid.-Based Complement. Altern. Med. 2017, 2017, 6196198. [Google Scholar] [CrossRef]
- Frabasile, S.; Koishi, A.C.; Kuczera, D.; Silveira, G.F.; Verri, W.A.; Duarte dos Santos, C.N.; Bordignon, J. The Citrus Flavanone Naringenin Impairs Dengue Virus Replication in Human Cells. Sci. Rep. 2017, 7, 41864. [Google Scholar] [CrossRef]
- Kicinska, A.; Kampa, R.P.; Daniluk, J.; Sek, A.; Jarmuszkiewicz, W.; Szewczyk, A.; Bednarczyk, P. Regulation of the Mitochondrial BKCa Channel by the Citrus Flavonoid Naringenin as a Potential Means of Preventing Cell Damage. Molecules 2020, 25, 3010. [Google Scholar] [CrossRef]
- Ozcan, T.; Akpinar-Bayizit, A.; Yilmaz-Ersan, L.; Delikanli, B. Phenolics in Human Health. Int. J. Chem. Eng. Appl. 2014, 5, 393–396. [Google Scholar] [CrossRef]
- Kumar, N.; Goel, N. Phenolic Acids: Natural Versatile Molecules with Promising Therapeutic Applications. Biotechnol. Rep. 2019, 24, e00370. [Google Scholar] [CrossRef]
- Yanagimoto, A.; Matsui, Y.; Yamaguchi, T.; Hibi, M.; Kobayashi, S.; Osaki, N. Effects of Ingesting Both Catechins and Chlorogenic Acids on Glucose, Incretin, and Insulin Sensitivity in Healthy Men: A Randomized, Double-Blinded, Placebo-Controlled Crossover Trial. Nutrients 2022, 14, 5063. [Google Scholar] [CrossRef]
- Amini, M.; Bahmani, F.; Foroozanfard, F.; Vahedpoor, Z.; Ghaderi, A.; Taghizadeh, M.; Karbassizadeh, H.; Asemi, Z. The Effects of Fish Oil Omega-3 Fatty Acid Supplementation on Mental Health Parameters and Metabolic Status of Patients with Polycystic Ovary Syndrome: A Randomized, Double-Blind, Placebo-Controlled Trial. J. Psychosom. Obstet. Gynecol. 2018, 44, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Maleki, S.J.; Crespo, J.F.; Cabanillas, B. Anti-Inflammatory Effects of Flavonoids. Food Chem. 2019, 299, 125124. [Google Scholar] [CrossRef] [PubMed]
- Shen, N.; Wang, T.; Gan, Q.; Liu, S.; Wang, L.; Jin, B. Plant Flavonoids: Classification, Distribution, Biosynthesis, and Antioxidant Activity. Food Chem. 2022, 383, 132531. [Google Scholar] [CrossRef]
- Sun, Q.; Liu, Q.; Zhou, X.; Wang, X.; Li, H.; Zhang, W.; Yuan, H.; Sun, C. Flavonoids Regulate Tumor-Associated Macrophages—From Structure-Activity Relationship to Clinical Potential (Review). Pharmacol. Res. 2022, 184, 106419. [Google Scholar] [CrossRef] [PubMed]
- Badshah, S.L.; Faisal, S.; Muhammad, A.; Poulson, B.G.; Emwas, A.H.; Jaremko, M. Antiviral Activities of Flavonoids. Biomed. Pharmacother. 2021, 140, 111596. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.A.A.; Sadek, M.T.; Sharaf Eldin, H.E.M. Role of Pomegranate Extract in Restoring Endometrial Androgen Receptor Expression, Proliferation, and Pinopodes in a Rat Model of Polycystic Ovary Syndrome. Morphologie 2022, 106, 145–154. [Google Scholar] [CrossRef]
- Aliakbari, F.; Mirsadeghi, M.N.; Hashemi, E.; Rahimi-Madiseh, M.; Mohammadi, B. Effects of Combination Therapy with Bunium Persicum and Foeniculum Vulgare Extracts on Patients with Polycystic Ovary Syndrome. Adv. Biomed. Res. 2022, 11, 74. [Google Scholar] [CrossRef]
- Younas, A.; Hussain, L.; Shabbir, A.; Asif, M.; Hussain, M.; Manzoor, F. Effects of Fagonia Indica on Letrozole-Induced Polycystic Ovarian Syndrome (PCOS) in Young Adult Female Rats. Evid.-Based Complement. Altern. Med. 2022, 2022, 1397060. [Google Scholar] [CrossRef]
- Gharanjik, F.; Shojaeifard, M.B.; Karbalaei, N.; Nemati, M. The Effect of Hydroalcoholic Calendula Officinalis Extract on Androgen-Induced Polycystic Ovary Syndrome Model in Female Rat. Biomed. Res. Int. 2022, 2022, 7402598. [Google Scholar] [CrossRef]
- Peng, M.-F.; Tian, S.; Song, Y.-G.; Li, C.-X.; Miao, M.-S.; Ren, Z.; Li, M. Effects of Total Flavonoids from Eucommia Ulmoides Oliv. Leaves on Polycystic Ovary Syndrome with Insulin Resistance Model Rats Induced by Letrozole Combined with a High-Fat Diet. J. Ethnopharmacol. 2021, 273, 113947. [Google Scholar] [CrossRef] [PubMed]
- Khani, S.; Abdollahi, M.; Khalaj, A.; Heidari, H.; Zohali, S. The Effect of Hydroalcoholic Extract of Nigella Sativa Seed on Dehydroepiandrosterone-Induced Polycystic Ovarian Syndrome in Rats: An Experimental Study. Int. J. Reprod. Biomed. 2021, 19, 271–282. [Google Scholar] [CrossRef]
- Permadi, W.; Hestiantoro, A.; Ritonga, M.; Ferrina, A.; Iswari, W.; Sumapraia, K.; Muharram, R.; Djuwantono, T.; Wiweko, B.; Tjandrawinata, R. Administration of Cinnamon and Lagersroemia Speciosa Extract on Lipid Profile of Polycystic Ovarian Syndrome Women with High Body Mass Index. J. Hum. Reprod. Sci. 2021, 14, 16–20. [Google Scholar] [CrossRef]
- Yahay, M.; Heidari, Z.; Allameh, Z.; Amani, R. The Effects of Canola and Olive Oils Consumption Compared to Sunflower Oil, on Lipid Profile and Hepatic Steatosis in Women with Polycystic Ovarian Syndrome: A Randomized Controlled Trial. Lipids Health Dis. 2021, 20, 7. [Google Scholar] [CrossRef] [PubMed]
- Mehraban, M.; Jelodar, G.; Rahmanifar, F. A Combination of Spearmint and Flaxseed Extract Improved Endocrine and Histomorphology of Ovary in Experimental PCOS. J. Ovarian Res. 2020, 13, 32. [Google Scholar] [CrossRef]
- Mvondo, M.A.; Mzemdem Tsoplfack, F.I.; Awounfack, C.F.; Njamen, D. The Leaf Aqueous Extract of Myrianthus Arboreus P. Beauv. (Cecropiaceae) Improved Letrozole-Induced Polycystic Ovarian Syndrome Associated Conditions and Infertility in Female Wistar Rats. BMC Complement. Med. Ther. 2020, 20, 275. [Google Scholar] [CrossRef] [PubMed]
- Rababa’h, A.M.; Matani, B.R.; Ababneh, M.A. The Ameliorative Effects of Marjoram in Dehydroepiandrosterone Induced Polycystic Ovary Syndrome in Rats. Life Sci. 2020, 261, 118353. [Google Scholar] [CrossRef]
- Ashkar, F.; Eftekhari, M.H.; Tanideh, N.; Koohpeyma, F.; Mokhtari, M.; Irajie, C.; Iraji, A. Effect of Hydroalcoholic Extract of Berberis Integerrima and Resveratrol on Ovarian Morphology and Biochemical Parameters in Letrozole-Induced Polycystic Ovary Syndrome Rat Model: An Experimental Study. Int. J. Reprod. Biomed. 2020, 18, 637–650. [Google Scholar] [CrossRef] [PubMed]
- Kakadia, N.; Patel, P.; Deshpande, S.; Shah, G. Effect of Vitex Negundo L. Seeds in Letrozole Induced Polycystic Ovarian Syndrome. J. Tradit. Complement. Med. 2019, 9, 336–345. [Google Scholar] [CrossRef]
- Ndeingang, E.C.; Defo Deeh, P.B.; Watcho, P.; Kamanyi, A. Phyllanthus Muellerianus (Euphorbiaceae) Restores Ovarian Functions in Letrozole-Induced Polycystic Ovarian Syndrome in Rats. Evid.-Based Complement. Altern. Med. 2019, 2019, 2965821. [Google Scholar] [CrossRef] [PubMed]
- Dou, L.; Zheng, Y.; Li, L.; Gui, X.; Chen, Y.; Yu, M.; Guo, Y. The Effect of Cinnamon on Polycystic Ovary Syndrome in a Mouse Model. Reprod. Biol. Endocrinol. 2018, 16, 99. [Google Scholar] [CrossRef] [PubMed]
- Mannerås, L.; Fazliana, M.; Wan Nazaimoon, W.M.; Lönn, M.; Gu, H.F.; Östenson, C.G.; Stener-Victorin, E. Beneficial Metabolic Effects of the Malaysian Herb Labisia Pumila Var. Alata in a Rat Model of Polycystic Ovary Syndrome. J. Ethnopharmacol. 2010, 127, 346–351. [Google Scholar] [CrossRef] [PubMed]
- Desai, B.N.; Maharjan, R.H.; Nampoothiri, L.P. Aloe Barbadensis Mill. Formulation Restores Lipid Profile to Normal in a Letrozole-Induced Polycystic Ovarian Syndrome Rat Model. Pharmacogn. Res. 2012, 4, 109–115. [Google Scholar] [CrossRef]
- Karimi, E.; Heshmati, J.; Shirzad, N.; Vesali, S.; Hosseinzadeh-Attar, M.J.; Moini, A.; Sepidarkish, M. The Effect of Synbiotics Supplementation on Anthropometric Indicators and Lipid Profiles in Women with Polycystic Ovary Syndrome: A Randomized Controlled Trial. Lipids Health Dis. 2020, 19, 60. [Google Scholar] [CrossRef] [PubMed]
- Mcdougall, G.J.; Stewart, D. The Inhibitory Effects of Berry Polyphenols on Digestive Enzymes; IOS Press: Amsterdam, The Netherlands, 2005; Volume 23. [Google Scholar]
- Meshkani, M.; Saedisomeolia, A.; Yekaninejad, M.; Mousavi, S.A.; Ildarabadi, A.; Vahid-Dastjerdi, M. The Effect of Green Coffee Supplementation on Lipid Profile, Glycemic Indices, Inflammatory Biomarkers and Anthropometric Indices in Iranian Women With Polycystic Ovary Syndrome: A Randomized Clinical Trial. Clin. Nutr. Res. 2022, 11, 241. [Google Scholar] [CrossRef]
- Sherafatmanesh, S.; Ekramzadeh, M.; Tanideh, N.; Golmakani, M.T.; Koohpeyma, F. The Effects of Thylakoid-Rich Spinach Extract and Aqueous Extract of Caraway (Carum Carvi L.) in Letrozole-Induced Polycystic Ovarian Syndrome Rats. BMC Complement. Med. Ther. 2020, 20, 249. [Google Scholar] [CrossRef]
- Darabi, P.; Khazali, H.; Mehrabani Natanzi, M. Therapeutic Potentials of the Natural Plant Flavonoid Apigenin in Polycystic Ovary Syndrome in Rat Model: Via Modulation of pro-Inflammatory Cytokines and Antioxidant Activity. Gynecol. Endocrinol. 2020, 36, 582–587. [Google Scholar] [CrossRef] [PubMed]
- Borzoei, A.; Rafraf, M.; Niromanesh, S.; Farzadi, L.; Narimani, F.; Doostan, F. Effects of Cinnamon Supplementation on Antioxidant Status and Serum Lipids in Women with Polycystic Ovary Syndrome. J. Tradit. Complement. Med. 2018, 8, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Witchel, S.F.; Oberfield, S.E.; Peña, A.S. Polycystic Ovary Syndrome: Pathophysiology, Presentation, and Treatment With Emphasis on Adolescent Girls. J. Endocr. Soc. 2019, 3, 1545–1573. [Google Scholar] [CrossRef] [PubMed]
- Abasian, Z.; Rostamzadeh, A.; Mohammadi, M.; Hosseini, M.; Rafieian-kopaei, M. A Review on Role of Medicinal Plants in Polycystic Ovarian Syndrome: Pathophysiology, Neuroendocrine Signaling, Therapeutic Status and Future Prospects. Middle East. Fertil. Soc. J. 2018, 23, 255–262. [Google Scholar] [CrossRef]
- Fulghesu, A.M.; Piras, C.; Dessì, A.; Succu, C.; Atzori, L.; Pintus, R.; Gentile, C.; Angioni, S.; Fanos, V. Urinary Metabolites Reveal Hyperinsulinemia and Insulin Resistance in Polycystic Ovarian Syndrome (Pcos). Metabolites 2021, 11, 437. [Google Scholar] [CrossRef]
- Raja-Khan, N.; Stener-Victorin, E.; Wu, X.; Legro, R.S. The Physiological Basis of Complementary and Alternative Medicines for Polycystic Ovary Syndrome. Am. J. Physiol. Endocrinol. Metab. 2011, 301, 1–10. [Google Scholar] [CrossRef]
- Banting, L.K.; Gibson-Helm, M.; Polman, R.; Teede, H.J.; Stepto, N.K. Physical Activity and Mental Health in Women with Polycystic Ovary Syndrome. BMC Womens Health 2014, 14, 51. [Google Scholar] [CrossRef] [PubMed]
- Palomba, S.; de Wilde, M.A.; Falbo, A.; Koster, M.P.H.; La Sala, G.B.; Fauser, B.C.J.M. Pregnancy Complications in Women with Polycystic Ovary Syndrome. Hum. Reprod. Update 2015, 21, 575–592. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Lv, L.; Liu, Q.; Song, J. Total Flavonoids Extracted from Nervilia Fordii Function in Polycystic Ovary Syndrome through IL-6 Mediated JAK2/STAT3 Signaling Pathway. Biosci. Rep. 2019, 39, BSR20181380. [Google Scholar] [CrossRef] [PubMed]
- Heshmati, J.; Omani-Samani, R.; Vesali, S.; Maroufizadeh, S.; Rezaeinejad, M.; Razavi, M.; Sepidarkish, M. The Effects of Supplementation with Chromium on Insulin Resistance Indices in Women with Polycystic Ovarian Syndrome: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Horm. Metab. Res. 2018, 50, 193–200. [Google Scholar] [CrossRef]
- Bandariyan, E.; Mogheiseh, A.; Ahmadi, A. The Effect of Lutein and Urtica Dioica Extract on in Vitro Production of Embryo and Oxidative Status in Polycystic Ovary Syndrome in a Model of Mice. BMC Complement. Med. Ther. 2021, 21, 147. [Google Scholar] [CrossRef]
- Sies, H.; Jones, D.P. Reactive Oxygen Species (ROS) as Pleiotropic Physiological Signalling Agents. Nat. Rev. Mol. Cell Biol. 2020, 21, 363–383. [Google Scholar] [CrossRef]
- Wang, Z.; Nie, K.; Su, H.; Tang, Y.; Wang, H.; Xu, X.; Dong, H. Berberine Improves Ovulation and Endometrial Receptivity in Polycystic Ovary Syndrome. Phytomedicine 2021, 91, 153654. [Google Scholar] [CrossRef]
- Rosklint, T.; Ohlsson, B.G.; Wiklund, O.; Norén, K.; Hultén, L.M. Oxysterols Induce Interleukin-1β Production in Human Macrophages. Eur. J. Clin. Investig. 2002, 32, 35–42. [Google Scholar] [CrossRef]
- Nestler, J. Role of Hyperinsulinemia in the Pathogenesis of the Polycystic Ovary Syndrome, and Its Clinical Implications. Semin. Reprod. Med. 1997, 15, 111–122. [Google Scholar] [CrossRef]
- Kausar, F.; Rather, M.A.; Bashir, S.M.; Alsaffar, R.M.; Nabi, S.U.; Ali, S.I.; Goswami, P.; Ahmad, A.; Rashid, S.; Wali, A.F. Ameliorative Effects of Cuscuta Reflexa and Peucedanum Grande on Letrozole Induced Polycystic Ovary Syndrome in Wistar Rats. Redox Rep. 2021, 26, 94–104. [Google Scholar] [CrossRef]
- Huang, D.; Jaswa, E.; Kao, C.N.; Quinn, M.; Cedars, M.; Huddleston, H. Predictors of Adequate Physical Activity within a Multiethnic Polycystic Ovary Syndrome Patient Population: A Cross-Sectional Assessment. BMC Womens Health 2021, 21, 108. [Google Scholar] [CrossRef] [PubMed]
- Kamal, D.A.M.; Ibrahim, S.F.; Ugusman, A.; Mokhtar, M.H. Effects of Kelulut Honey on Oestrus Cycle Regulation and Histomorphological Changes in Letrozole-Induced Polycystic Ovary Syndrome Rats: A Preliminary Study. Life 2022, 12, 890. [Google Scholar] [CrossRef] [PubMed]
- Moshfegh, F.; Balanejad, S.Z.; Shahrokhabady, K.; Attaranzadeh, A. Crocus Sativus (Saffron) Petals Extract and Its Active Ingredient, Anthocyanin Improves Ovarian Dysfunction, Regulation of Inflammatory Genes and Antioxidant Factors in Testosterone-Induced PCOS Mice: Saffron Petal and Its Total Anthocyanin Effects on PCOS. J. Ethnopharmacol. 2022, 282, 114594. [Google Scholar] [CrossRef]
- Wang, J.; Qian, X.; Gao, Q.; Lv, C.; Xu, J.; Jin, H.; Zhu, H. Quercetin Increases the Antioxidant Capacity of the Ovary in Menopausal Rats and in Ovarian Granulosa Cell Culture in Vitro. J. Ovarian Res. 2018, 11, 51. [Google Scholar] [CrossRef]
- Gulan, T.; Yeernuer, T.; Sui, S.; Mayinuer, N. A Rat Model of Maternal Polycystic Ovary Syndrome Shows That Exposure to Androgens in Utero Results in Dysbiosis of the Intestinal Microbiota and Metabolic Disorders of the Newborn Rat. Med. Sci. Monit. 2019, 25, 9377–9391. [Google Scholar] [CrossRef] [PubMed]
References | Intervention | Time of Experiment and Sample Size | Study Design | Lipid Profile | Sex Hormone | Blood Glucose | Histological Changes |
---|---|---|---|---|---|---|---|
Ibrahim et al., 2022 [38] | Pomegranate juice extract (PJE) (400 mg/kg/day) | 3 weeks + 40 rats | Animal | Not measured | FSH: increase LH: increase Testosterone: increase Progesterone: not measured | Not measured | Increase in endometrial collagen content |
Aliakbari et al., 2022 [39] | B. persicum capsule (60 mg) + F. vulgare capsule (25 mg) | 4 months + 70 women with PCOS | Human | Not measured | FSH: increase LH: decrease Testosterone: increase Progesterone: increase | Not measured | Corpus luteum: not measured Number of follicles: decrease |
Younas et al., 2022 [40] | Ethanolic extract of Fagonia indica (500 mg/kg) | 7 weeks + 25 female rats | Animal | TG: decrease TC: decrease LDL: decrease HDL: increase | FSH: increase LH: decrease Testosterone: decrease Progesterone: increase | Not measured | Corpus luteum: not measured Number of follicles: decrease |
Younas et al., 2022 [40] | Kelulut honey (0.5 g/kg/days, 1 g/kg/day, 2 g/kg/day) | 35 days + 24 female rats | Animal | Not measured | Not measured | Not significant | Corpus luteum: decrease Number of follicles: decrease |
Gharanjik et al., 2022 [41] | Hydroalcoholic extract of Calendula officinalis (200, 500, and 1000 mg/kg) | 35 days + 60 female adult rats | Animal | Not measured | FSH: increase LH: decrease Testosterone: increase Progesterone: increase | Decrease | Corpus luteum: decrease Number of follicles: decrease |
Peng et al., 2021 [42] | Eucommia ulmoides Oliv. leaves (TFEL) | 21 days + 60 rats | Animal | Not measured | Not measured | Decrease | Corpus luteum: decrease Number of follicles: decrease |
Khani et al., 2021 [43] | Hydroalcoholic extract of N. Sativa seeds (50, 100, and 200 mg/kg) | 30 days + 36 rats | Animal | Not measured | FSH: decrease LH: increase Testosterone: decrease Progesterone: not measured | Decrease | Corpus luteum: increase Number of follicles: decrease |
Permadi et al., 2021 [44] | C. burmanii + L. spesiosa extract (100 mg) | +62 volunteers with PCOS | Human | TG: decrease TC: decrease LDL: unchanged HDL: decrease | FSH: not measured LH: not measured Testosterone: decrease Progesterone: not measured | Not measured | Not measured |
Yahay et al., 2021 [45] | Canola and olive oil (25 g) | 10 weeks + 72 women | Human | TG: decrease TC: decrease LDL: decrease HDL: decrease | Not measured | Not measured | Not measured |
Mehraban et al., 2020 [46] | Combination of spearmint extract (SE) and flaxseed extract (FE) | 30 days + 24 rats | Animal | Not measured | FSH: not measured LH: not measured Testosterone: increase Progesterone: increase | Not measured | Corpus luteum: decrease Number of follicles: decrease |
Mvondo et al., 2020 [47] | Aqueous M. arboreus extract (20, 110, and 200 mg/kg) | 30 days + 60 adult rats | Animal | Not measured | FSH: not measured LH: increase Testosterone: increase Progesterone: not measured | Not measured | Corpus luteum: increase Number of follicles: decrease |
Rababa’h et al., 2020 [48] | Marjoram extract (20 mg/kg) | 3 weeks + 75 adult rats | Animal | Not measured | FSH: not measured LH: not measured Testosterone: increase Progesterone: increase | Not measured | Not measured |
Ashkar et al., 2020 [49] | Hydroalcoholic extract of Berberis integerrima and resveratrol (3 g/kg of barberry and 20 g/kg of resveratrol) | 42 days + 70 adult rats | Animal | TG: increase TC: increase LDL: increase HDL: decrease | Not measured | Unchanged | Corpus luteum: increase Number of follicles: decrease |
Kakadia et al., 2019 [50] | Thylakoid-rich spinach extract and aqueous extract of caraway (Carum carvi L.) | 8 weeks + 60 rats | Animal | TG: decrease TC: decrease LDL: decrease HDL: increase | FSH: unchanged LH: decrease Testosterone: not measured Progesterone: not measured | Decrease | Corpus luteum: increase Number of follicles: decrease |
Kakadia et al., 2019 [50] | Vitex negundo L. extract, (200 and 400 mg/kg) | 40 days + 30 rats | Animal | TG: increase TC: unchanged LDL: not measured HDL: unchanged | FSH: decrease LH: decrease Testosterone: increase Progesterone: decrease | Decrease | Corpus luteum: increase Number of follicles: decrease |
Ndeingang et al., 2019 [51] | Methanolic extract of P. muellerianus (30, 60, 120 mg/kg) | 14 days + 114 rats | Animal | TG: unchanged TC: decrease LDL: decrease HDL: increase | FSH: unchanged LH: decrease Testosterone: decrease Progesterone: decrease | Decrease | Corpus luteum: increase Number follicles: decrease |
Dou et al., 2018 [52] | Cinnamon powder (10 mg/100 g) | 20 days + 50 mice | Animal | Not measured | FSH: increase LH: decrease Testosterone: decrease Progesterone: not measured | Decrease | Corpus luteum: increase Number follicles: decrease |
Mannerås et al., 2010 [53] | Malaysian herb Labisia pumila var. Alata (LPva) extract (50 mg/kg) | 5 weeks + 20 rats | Animal | TG: unchanged TC: unchanged LDL: unchanged HDL: unchanged | Not measured | Not measured | Not measured |
Drugs | Effects | Adverse Effects |
---|---|---|
Drug therapy | ||
Metformin | Reduces insulin sensitivity, improves lipid profile, helps in reducing bodyweight, infertility treatment | Diarrhea, nausea, gastrointestinal disorder |
Clomiphene | Infertility treatment | Headache, nausea, abdominal pain |
Oral contraceptives | Restore regular periods, reduce symptoms of hyperandrogenism | Nausea, vomiting, bodyweight gain, arterial hypertension |
Gonadotropins | Inhibit androgen | Vaginal dryness, depression, loss of bone mass |
Spironolactone | Inhibits androgen | Irregular menstrual cycles, hyperkalemia, hypotension |
Anti-inflammatory | Inhibits androgen | Irregular menstrual cycles, hyperkalemia, hypotension |
Insulin-sensitizing effects | Inhibit androgen | Irregular menstrual cycles, hyperkalemia, hypotension |
Natural product | ||
Pomegranate juice extract | Improves endometrial receptivity and normalizes hormonal level | No side effects |
Combination of B. persicum and F. vulgare | Decreases hirsutism and BMI and increases menstrual duration | No side effects |
Fagonia indica | Restores ovarian morphology and downregulates serum levels of testosterone | No side effects |
Calendula officinalis | Restores blood glucose and promotes folliculogenesis in the ovarian tissue | No side effects |
Olive leaves | Inhibit ovarian hyperplasia and restore blood glucose | No side effects |
N. sativa seeds | Improve hormone level in PCOS | No side effects |
Combination of C. burmanii and L. spesiosa extract | Improves testosterone level in PCOS | No side effects |
Combination of canola and olive oil | Improves endometrial receptivity and normalizes hormonal level | No side effects |
Combination of spearmint and flaxseed | Improves LH levels and promote folliculogenesis | No side effects |
M. arboreus | Restores ovarian morphology and improves level of testosterone | No side effects |
Marjoram extract | Improves PCOS symptoms | No side effects |
Combination Berberis integerrima and resveratrol | Improves biochemical factor and regenerates ovarian morphology | No side effects |
Combination of spinach and caraway | Improves biochemical factor and regenerates ovarian morphology | No side effects |
Vitex negundo L. | Improves sex hormone levels and restores blood glucose and ovarian histology | No side effects |
P. muellerianus | Improves blood glucose, lipid profile, and oxidative stress and prevents ovarian damage | No side effects |
Cinnamon powder | Improves ovary morphology, level of testosterone, and insulin sensitivity | No side effects |
Labisia pumila var. Alata (LPva) | Improves lipid profile and insulin resistance | No side effects |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wahid, S.; Ramli, M.D.C.; Fazleen, N.E.; Naim, R.M.; Mokhtar, M.H. Exploring the Therapeutic Potential of Natural Products in Polycystic Ovarian Syndrome (PCOS): A Mini-Review of Lipid Profile, Blood Glucose, and Ovarian Histological Improvements. Life 2024, 14, 150. https://doi.org/10.3390/life14010150
Wahid S, Ramli MDC, Fazleen NE, Naim RM, Mokhtar MH. Exploring the Therapeutic Potential of Natural Products in Polycystic Ovarian Syndrome (PCOS): A Mini-Review of Lipid Profile, Blood Glucose, and Ovarian Histological Improvements. Life. 2024; 14(1):150. https://doi.org/10.3390/life14010150
Chicago/Turabian StyleWahid, Syawany, Muhammad Danial Che Ramli, Nur Ezza Fazleen, Rosli Muhammad Naim, and Mohd Helmy Mokhtar. 2024. "Exploring the Therapeutic Potential of Natural Products in Polycystic Ovarian Syndrome (PCOS): A Mini-Review of Lipid Profile, Blood Glucose, and Ovarian Histological Improvements" Life 14, no. 1: 150. https://doi.org/10.3390/life14010150
APA StyleWahid, S., Ramli, M. D. C., Fazleen, N. E., Naim, R. M., & Mokhtar, M. H. (2024). Exploring the Therapeutic Potential of Natural Products in Polycystic Ovarian Syndrome (PCOS): A Mini-Review of Lipid Profile, Blood Glucose, and Ovarian Histological Improvements. Life, 14(1), 150. https://doi.org/10.3390/life14010150