DNA Methylation Machinery in Gastropod Mollusks
Abstract
:1. Introduction
2. Components of DNA Methylation Machinery
2.1. Writers of DNA Methylation
2.2. Readers of DNA Methylation
2.3. Erasers of DNA Methylation
3. DNA (Hydroxy)methylation Levels in Gastropods
4. Role of DNA Methylation Machinery in Gastropods
4.1. DNA Methylation Is an Important Player in Reproduction, Growth, and Development
4.2. DNA Methylation as Essential Mediator of Learning and Memory
4.3. DNA Methylation Is Responsive to Biotic Factors
4.4. Alteration of DNA Methylation in Response to Abiotic Factors
4.5. DNA Methylation as an Emerging Tool in Ecotoxicology
Toxicant | Study System | Exposure Scenario (Duration, Route, Chemical Form, Dose, Specimen Age, Target Organ) | Methylomic Endpoint | Method | Main Results | Reference |
---|---|---|---|---|---|---|
Metals | ||||||
Cadmium (Cd) | Cornu aspersum | 14-, 28-, and 56-day dietary exposure to 0, 0.05, 0.2, 1, 10 and 100 mg/L dietary Cd as CdCl2 (adult specimens, hepatopancreas) | Genomic 5mC content | Colorimetric ELISA | Significant and persistent hypermethylation starting at 28 days of exposure to 10 mg/L Cd | [77] |
28-day dietary exposure to 0, 0.05, 0.1, 0.2, 1, 10, and 100 mg/L Cd as CdSO4 (adults, hepatopancreas) | Genomic 5mC content | Colorimetric ELISA | Significant hypermethylation at 100 mg/L Cd | [78] | ||
Methylation status of 7 CpG sites at the 5′-UTR of the Cd-MT gene | MS-PCR | No effect | [78] | |||
28-day dietary exposure to 0, 0.05, 0.1, 0.2, 1, 5, 10, and 100 mg/L Cd as Cd(NO3)2 (adults, hepatopancreas) | Genomic 5mC content | Colorimetric ELISA | Significant hypermethylation at 100 mg/L Cd | [79] | ||
Idem above (adults, ovotestis) | Genomic 5mC content | Colorimetric ELISA | No effect | [79] | ||
28-day dietary exposure to 0, 0.05, 0.2, 1, 10 and 100 mg/L dietary Cd as CdCl2 (adult specimens, hepatopancreas) | Genomic 5hmC content | Colorimetric ELISA | Increase in 5hmC content at 1 mg/L Cd | [71] | ||
Pesticide and endocrine disruptors | ||||||
Vinclozolin (VZ) | Physa acuta | Intergenerational effect: 24-h F0 cumulative exposure via water to 0, 0.01, 0.1, 10 and 100 µg/L VZ; effect measured in F1 (0, 15, 28 days; all doses) and F2 (0, 28 days; 0, 0.1, 100 µg/L VZ) for whole body | Genomic 5mC content | Colorimetric ELISA | No effect | [74] |
45-day cumulated exposure via water to 0, 0.0005, 0.005, 0.05, 0.5 and 5 mg/L VZ (adults, whole body) | Genomic DNA methylation | MSAP | Significant changes in DNA methylation patterns | [114] | ||
Prednisolone (PDS) | Physa acuta | Multigenerational effect: F0–F2 cumulative exposure via water to 2, 4, 8, 16, 32, 64 µg/L PDS (adults, whole body) | Global DNA methylation | Colorimetric ELISA | Linear decrease of 5mC content in F1 generation | [76] |
5. Conclusions and Future Perspectives for Research on Gastropod Methylome
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tammen, S.A.; Friso, S.; Choi, S.W. Epigenetics: The link between nature and nurture. Mol. Asp. Med. 2013, 34, 753–764. [Google Scholar] [CrossRef] [PubMed]
- Allis, C.D.; Jenuwein, T. The molecular hallmarks of epigenetic control. Nat. Rev. Genet. 2016, 17, 487–500. [Google Scholar] [CrossRef] [PubMed]
- Li, Y. Modern epigenetics methods in biological research. Methods 2021, 187, 104–113. [Google Scholar] [CrossRef] [PubMed]
- Fallet, M.; Luquet, E.; David, P.; Cosseau, C. Epigenetic inheritance and intergenerational effects in mollusks. Gene 2020, 729, 144166. [Google Scholar] [CrossRef] [PubMed]
- Jones, P.A. Functions of DNA methylation: Islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 2012, 13, 484–492. [Google Scholar] [CrossRef] [PubMed]
- Gowher, H.; Jeltsch, A. Mammalian DNA methyltransferases: New discoveries and open questions. Biochem. Soc. Trans. 2018, 46, 1191–1202. [Google Scholar] [CrossRef] [PubMed]
- Lio, C.W.J.; Yue, X.; López-Moyado, I.F.; Tahiliani, M.; Aravind, L.; Rao, A. TET methylcytosine oxidases: New insights from a decade of research. J. Biosci. 2020, 45, 21. [Google Scholar] [CrossRef]
- Bochtler, M.; Kolano, A.; Xu, G.L. DNA demethylation pathways: Additional players and regulators. Bioessays 2017, 39, 1–13. [Google Scholar] [CrossRef]
- Kriukienė, E.; Tomkuvienė, M.; Klimašauskas, S. 5-Hydroxymethylcytosine: The many faces of the sixth base of mammalian DNA. Chem. Soc. Rev. 2024, 53, 2264–2283. [Google Scholar] [CrossRef]
- Cortellino, S.; Xu, J.; Sannai, M.; Moore, R.; Caretti, E.; Cigliano, A.; Le Coz, M.; Devarajan, K.; Wessels, A.; Soprano, D.; et al. Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair. Cell 2011, 146, 67–79. [Google Scholar] [CrossRef]
- Caldwell, B.A.; Liu, M.Y.; Prasasya, R.D.; Wang, T.; DeNizio, J.E.; Leu, N.A.; Amoh, N.A.A.; Krapp, C.; Lan, Y.; Shields, E.J.; et al. Functionally distinct roles for TET-oxidized 5-methylcytosine bases in somatic reprogramming to pluripotency. Mol. Cell 2021, 81, 859–869. [Google Scholar] [CrossRef] [PubMed]
- Haszprunar, G.; Wanninger, A. Molluscs. Curr. Biol. 2012, 22, R510–R514. Available online: https://www.cell.com/current-biology/pdf/S0960-9822(12)00592-1.pdf (accessed on 2 February 2024). [CrossRef] [PubMed]
- Jang, H.S.; Shin, W.J.; Lee, J.E.; Do, J.T. CpG and non-CpG methylation in epigenetic gene regulation and brain function. Genes 2017, 8, 148. [Google Scholar] [CrossRef] [PubMed]
- Bird, A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002, 16, 6–21. [Google Scholar] [CrossRef] [PubMed]
- Keller, T.E.; Han, P.; Soojin, V.Y. Evolutionary transition of promoter and gene body DNA methylation across invertebrate-vertebrate boundary. Mol. Biol. Evol. 2016, 33, 1019–1028. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, Y.; Valencia, M.M.; Yu, Y.; Ouchi, Y.; Takahashi, K.; Shokhirev, M.N.; Lande, K.; Willimas, A.E.; Fresia, C.; Kurita, M.; et al. Transgenerational inheritance of acquired epigenetic signatures at CpG islands in mice. Cell 2023, 186, 715–731. [Google Scholar] [CrossRef]
- Luo, C.; Hajkova, P.; Ecker, J.R. Dynamic DNA methylation: In the right place at the right time. Science 2018, 361, 1336–1340. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, Y. Role of mammalian DNA methyltransferases in development. Annu. Rev. Biochem. 2020, 89, 135–158. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.C.; Wang, M.Y.; Feng, J.R.; Chang, Y.; Ji, S.R.; Wu, Y. Reversible promoter methylation determines fluctuating expression of acute phase proteins. eLife 2020, 9, e51317. [Google Scholar] [CrossRef]
- Adema, C.M.; Hillier, L.W.; Jones, C.S.; Loker, E.S.; Knight, M.; Minx, P.; Oliveira, G.; Raghavan, N.; Shedlock, A.; do Amaral, L.R.; et al. Whole genome analysis of a schistosomiasis-transmitting freshwater snail. Nat. Commun. 2017, 8, 15451. [Google Scholar] [CrossRef]
- Männer, L.; Schell, T.; Provataris, P.; Haase, M.; Greve, C. Inference of DNA methylation patterns in molluscs. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2021, 376, 20200166. [Google Scholar] [CrossRef] [PubMed]
- Šrut, M. Ecotoxicological epigenetics in invertebrates: Emerging tool for the evaluation of present and past pollution burden. Chemosphere 2021, 282, 131026. [Google Scholar] [CrossRef] [PubMed]
- Fallet, M. Epigenetics in Mollusks. In Epigenetics in Aquaculture, 1st ed.; Piferrer, F., Wang, H.P., Eds.; John Wiley & Sons Ltd.: Chichester, UK, 2023; pp. 325–354. [Google Scholar] [CrossRef]
- Dixon, G.B.; Bay, L.K.; Matz, M.V. Evolutionary consequences of DNA methylation in a basal metazoan. Mol. Biol. Evol. 2016, 33, 2285–2293. [Google Scholar] [CrossRef] [PubMed]
- Faulk, C. Implications of DNA Methylation in Toxicology. In Toxicoepigenetics: Core Principles and Applications, 1st ed.; McCullough, S.D., Dolinoy, D., Eds.; Academic Press: London, UK, 2018; pp. 153–171. [Google Scholar] [CrossRef]
- Law, J.A.; Jacobsen, S.E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat. Rev. Genet. 2010, 11, 204–220. [Google Scholar] [CrossRef] [PubMed]
- Lv, H.; Dao, F.Y.; Zhang, D.; Yang, H.; Lin, H. Advances in mapping the epigenetic modifications of 5-methylcytosine (5mC), N6-methyladenine (6mA), and N4-methylcytosine (4mC). Biotechnol. Bioeng. 2021, 118, 4204–4216. [Google Scholar] [CrossRef] [PubMed]
- He, B.; Zhang, C.; Zhang, X.; Fan, Y.; Zeng, H.; Liu, J.E.; Meng, H.; Bai, D.; Peng, J.; Zhang, Q.; et al. Tissue-specific 5-hydroxymethylcytosine landscape of the human genome. Nat. Commun. 2021, 12, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Efimova, O.A.; Koltsova, A.S.; Krapivin, M.I.; Tikhonov, A.V.; Pendina, A.A. Environmental epigenetics and genome flexibility: Focus on 5-hydroxymethylcytosine. Int. J. Mol. Sci. 2020, 21, 3223. [Google Scholar] [CrossRef]
- Branco, M.R.; Ficz, G.; Reik, W. Uncovering the role of 5-hydroxymethylcytosine in the epigenome. Nat. Rev. Genet. 2011, 13, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Shi, D.Q.; Ali, I.; Tang, J.; Yang, W.C. New insights into 5hmC DNA modification: Generation, distribution and function. Front. Genet. 2017, 8, 100. [Google Scholar] [CrossRef]
- Kellinger, M.W.; Song, C.X.; Chong, J.; Lu, X.Y.; He, C.; Wang, D. 5-formylcytosine and 5-carboxylcytosine reduce the rate and substrate specificity of RNA polymerase II transcription. Struct. Mol. Biol. 2012, 19, 831–833. [Google Scholar] [CrossRef]
- Barker, G.M. The Biology of Terrestrial Molluscs; CABI Publishing: Wallingford, UK, 2001; pp. ix–x. [Google Scholar]
- Dallinger, R.; Rainbow, P.S. Ecotoxicology of Metals in Invertebrates; Lewis Publishers: Boca Raton, FL, USA, 2003; pp. 4–8. [Google Scholar]
- Nica, D.V.; Bordean, D.M.; Borozan, A.B.; Gergen, I.; Bura, M.; Banatean-Dunea, I. Use of land snails (Pulmonata) for monitoring copper pollution in terrestrial ecosystems. In Reviews of Environmental Contamination and Toxicology; Whitacre, D.M., Ed.; Springer Science & Business Media LLC: New York, NY, USA, 2013; Volume 225, pp. 95–137. [Google Scholar] [CrossRef]
- Loker, E.S. Gastropod immunobiology. In Invertebrate Immunity; Söderhäll, K., Ed.; Springer Science & Business Media LLC: New York, NY, USA, 2010; Volume 708, pp. 17–43. [Google Scholar] [CrossRef]
- Moroz, L.L. Aplysia. Curr. Biol. 2011, 21, R60–R61. [Google Scholar] [CrossRef] [PubMed]
- Geyer, K.K.; Niazi, U.H.; Duval, D.; Cosseau, C.; Tomlinson, C.; Chalmers, I.W.; Swain, M.T.; Cutress, D.J.; Bickham-Wright, U.; Munshi, S.E.; et al. The Biomphalaria glabrata DNA Methylation Machinery Displays Spatial Tissue Expression, Is Differentially Active in Distinct Snail Populations and Is Modulated by Interactions with Schistosoma mansoni. PLoS Negl. Trop. Dis. 2016, 11, e0005246. [Google Scholar] [CrossRef]
- Lyko, F. The DNA methyltransferase family: A versatile toolkit for epigenetic regulation. Nat. Rev. Genet. 2018, 19, 81–92. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, M.; De, S.; Chakrabarti, S. Origin and evolution of DNA methyltransferases (DNMT) along the tree of life: A multi-genome survey. BioRxiv 2020. preprint. Available online: https://www.biorxiv.org/content/10.1101/2020.04.09.033167v1.full.pdf (accessed on 13 January 2024). [CrossRef]
- Lukowiak, K.; Ringseis, E.; Spencer, G.; Wildering, W.; Syed, N. Operant conditioning of aerial respiratory behaviour in Lymnaea stagnalis. J. Exp. Biol. 1996, 199, 683–691. [Google Scholar] [CrossRef] [PubMed]
- Rajasethupathy, P.; Antonov, I.; Sheridan, R.; Frey, S.; Sander, C.; Tuschl, T.; Kandel, E.R. A role for neuronal piRNAs in the epigenetic control of memory-related synaptic plasticity. Cell 2012, 149, 693–707. [Google Scholar] [CrossRef] [PubMed]
- Solntseva, S.V.; Filatova, T.S.; Nikitin, P.V.; Bredov, D.V.; Kozyrev, S.A.; Nikitin, V.P. Processes of DNA methylation are involved in the mechanisms of amnesia induction and conditioned food aversion memory reconsolidation. Bull. Exp. Biol. Med. 2014, 156, 430–434. [Google Scholar] [CrossRef] [PubMed]
- Nikitin, V.P.; Solntseva, S.V.; Nikitin, P.V.; Kozyrev, S.A. The role of DNA methylation in the mechanisms of memory reconsolidation and development of amnesia. Behav. Brain Res. 2015, 279, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Forest, J.; Sunada, H.; Dodd, S.; Lukowiak, K. Training Lymnaea in the presence of a predator scent results in a long-lasting ability to form enhanced long-term memory. J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 2016, 202, 399–409. [Google Scholar] [CrossRef]
- Sunada, H.; Riaz, H.; de Freitas, E.; Lukowiak, K.; Swinton, C.; Swinton, E.; Protheroe, A.; Lukowiak, K.; Shymansky, T.; Komatsuzaki, Y. Heat stress enhances LTM formation in Lymnaea: Role of HSPs and DNA methylation. J. Exp. Biol. 2016, 219, 1337–1345. [Google Scholar] [CrossRef]
- Pearce, K.; Cai, D.; Roberts, A.C.; Glanzman, D.L. Role of protein synthesis and DNA methylation in the consolidation and maintenance of long-term memory in Aplysia. eLife 2017, 6, e18299. [Google Scholar] [CrossRef]
- Rothwell, C.M.; Lukowiak, K.D. Impairing DNA methylation obstructs memory enhancement for at least 24 hours in Lymnaea. Commun. Integr. Biol. 2017, 10, e1306616. [Google Scholar] [CrossRef] [PubMed]
- Bédécarrats, A.; Chen, S.; Pearce, K.; Cai, D.; Glanzman, D.L. RNA from trained Aplysia can induce an epigenetic engram for long-term sensitization in untrained Aplysia. Eneuro 2018, 5, ENEURO.0038-18.2018. [Google Scholar] [CrossRef] [PubMed]
- Nikitin, V.P.; Kozyrev, S.A.; Solntseva, S.V. Peculiarities of participation of DNA methyltransferases in the mechanisms of storage, impairment, and recovery of conditioned food aversion memory. Bull. Exp. Biol. Med. 2018, 166, 1–6. [Google Scholar] [CrossRef]
- Yang, Q.; Antonov, I.; Castillejos, D.; Nagaraj, A.; Bostwick, C.; Kohn, A.; Moreoz, L.L.; Hawkins, R.D. Intermediate-term memory in Aplysia involves neurotrophin signaling, transcription, and DNA methylation. Learn. Mem. 2018, 25, 620–628. [Google Scholar] [CrossRef]
- Luviano Aparicio, N. The DNA Methylation of the Snail Biomphalaria glabrata, Role and Impact on the Generation of Phenotypic Plasticity. Ph.D. Thesis, University of Perpignan, Perpignan, France, 10 May 2021. Available online: https://theses.hal.science/tel-03223120/ (accessed on 2 February 2024).
- Zuzina, A.B.; Vinarskaya, A.K.; Balaban, P.M. DNA Methylation inhibition reversibly impairs the long-term context memory maintenance in Helix. Int. J. Mol. Sci. 2023, 24, 14068. [Google Scholar] [CrossRef] [PubMed]
- Fneich, S.; Dheilly, N.; Adema, C.; Rognon, A.; Reichelt, M.; Bulla, J.; Grunau, C.; Cosseau, C. 5-methyl-cytosine and 5-hydroxy-methyl-cytosine in the genome of Biomphalaria glabrata, a snail intermediate host of Schistosoma mansoni. Parasit. Vectors 2013, 6, 1. [Google Scholar] [CrossRef]
- Biomphalaria glabrata. Genome Initiative. Available online: https://digitalrepository.unm.edu/biomphalaria-genome/ (accessed on 12 January 2024).
- Dabe, E.C.; Sanford, R.S.; Kohn, A.B.; Bobkova, Y.; Moroz, L.L. DNA Methylation in Basal Metazoans: Insights from Ctenophores. Integr. Comp. Biol. 2015, 55, 1096–1110. [Google Scholar] [CrossRef]
- Lottia gigantea. Genome Portal. Available online: http://genome.jgi.doe.gov/Lotgi1/Lotgi1.info.html (accessed on 22 January 2024).
- Moroz, L.L.; Edwards, J.R.; Puthanveettil, S.V.; Kohn, A.B.; Ha, T.; Heyland, A.; Knudsen, B.; Sahni, A.; Yu, A.; Liu, L.; et al. Neuronal transcriptome of Aplysia: Neuronal compartments and circuitry. Cell 2006, 127, 1453–1467. [Google Scholar] [CrossRef]
- methyl-CpG-Binding Domain Protein 2 [Aplysia californica]. Available online: https://www.ncbi.nlm.nih.gov/protein/XP_005103642.1 (accessed on 22 January 2024).
- Moroz, L.L.; Kohn, A.B. Single-neuron transcriptome and methylome sequencing for epigenomic analysis of aging. In Biological Aging: Methods and Protocols; Trygve, T., Ed.; Springer Science & Business Media LLC: New York, NY, USA, 2013; Volume 1048, pp. 323–352. [Google Scholar] [CrossRef]
- Cocci, P.; Mosconi, G.; Palermo, F.A. Effects of tributyltin on retinoid X receptor gene expression and global DNA methylation during intracapsular development of the gastropod Tritia mutabilis (Linnaeus, 1758). Environ. Toxicol. Pharmacol. 2021, 88, 103753. [Google Scholar] [CrossRef]
- Draghici, G.A.; Nica, D.; Dehelean, C.; Susan, R.; Susan, M. DNMT gene expression in Cantareus aspersus snails exposed to low cadmium dose. Naunyn. Schmiedebergs Arch. Pharmacol. 2020, 393, 53–54. [Google Scholar]
- Elango, N.; Yi, S.V. DNA methylation and structural and functional bimodality of vertebrate promoters. Mol. Biol. Evol. 2008, 25, 1602–1608. [Google Scholar] [CrossRef]
- Mahmood, N.; Rabbani, S.A. DNA methylation readers and cancer: Mechanistic and therapeutic applications. Front. Oncol. 2019, 9, 489. [Google Scholar] [CrossRef] [PubMed]
- Du, Q.; Luu, P.L.; Stirzaker, C.; Clark, S.J. Methyl-CpG-binding domain proteins: Readers of the epigenome. Epigenomics 2015, 7, 1051–1073. [Google Scholar] [CrossRef] [PubMed]
- Parry, L.; Clarke, A.R. The roles of the methyl-CpG binding proteins in cancer. Genes Cancer 2011, 2, 618–630. [Google Scholar] [CrossRef] [PubMed]
- Moore, L.D.; Le, T.; Fan, G. DNA methylation and its basic function. Neuropsychopharmacology 2013, 38, 23–38. [Google Scholar] [CrossRef] [PubMed]
- Vaughan, R.M.; Dickson, B.M.; Cornett, E.M.; Harrison, J.S.; Kuhlman, B.; Rothbart, S.B. Comparative biochemical analysis of UHRF proteins reveals molecular mechanisms that uncouple UHRF2 from DNA methylation maintenance. Nucleic Acids Res. 2018, 46, 4405–4416. [Google Scholar] [CrossRef] [PubMed]
- Kohli, R.M.; Zhang, Y. TET enzymes, TDG and the dynamics of DNA demethylation. Nature 2013, 7472, 472–479. [Google Scholar] [CrossRef] [PubMed]
- Melamed, P.; Yosefzon, Y.; David, C.; Tsukerman, A.; Pnueli, L. Tet enzymes, variants, and differential effects on function. Front. Cell Dev. Biol. 2018, 6, 22. [Google Scholar] [CrossRef]
- Nica, D.; Popescu, C.; Draghici, G.; Privistirescu, I.; Suciu, M.; Stöger, R. Effect of cadmium on cytosine hydroxymethylation in gastropod hepatopancreas. Environ. Sci. Pollut. Res. 2017, 24, 15187–15195. [Google Scholar] [CrossRef]
- Regev, A.; Lamb, M.J.; Jablonka, E. The role of DNA methylation in invertebrates: Developmental regulation or genome defense? Mol. Biol. Evol. 1998, 15, 880–891. [Google Scholar] [CrossRef]
- Joe, M. The Epigenetic Effect of Trematode Infection on the Snailhost Zeacumantus subcarinatus. Master’s Thesis, University of Otago, Dunedin, New Zealand, 2013. Available online: https://ourarchive.otago.ac.nz/handle/10523/4163 (accessed on 1 February 2024).
- Müller, R.; Charaf, S.; Scherer, C.; Oppold, A.; Oehlmann, J.; Wagner, M. Phenotypic and epigenetic effects of vinclozolin in the gastropod Physella acuta. J. Mollusc. Stud. 2016, 82, 320–327. [Google Scholar] [CrossRef]
- Luviano, N.; Lopez, M.; Gawehns, F.; Chaparro, C.; Arimondo, P.B.; Ivanovic, S.; David, P.; Verthoeven, K.; Cosseau, C.; Grunau, C. The methylome of Biomphalaria glabrata and other mollusks: Enduring modification of epigenetic landscape and phenotypic traits by a new DNA methylation inhibitor. Epigenet. Chromatin 2021, 14, 48. [Google Scholar] [CrossRef]
- Bal, N.; Kumar, A.; Nugegoda, D. Assessing multigenerational effects of prednisolone to the freshwater snail, Physa acuta (Gastropoda: Physidae). J. Hazard. Mater. 2017, 339, 281–291. [Google Scholar] [CrossRef] [PubMed]
- Nica, D.V.; Popescu, C.; Draghici, G.A.; Andrica, F.-M.; Privistirescu, I.A.; Gergen, I.I.; Stöger, R. High-level dietary cadmium exposure is associated with global DNA hypermethylation in the gastropod hepatopancreas. PLoS ONE 2017, 12, e0184221. [Google Scholar] [CrossRef] [PubMed]
- Georgescu, M.; Drăghici, G.A.; Oancea, E.F.; Dehelean, C.A.; Şoica, C.; Vlăduţ, N.V.; Nica, D.V. Effects of cadmium sulfate on the brown garden snail Cornu aspersum: Implications for DNA Methylation. Toxics 2021, 9, 306. [Google Scholar] [CrossRef] [PubMed]
- Draghici, G.A.; Dehelean, C.A.; Moaca, A.E.; Moise, M.L.; Pinzaru, I.; Vladut, V.N.; Banatean-Dunea, I.; Nica, D. Cadmium nitrate and DNA methylation in gastropods: Comparison between ovotestis and hepatopancreas. PeerJ 2023, 11, e15032. [Google Scholar] [CrossRef] [PubMed]
- Bogan, S.N.; Johnson, K.M.; Hofmann, G.E. Changes in genome-wide methylation and gene expression in response to future pCO2 Extremes in the antarctic pteropod Limacina helicina antarctica. Front. Mar. Sci. 2020, 6, 788. [Google Scholar] [CrossRef]
- Zhang, H.; Tan, K.; Li, S.; Ma, H.; Zheng, H. DNA methylation in molluscs growth and development: An overview. Aquac. Res. 2022, 53, 4893–4900. [Google Scholar] [CrossRef]
- Huang, Z.; Xiao, Q.; Yu, F.; Gan, Y.; Lu, C.; Peng, W.; Zhang, Y.; Luo, X.; Chen, N.; You, W.; et al. Comparative transcriptome and DNA methylation analysis of phenotypic plasticity in the pacific abalone (Haliotis discus hannai). Front. Physiol. 2021, 12, 683499. [Google Scholar] [CrossRef]
- Aliaga, B.; Bulla, I.; Mouahid, G.; Duval, D.; Grunau, C. Universality of the DNA methylation codes in Eucaryotes. Sci. Rep. 2019, 9, 173. [Google Scholar] [CrossRef] [PubMed]
- Ittiprasert, W.; Miller, A.; Myers, J.; Nene, V.; El-Sayed, N.M.; Knight, M. Identification of immediate response genes dominantly expressed in juvenile resistant and susceptible Biomphalaria glabrata snails upon exposure to Schistosoma mansoni. Mol. Biochem. Parasitol. 2010, 169, 27–39. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Yuan, S.; Du, X.; Liu, J.; Zhou, W.; Wei, F. Comparative analysis reveals epigenomic evolution related to species traits and genomic imprinting in mammals. Innovation 2023, 4, 100434. [Google Scholar] [CrossRef] [PubMed]
- Kerney, M.P.; Cameron, R.A.D. A Field Guide to the Land Snails of Britain and Northwestern Europe, 1st ed.; Collins: London, UK, 1979; pp. 15–25. [Google Scholar]
- Geyer, K.K.; Chalmers, I.W.; MacKintosh, N.; Hirst, J.E.; Geoghegan, R.; Badets, M.; Brophy, P.M.; Brehm, K.; Hoffmann, K.F. Cytosine methylation is a conserved epigenetic feature found throughout the phylum Platyhelminthes. BMC Genom. 2013, 14, 462. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Zhang, Y.; Zhong, Q.; Zhan, K.; Bi, J.; Tang, J.; Xie, J.; Li, B. Identification and functional characterization of methyl-CpG binding domain protein from Tribolium castaneum. Genomics 2020, 112, 2223–2232. [Google Scholar] [CrossRef] [PubMed]
- Fu, T.Y.; Ji, S.S.; Tian, Y.L.; Lin, Y.G.; Chen, Y.M.; Zhong, Q.E.; Zheng, S.C.; Xu, G.F. Methyl-CpG binding domain (MBD) 2/3 specifically recognizes and binds to the genomic mCpG site with a β-sheet in the MBD to affect embryonic development in Bombyx mori. Insect Sci. 2023, 30, 1607–1621. [Google Scholar] [CrossRef]
- Ribeiro-Brasil, D.R.G.; Castro, Í.B.; Petracco, M.; Batista, R.M.; Brasil, L.S.; Ferreira, J.A.; Borba, T.A.C.; Rollnic, M.; Fillman, G.; Amado, L.L. Spatial distribution of butyltins and imposex in eastern Brazilian Amazon. Mar. Pollut. Bull. 2021, 165, 112155. [Google Scholar] [CrossRef]
- Šrut, M.; Sabolić, I.; Erdelez, A.; Grbin, D.; Furdek Turk, M.; Bakarić, R.; Peharda, M.; Štambuk, A. Marine pollutant tributyltin affects DNA methylation and fitness of Banded Murex (Hexaplex trunculus) populations. Toxics 2023, 11, 276. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, G.S.; Adams, D.M.; Haghani, A.; Lu, A.T.; Zoller, J.; Breeze, C.E.; Arnold, B.D.; Ball, H.C.; Carter, G.C.; Cooper, L.N.; et al. DNA methylation predicts age and provides insight into exceptional longevity of bats. Nat. Commun. 2021, 12, 1615. [Google Scholar] [CrossRef]
- Horvath, S.; Haghani, A.; Macoretta, N.; Ablaeva, J.; Zoller, J.A.; Li, C.Z.; Zhang, J.; Takasugi, M.; Zhao, Y.; Rydkina, E.; et al. DNA methylation clocks show slower progression of aging in naked mole-rat queens. BioRxiv 2021. preprint. Available online: https://www.biorxiv.org/content/10.1101/2021.03.15.435536v1.full.pdf (accessed on 15 January 2024). [CrossRef]
- Zhao, B.; van Bodegom, P.M.; Trimbos, K.B. Environmental DNA methylation of Lymnaea stagnalis varies with age and is hypermethylated compared to tissue DNA. Mol. Ecol. Resour. 2023, 23, 81–91. [Google Scholar] [CrossRef]
- Barnes, M.A.; Turner, C.R. The ecology of environmental DNA and implications for conservation genetics. Conserv. Genet. 2016, 17, 1–17. [Google Scholar] [CrossRef]
- Gribkova, E.D.; Lee, C.A.; Brown, J.W.; Cui, J.; Liu, Y.; Norekian, T.; Gillette, R. A common modular design of nervous systems originating in soft-bodied invertebrates. Front. Physiol. 2023, 14, 1263453. [Google Scholar] [CrossRef] [PubMed]
- Alkon, D.L. Learning in a marine snail. Sci. Am. 1983, 249, 70–85. [Google Scholar] [CrossRef] [PubMed]
- Kupfermann, I.; Pinsker, H.; Castellucci, V.F.; Kandel, E.R. Central and peripheral control of gill movements in Aplysia. Science 1971, 174, 1252–1256. [Google Scholar] [CrossRef]
- Carew, T.J.; Walters, E.T.; Kandel, E.R. Associative learning in a simple reflex of Aplysia. Sot. Neurosci. Abstr. 1981, 7, 353. [Google Scholar] [CrossRef]
- Day, J.J.; Sweatt, J.D. DNA methylation and memory formation. Nat. Neurosci. 2010, 13, 1319–1323. [Google Scholar] [CrossRef]
- Duncan, E.J.; Cunningham, C.B.; Dearden, P.K. Phenotypic plasticity: What has DNA methylation got to do with it? Insects 2022, 13, 110. [Google Scholar] [CrossRef]
- Wentzell, M.M.; Martínez-Rubio, C.; Miller, M.W.; Murphy, A.D. Comparative neurobiology of feeding in the opisthobranch sea slug, Aplysia, and the pulmonate snail, Helisoma: Evolutionary considerations. Brain Behav Evol. 2009, 74, 219–230. [Google Scholar] [CrossRef]
- Lukowiak, K.; Heckler, B.; Bennett, T.E.; Schriner, E.K.; Wyrick, K.; Jewett, C.; Todd, R.P.; Sorg, B.A. Enhanced memory persistence is blocked by a DNA methyltransferase inhibitor in the snail Lymnaea stagnalis. J. Exp. Biol. 2014, 217, 2920–2929. [Google Scholar] [CrossRef]
- Bels, V.L.; Russell, A.P. The concept of convergent evolution and its relationship to the understanding of form and function. In Convergent Evolution: Animal Form and Function, 1st ed.; Bels, V.L., Russell, A.P., Eds.; Springer Nature: Cham, Switzerland, 2023; pp. 1–21. [Google Scholar]
- Zhao, M.; Lin, Z.; Zheng, Z.; Yao, D.; Yang, S.; Zhao, Y.; Chen, X.; Aweta, J.J.; Zhang, Y. The mechanisms and factors that induce trained immunity in arthropods and mollusks. Front. Immunol. 2023, 14, 1241934. [Google Scholar] [CrossRef] [PubMed]
- Wells, J.N.; Feschotte, C. A field guide to eukaryotic transposable elements. Annu. Rev. Genet. 2020, 54, 539–561. [Google Scholar] [CrossRef] [PubMed]
- Raghavan, N.; Tettelin, H.; Miller, A.; Hostetler, J.; Tallon, L.; Knight, M. Nimbus (BgI): An active non-LTR retrotransposon of the Schistosoma mansoni snail host Biomphalaria glabrata. Int. J. Parasitol. 2007, 37, 1307–1318. [Google Scholar] [CrossRef]
- Kong, N.; Liu, X.; Li, J.; Mu, W.; Lian, J.; Xue, Y.; Li, Q. Effects of temperature and salinity on survival, growth and DNA methylation of juvenile Pacific abalone, Haliotis discus hannai Ino. Chin. J. Oceanol. Limnol. 2017, 35, 1248–1258. [Google Scholar] [CrossRef]
- Klironomos, F.D.; Berg, J.; Collins, S. How epigenetic mutations can affect genetic evolution: Model and mechanism. BioEssays 2013, 35, 571–578. [Google Scholar] [CrossRef] [PubMed]
- Thorson, J.L.M.; Smithson, M.; Beck, D.; Sadler-Riggleman, I.; Nilsson, E.; Dybdahl, M.; Skinner, M.K. Epigenetics and adaptive phenotypic variation between habitats in an asexual snail. Sci. Rep. 2017, 7, 14139. [Google Scholar] [CrossRef] [PubMed]
- Thorson, J.L.M.; Smithson, M.; Sadler-Riggleman, I.; Beck, D.; Dybdahl, M.; Skinner, M.K. Regional epigenetic variation in asex- ual snail populations among urban and rural lakes. Environ. Epigenet. 2019, 5, dvz020. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, Y. Reversing DNA methylation: Mechanisms, genomics, and biological functions. Cell 2014, 156, 45–68. [Google Scholar] [CrossRef]
- Li, S.; Tollefsbol, T.O. DNA methylation methods: Global DNA methylation and methylomic analyses. Methods 2021, 187, 28–43. [Google Scholar] [CrossRef]
- Sanchez-Arguello, P.; Aparicio, N.; Guevara, M.A.; Díaz, L.; Cervera, M.T.; Fernandez, C. Effects on reproduction, genotoxicity and dna methylation pattern after chronic exposure of the freshwater snail Physa acuta (Gastropoda, Pulmonata) to vinclozolin. Austin J. Environ. Toxicol. 2016, 2, 1008. [Google Scholar]
- Guan, D.L.; Ding, R.R.; Hu, X.Y.; Yang, X.R.; Xu, S.Q.; Gu, W.; Zhang, M. Cadmium-induced genome-wide DNA methylation changes in growth and oxidative metabolism in Drosophila melanogaster. BMC Genom. 2019, 20, 356. [Google Scholar] [CrossRef] [PubMed]
- Mehdipour, P.; Chen, R.; De Carvalho, D.D. The next generation of DNMT inhibitors. Nat. Cancer 2021, 2, 1000–1001. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.C.; Matsen, C.B.; Gonzales, F.A.; Ye, W.; Greer, S.; Marquez, V.E.; Jones, P.A.; Selker, E.U. Inhibition of DNA methylation and reactivation of silenced genes by zebularine. J. Natl. Cancer. Inst. 2003, 95, 399–409. [Google Scholar] [CrossRef] [PubMed]
- Yagound, B.; Remnant, E.J.; Buchmann, G.; Oldroyd, B.P. Intergenerational transfer of DNA methylation marks in the honey bee. Proc. Natl. Acad. Sci. USA 2020, 117, 32519–32527. [Google Scholar] [CrossRef]
- Schrader, L.; Schmitz, J. The impact of transposable elements in adaptive evolution. Mol. Ecol. 2019, 28, 1537–1549. [Google Scholar] [CrossRef]
- The Aplysia Californica Genome. Available online: http://neurobase.rc.ufl.edu/aplysia (accessed on 28 February 2024).
Species | DNA Base | Percentage | Source | Method | Reference |
---|---|---|---|---|---|
Helix pomatia | 5mC | 2.9 * | [72] | ||
Patella sp. | 5mC | 4.9 * | [72] | ||
Zeacumantus subcarinatus | 5mC | 0.3–0.9 | whole body | ELISA | [73] |
Aplysia californica | 5mC | 1.5–3 | abdominal ganglions | ELISA | [51] |
Physa acuta | 5mC | 0.15–2.4 | whole body | ELISA | [74] |
5mC | 0.2–0.4 | whole body | ELISA, Dot blot | [52,75] | |
5mC | 0.4–0.68 | whole body | ELISA | [76] | |
Cornu aspersum | 5mC | 0.067–0.48 | hepatopancreas | ELISA | [77] |
5mC | 0.29–0.99 | hepatopancreas | ELISA | [78] | |
5mC | 0.27–0.88 | hepatopancreas | ELISA | [79] | |
5mC | 0.42–0.94 | ovotestis | ELISA | [79] | |
5hmC | <0.03 | hepatopancreas | ELISA | [71] | |
Biomphalaria glabrata | 5mC | 2 | foot | LC-MS/MS | [54] |
5mC | 1.34–4.28 | head, foot | ELISA | [38] | |
5mC | 1.74–1.94 | whole body | Dot Blot | [75] | |
5mC | 0.5–2 | whole body | ELISA | [75] | |
5hmC | 0.0009 | foot | LC-MS/MS | [54] | |
Limacina helicina antarctica | 5mC | 0.5–1.3 | whole body | ELISA | [80] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haidar, L.; Georgescu, M.; Drăghici, G.A.; Bănățean-Dunea, I.; Nica, D.V.; Șerb, A.-F. DNA Methylation Machinery in Gastropod Mollusks. Life 2024, 14, 537. https://doi.org/10.3390/life14040537
Haidar L, Georgescu M, Drăghici GA, Bănățean-Dunea I, Nica DV, Șerb A-F. DNA Methylation Machinery in Gastropod Mollusks. Life. 2024; 14(4):537. https://doi.org/10.3390/life14040537
Chicago/Turabian StyleHaidar, Laura, Marius Georgescu, George Andrei Drăghici, Ioan Bănățean-Dunea, Dragoș Vasile Nica, and Alina-Florina Șerb. 2024. "DNA Methylation Machinery in Gastropod Mollusks" Life 14, no. 4: 537. https://doi.org/10.3390/life14040537
APA StyleHaidar, L., Georgescu, M., Drăghici, G. A., Bănățean-Dunea, I., Nica, D. V., & Șerb, A. -F. (2024). DNA Methylation Machinery in Gastropod Mollusks. Life, 14(4), 537. https://doi.org/10.3390/life14040537