Peloplasma aerotolerans gen. nov., sp. nov., a Novel Anaerobic Free-Living Mollicute Isolated from a Terrestrial Mud Volcano
Abstract
:1. Introduction
2. Materials and Methods
2.1. Enrichment and Isolation
2.2. Morphological, Chemotaxonomic, and Physiological Features
2.3. Phylogeny, Comparative Genomics, and Genome Analysis
3. Results
3.1. Enrichment and Isolation
3.2. Phenotypic and Chemotaxonomic Characteristics
3.3. Phylogeny
3.4. Genome Statistics and Analysis
4. Discussion
Characteristic | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
Source of isolation | Terrestrial mud volcano | Bottom water of brackish meromictic lake | Sewage, manure, humus, soil, and many animal hosts and their tissues, surfaces of some plants | Commercial fetal bovine serum and calf kidney cultures | Oral cavities and vagina of healthy horses | Murine leukemia tissue culture cells, bovine serum |
Cell shapes, form, and diameter | Round, 0.32–0.65 μm | Round, 0.60–0.80 μm | Coccoid form predominates in certain cultures. Branched filaments may develop | Pleomorphic: round and coccobacillary forms, with some beaded filaments and star | Coccobacilli, 0.11–0.20 μm | Coccobacillary and coccoid |
Colonies’ formation | No | No | Yes | Yes | Yes | Yes |
Oxygen relationship | Anaerobic, aerotolerant | Obligately anaerobic | Facultatively anaerobic | Facultatively anaerobic | Facultatively anaerobic | Facultatively anaerobic |
Temperature range, °C (optimum) | 15–37 (30) | 15–37 (30–32) | 20–41 (37) | 23–37 (35–37) | 22–37 (30) | 22–37 (37) |
pH range (optimum) | 6.5–10.0 (7.0–7.5) | 6.2–8.9 (7.2–7.4) | 6.5–8.5 (7.0–7.5) | ND | ND | ND |
NaCl range, % (optimum) | 0–4 (1) | 0–5 (2–3) | ND | ND | ND | ND |
Substrates utilized | Yeast extract, tryptone, pyruvate, D-glucose, D-trehalose, D-ribose, D-mannose, D-xylose, D-maltose, D-lactose, D-cellobiose, D-galactose, D-fructose, and D-sucrose. Requires yeast extract for growth. Stimulation of the growth by sulfur or thiosulfate | Yeast extract, D-glucose. Requires yeast extract for growth. Stimulation of the growth by thiosulfate | D-glucose, D-trehalose | Yeast extract, D-glucose. Requires a supplement of albumin and of palmitic acid to a serum-free medium | Yeast extract, peptone, no carbohydrates’ fermentation | D-glucose, D-maltose, D-galactose, glycogen, starch, dextrin, salicin, glycerol, D-cellobiose. Stimulation of growth with Tween 80 |
DNA G+C content (%) | 32.42 | 30.10 | 31.7–35.7 | 34 | 29–30 | 28 |
Genome size, Mb | 2.04 | 1.88 | 1.50 | 1.55 | 1.55 | 1.88 |
5. Conclusions
5.1. Description of Peloplasma gen. nov.
5.2. Description of Peloplasma aerotolerans sp. nov.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brown, D.R.; Bradbury, J.M.; Johansson, J.K. Acholeplasmatales. In Bergey’s Manual of Systematics of Archaea and Bacteria; Trujillo, M.E., Dedysh, S., DeVos, P., Hedlund, B., Kämpfer, P., Rainey, F.A., Whitman, W.B., Eds.; John Wiley&Sons: Hoboken, NJ, USA, 2015; pp. 1–2. [Google Scholar] [CrossRef]
- Watanabe, M.; Kojima, H.; Okano, K.; Fukui, M. Mariniplasma anaerobium gen. nov., sp. nov., a novel anaerobic marine mollicute, and proposal of three novel genera to reclassify members of Acholeplasma clusters II–IV. Int. J. Syst. Evol. Microbiol. 2021, 71, 005138. [Google Scholar] [CrossRef] [PubMed]
- Imlay, J.A. The molecular mechanisms and physiological consequences of oxidative stress: Lessons from a model bacterium. Nat. Rev. Microbiol. 2013, 11, 443–454. [Google Scholar] [CrossRef] [PubMed]
- Brioukhanov, A.; Netrusov, A. Aerotolerance of strictly anaerobic microorganisms and factors of defense against oxidative stress: A review. Appl. Biochem. Microbiol. 2007, 43, 567–582. [Google Scholar] [CrossRef]
- Mazzini, A.; Etiope, G. Mud volcanism: An updated review. Earth-Sci. Rev. 2017, 168, 81–112. [Google Scholar] [CrossRef]
- Green-Saxena, A.; Feyzullayev, A.; Hubert, C.R.; Kallmeyer, J.; Krueger, M.; Sauer, P.; Schulz, H.M.; Orphan, V.J. Active sulfur cycling by diverse mesophilic and thermophilic microorganisms in terrestrial mud volcanoes of Azerbaijan. Environ. Microbiol. 2012, 14, 3271–3286. [Google Scholar] [CrossRef] [PubMed]
- Mardanov, A.V.; Kadnikov, V.V.; Beletsky, A.V.; Ravin, N.V. Sulfur and methane-oxidizing microbial community in a terrestrial mud volcano revealed by metagenomics. Microorganisms 2020, 8, 1333. [Google Scholar] [CrossRef] [PubMed]
- Merkel, A.Y.; Chernyh, N.A.; Pimenov, N.V.; Bonch-Osmolovskaya, E.A.; Slobodkin, A.I. Diversity and metabolic potential of the terrestrial mud volcano microbial community with a high abundance of Archaea mediating the anaerobic oxidation of methane. Life 2021, 11, 953. [Google Scholar] [CrossRef] [PubMed]
- Slobodkina, G.; Ratnikova, N.; Merkel, A.; Kevbrin, V.; Kuchierskaya, A.; Slobodkin, A. Lithoautotrophic lifestyle of the widespread genus Roseovarius revealed by physiological and genomic characterization of Roseovarius autotrophicus sp. nov. FEMS Microbiol. Ecol. 2022, 98, fiac113. [Google Scholar] [CrossRef] [PubMed]
- Khomyakova, M.A.; Merkel, A.Y.; Segliuk, V.S.; Slobodkin, A.I. Desulfatitalea alkaliphila sp. nov., an alkalipilic sulfate- and arsenate- reducing bacterium isolated from a terrestrial mud volcano. Extremophiles 2023, 27, 12. [Google Scholar] [CrossRef]
- Khomyakova, M.A.; Merkel, A.Y.; Petrova, D.A.; Bonch-Osmolovskaya, E.A.; Slobodkin, A.I. Alkalibaculum sporogenes sp. nov., isolated from a terrestrial mud volcano and emended description of the genus Alkalibaculum. Int. J. Syst. Evol. Microbiol. 2020, 70, 4914–4919. [Google Scholar] [CrossRef]
- Khomyakova, M.A.; Merkel, A.Y.; Slobodkin, A.I. Perlabentimonas gracilis gen. nov., sp. nov., a gliding aerotolerant anaerobe of the order Bacteroidales, isolated from a terrestrial mud volcano. Syst. Appl. Microbiol. 2021, 44, 126245. [Google Scholar] [CrossRef]
- Hsu, H.C.; Chen, J.S.; Nagarajan, V.; Hussain, B.; Huang, S.W.; Rathod, J.; Hsu, B.M. Assessment of temporal effects of a mud volcanic eruption on the bacterial community and their predicted metabolic functions in the mud volcanic sites of Niaosong, Southern Taiwan. Microorganisms 2021, 9, 2315. [Google Scholar] [CrossRef]
- Tu, T.H.; Chen, L.L.; Chiu, Y.P.; Lin, L.H.; Wu, L.W.; Italiano, F.; Shyu, J.B.H.; Raisossadat, S.N.; Wang, P.L. The biogeographic pattern of microbial communities inhabiting terrestrial mud volcanoes across the Eurasian continent. Biogeosciences 2022, 19, 831–843. [Google Scholar] [CrossRef]
- Kikvadze, O.E.; Lavrushin, V.Y.; Pokrovskii, B.G.; Polyak, B.G. Isotope and chemical composition of gases from mud volcanoes in the Taman Peninsula and problem of their genesis. Lithol. Miner. Resour. 2014, 49, 491–504. [Google Scholar] [CrossRef]
- Khomyakova, M.A.; Merkel, A.Y.; Slobodkin, A.I.; Sorokin, D.Y. Phenotypic and genomic characterization of the first alkaliphilic aceticlastic methanogens and proposal of a novel genus Methanocrinis gen.nov. within the family Methanotrichaceae. Front. Microbiol. 2023, 14, 1233691. [Google Scholar] [CrossRef]
- Wolin, E.A.; Wolin, M.J.; Wolfe, R.S. Formation of methane by bacterial extracts. J. Biol. Chem. 1963, 238, 2882–2886. [Google Scholar] [CrossRef]
- Trüper, H.G.; Schlegel, H.G. Sulphur metabolism in Thiorhodaceae. I. Quantitative measurements on growing cells of Chromatium okenii. Antonie Van Leeuwenhoek 1964, 30, 225–238. [Google Scholar] [CrossRef]
- Hartig, C. Rapid identification of fatty acid methyl esters using a multidimensional gas chromatography-mass spectrometry database. J. Chromatogr. 2008, 1177, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Collins, M.D. Analysis of isoprenoid quinones. Methods Microbiol. 1985, 18, 329–363. [Google Scholar] [CrossRef]
- Benson, D.A.; Boguski, M.S.; Lipman, D.J.; Ostell, J.; Ouellette, B.F. GenBank. Nucleic Acids Res. 1999, 27, 38–43. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Overbeek, R.; Olson, R.; Pusch, G.D.; Olsen, G.J.; Davis, J.J.; Disz, T.; Edwards, R.A.; Gerdes, S.; Parrello, B.; Shukla, M.; et al. The seed and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res. 2014, 42, D206–D214. [Google Scholar] [CrossRef] [PubMed]
- Tatusova, T.; Di Cuccio, M.; Badretdin, A.; Chetvernin, V.; Nawrocki, E.P.; Zaslavsky, L.; Lomsadze, A.; Pruitt, K.D.; Borodovsky, M.; Ostell, J. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 2016, 44, 6614–6624. [Google Scholar] [CrossRef]
- Parks, D.H.; Chuvochina, M.; Chaumeil, P.A.; Rinke, C.; Mussig, A.J.; Hugenholtz, P. A complete domain-to-species taxonomy for Bacteria and Archaea. Nat. Biotechnol. 2020, 38, 1079–1086. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Yamada, K.D.; Tomii, K.; Katoh, K. Parallelization of MAFFT for large-scale multiple sequence alignments. Bioinformatics 2018, 34, 2490–2492. [Google Scholar] [CrossRef] [PubMed]
- Chaumeil, P.A.; Mussig, A.J.; Hugenholtz, P.; Parks, D.H. GTDB-Tk v2: Memory friendly classification with the genome taxonomy database. Bioinformatics 2022, 38, 5315–5316. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.; von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef] [PubMed]
- Hoang, D.T.; Chernomor, O.; von Haeseler, A.; Minh, B.Q.; Vinh, L.S. UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 2018, 35, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Anisimova, M.; Gascuel, O. Approximate likelihood-ratio test for branches: A fast, accurate, and powerful alternative. Syst. Biol. 2006, 55, 539–552. [Google Scholar] [CrossRef]
- Yoon, S.H.; Ha, S.M.; Lim, J.; Kwon, S.; Chun, J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 2017, 110, 1281–1286. [Google Scholar] [CrossRef] [PubMed]
- Konstantinidis, K.T.; Tiedje, J.M. Towards a genome-based taxonomy for prokaryotes. J. Bacteriol. 2005, 187, 6258–6264. [Google Scholar] [CrossRef] [PubMed]
- Søndergaard, D.; Pedersen, C.N.; Greening, C. HydDB: A web tool for hydrogenase classification and analysis. Sci. Rep. 2016, 6, 34212. [Google Scholar] [CrossRef] [PubMed]
- Parks, D.H.; Chuvochina, M.; Rinke, C.; Mussig, A.J.; Chaumeil, P.A.; Hugenholtz, P. GTDB: An ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Res. 2022, 50, D785–D794. [Google Scholar] [CrossRef] [PubMed]
- Biegel, E.; Schmidt, S.; Müller, V. Genetic, immunological and biochemical evidence for a Rnf complex in the acetogen Acetobacterium woodii. Environ. Microbiol. 2009, 11, 1438–1443. [Google Scholar] [CrossRef] [PubMed]
- Atobe, H.; Watabe, J.; Ogata, M. Acholeplasma parvum, a new species from horses. Int. J. Syst. Evol. Microbiol. 1983, 33, 344–349. [Google Scholar] [CrossRef]
- Tully, J.G.; Razin, S. Acholeplasma axanthum, sp. nov.: A new sterol-nonrequiring member of the Mycoplasmatales. J. Bacteriol. 1970, 103, 751–754. [Google Scholar] [CrossRef]
- Kube, M.; Siewert, C.; Migdoll, A.M.; Duduk, B.; Holz, S.; Rabus, R.; Seemüller, E.; Mitrovic, J.; Müller, I.; Büttner, C.; et al. Analysis of the complete genomes of Acholeplasma brassicae, A. palmae and A. laidlawii and their comparison to the obligate parasites from ‘Candidatus Phytoplasma’. J. Mol. Microbiol. Biotechnol. 2014, 24, 19–36. [Google Scholar] [CrossRef] [PubMed]
- Kuhns, M.; Trifunović, D.; Huber, H.; Müller, V. The Rnf complex is a Na+ coupled respiratory enzyme in a fermenting bacterium, Thermotoga maritima. Commun. Biol. 2020, 3, 431. [Google Scholar] [CrossRef]
- Edward, D.G.; Freundt, E.A. Amended nomenclature for strains related to Mycoplasma laidlawii. J. Gen. Microbiol. 1970, 62, 1–2. [Google Scholar] [CrossRef]
- Rose, D.L.; Tully, J.G.; Giudice, R.A. Acholeplasma morum, a new non-sterol-requiring species. Int. J. Syst. Evol. Microbiol. 1980, 30, 647–654. [Google Scholar] [CrossRef]
- Hirakata, Y.; Mei, R.; Morinaga, K.; Katayama, T.; Tamaki, H.; Hatamoto, M.; Nobu, M.K. Identification and cultivation of anaerobic bacterial scavengers of dead cells. ISME J. 2023, 17, 2279–2289. [Google Scholar] [CrossRef]
- Ghosh, A.; Bhadury, P. Insights into bacterioplankton community structure from Sundarbans mangrove ecoregion using Sanger and Illumina MiSeq sequencing approaches: A comparative analysis. Genome Data 2016, 11, 39–42. [Google Scholar] [CrossRef]
- Gihring, T.M.; Moser, D.P.; Lin, L.H.; Onstott, T.C.; Morgan, L.; Milleson, M.; Kieft, T.; Trimarco, E.; Balkwill, D.; Dollhopf, M. The distribution of microbial taxa in the subsurface water of the Kalahari shield, South Africa. Geomicrobiol. J. 2006, 23. [Google Scholar] [CrossRef]
- Qiao, J.T.; Qiu, Y.L.; Yuan, X.Z.; Shi, X.S.; Xu, X.H.; Guo, R.B. Molecular characterization of bacterial and archaeal communities in a full-scale anaerobic reactor treating corn straw. Bioresour. Technol. 2013, 143, 512–518. [Google Scholar] [CrossRef]
- Meyer, K.M.; Macalady, J.L.; Fulton, J.M.; Kump, L.R.; Schaperdoth, I.; Freeman, K.H. Carotenoid biomarkers as an imperfect reflection of the anoxygenic phototrophic community in meromictic Fayetteville Green Lake. Geobiology 2011, 9, 321–329. [Google Scholar] [CrossRef] [PubMed]
- Macbeth, T.W.; Cummings, D.E.; Spring, S.; Petzke, L.M.; Sorenson, K.S., Jr. Molecular characterization of a dechlorinating community resulting from in situ biostimulation in a trichloroethene-contaminated deep, fractured basalt aquifer and comparison to a derivative laboratory culture. Appl. Environ. Microbiol. 2004, 70, 7329–7341. [Google Scholar] [CrossRef]
- Masui, N.; Morono, Y.; Inagaki, F. Microbiological assessment of circulation mud fluids during the first operation of riser drilling by the deep-earth research vessel Chikyu. Geomicrobiol. J. 2008, 25, 274–282. [Google Scholar] [CrossRef]
- Hou, M.F.; He, S.L.; Li, D.; Zhang, J.; Zhao, Y. [Bacterial diversity in Lianyungang marine sediment and Qinghai Lake sediment]. Huan Jing Ke Xue 2011, 32, 2681–2688. (In Chinese) [Google Scholar]
- Hamamura, N.; Itai, T.; Liu, Y.; Reysenbach, A.L.; Damdinsuren, N.; Inskeep, W.P. Identification of anaerobic arsenite-oxidizing and arsenate-reducing bacteria associated with an alkaline saline lake in Khovsgol, Mongolia. Environ. Microbiol. Rep. 2014, 6, 476–482. [Google Scholar] [CrossRef]
- Gleeson, D.F.; Williamson, C.; Grasby, S.E.; Pappalardo, R.T.; Spear, J.R.; Templeton, A.S. Low temperature S(0) biomineralization at a supraglacial spring system in the Canadian High Arctic. Geobiology 2011, 9, 360–375. [Google Scholar] [CrossRef]
- Duncan, K.E.; Gieg, L.M.; Parisi, V.A.; Tanner, R.S.; Tringe, S.G.; Bristow, J.; Suflita, J.M. Biocorrosive thermophilic microbial communities in Alaskan North Slope oil facilities. Environ. Sci. Technol. 2009, 43, 7977–7984. [Google Scholar] [CrossRef]
Microorganism | GenBank Accession No. | ANI, % | AAI, % |
---|---|---|---|
Acholeplasma laidlawii DSM 23060 | ASM338576v1 ** | 75.09 | 50.46 |
Acholeplasma equifetale ATCC 29724 | ASM68773v1 | 72.95 | 51.18 |
Acholeplasma hippikon ATCC 29725 | ASM70276v1 | 74.64 | 51.58 |
Acholeplasma equirhinis N93 | ASM1705265v1 | 73.78 | 51.31 |
Mariniplasma anaerobium Mahy22T | ASM1686544v1 ** | 76.34 | 62.81 |
Paracholeplasma morum ATCC 33211 | ASM1690705v1 ** | 75.31 | 52.34 |
Paracholeplasma manati Oakley | ASM2574299v1 | 77.40 | 52.66 |
Paracholeplasma vituli 92-19 | ASM2544693v1 | 78.35 | 52.11 |
“Alteracholeplasma palmae” J233 | ASM96805v1 * | 75.31 | 52.78 |
Haploplasma axanthum NCTC10138 | LR215048.1 ** | 75.57 | 51.77 |
Haploplasma modicum ATCC 29102 | ASM68783v1 | 74.55 | 51.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khomyakova, M.A.; Merkel, A.Y.; Novikov, A.A.; Slobodkin, A.I. Peloplasma aerotolerans gen. nov., sp. nov., a Novel Anaerobic Free-Living Mollicute Isolated from a Terrestrial Mud Volcano. Life 2024, 14, 563. https://doi.org/10.3390/life14050563
Khomyakova MA, Merkel AY, Novikov AA, Slobodkin AI. Peloplasma aerotolerans gen. nov., sp. nov., a Novel Anaerobic Free-Living Mollicute Isolated from a Terrestrial Mud Volcano. Life. 2024; 14(5):563. https://doi.org/10.3390/life14050563
Chicago/Turabian StyleKhomyakova, Maria A., Alexander Y. Merkel, Andrei A. Novikov, and Alexander I. Slobodkin. 2024. "Peloplasma aerotolerans gen. nov., sp. nov., a Novel Anaerobic Free-Living Mollicute Isolated from a Terrestrial Mud Volcano" Life 14, no. 5: 563. https://doi.org/10.3390/life14050563
APA StyleKhomyakova, M. A., Merkel, A. Y., Novikov, A. A., & Slobodkin, A. I. (2024). Peloplasma aerotolerans gen. nov., sp. nov., a Novel Anaerobic Free-Living Mollicute Isolated from a Terrestrial Mud Volcano. Life, 14(5), 563. https://doi.org/10.3390/life14050563