A Comprehensive Analysis of Renal and Endothelium Dysfunction Markers Fourteen Years after Hemorrhagic Fever with Renal Syndrome Contraction
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. General Participant Characteristics
3.2. Hematological and Biochemical Parameters in Post-HFRS Patients
3.3. Urine Tests in Post-HFRS Patients
3.4. Specific Endothelial Dysfunction Markers in Post-HFRS Patients
3.5. Multivariate Analysis of Post-HFRS Patient Markers
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schmaljohn, C.; Hjelle, B. Hantaviruses. A global disease problem. Emerg. Infect. Dis. 1997, 3, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Vaheri, A.; Henttonen, H.; Voutilanien, L.; Mustonen, J.; Sironem, T.; Vapalhti, O. Hantavirus infections in Europe and their impact on public health. Rev. Med. Virol. 2013, 23, 35–49. [Google Scholar] [CrossRef] [PubMed]
- Huttunen, N.P.; Mäkelä, S.; Pokka, T.; Mustonen, J.; Uhari, M. Systematic literature review of symptoms, signs and severity of serologically confirmed nephropathia epidemica in paediatric and adult patients. Scand. J. Infect. Dis. 2011, 43, 405–410. [Google Scholar] [CrossRef]
- Turčinov, D.; Puljiz, I.; Markotić, A.; Kuzman, I.; Begovac, J. Clinical and laboratory findings in patients with oliguric and non-oliguric Hantavirus haemorrhagic fever with renal syndrome: An analysis of 128 patients. Clin. Microbiol. Infect. 2013, 19, 674–679. [Google Scholar] [CrossRef]
- Mustonen, J.; Brummer-Korvenkontio, M.; Hedman, K.; Pasternack, A.; Pietilä, K.; Vaheri, A. Nephropathia epidemica in Finland: A retrospective study of 126 cases. Scand. J. Infect. Dis. 1994, 26, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Markotić, A.; Nichol, S.T.; Kuzman, I.; Sanchez, A.J.; Ksiazek, T.G.; Gagro, A.; Rabatić, S.; Zgorelec, R.; Avsic-Zupanc, T.; Beus, I.; et al. Characteristics of Puumala and Dobrava infections in Croatia. J. Med. Virol. 2002, 66, 542–551. [Google Scholar] [CrossRef] [PubMed]
- Hepojoki, J.; Vaheri, A.; Strandini, A. The fundamental role of endothelial cells in hantavirus pathogenesis. Front. Microbiol. 2014, 5, 727. [Google Scholar] [CrossRef]
- Geimonen, E.; Neff, S.; Raymond, T.; Kocek, S.S.; Gavrilovskaya, I.N.; Mackow, E.R. Pathogenic and nonpathogenic hantaviruses differentially regulate endothelial cell responses. Proc. Natl. Acad. Sci. USA 2002, 99, 13837–13842. [Google Scholar] [CrossRef]
- Jiang, H.; Du, H.; Wang, L.M.; Wang, P.Z.; Bai, X.F. Hemorrhagic Fever with Renal Syndrome: Pathogenesis and Clinical Picture. Front. Cell. Infect. Microbiol. 2016, 6, 1. [Google Scholar] [CrossRef]
- Mir, S. Hantavirus Induced Kidney Disease. Front. Med. 2021, 8, 795340. [Google Scholar] [CrossRef]
- Tulumović, D.; Imamović, G.; Mesić, E.; Hukić, M.; Tulumović, A.; Imamović, A.; Zerem, E. Comparison of the effect of Puumala and Dobrava viruses on early and long–term renal outcomes in patients with haemorrhagic fever with renal syndrome. Nephrol 2010, 15, 340–343. [Google Scholar] [CrossRef] [PubMed]
- Alla-Houhala, I.; Koskinen, M.; Ahola, T.; Harmoinen, A.; Kouri, T.; Laurila, K.; Mustonen, J.; Pasternack, A. Increased glomerular permeability in patients with nephropathia epidemica caused by Puumala hantavirus. Nephrol. Dial. Transplant. 2002, 17, 246–252. [Google Scholar] [CrossRef]
- Cvetko Krajinović, L.; Bodulić, K.; Laškaj, R.; Žibrat, B.; Svoboda Karić, P.; Kurolt, I.C.; Kordun, M.; Topić, A.; Čivljak, R.; Skuhala, T.; et al. Hemorrhagic Fever with Renal Syndrome Patients Exhibit Increased Levels of Lipocalin-2, Endothelin-1 and NT-proBNP. Life 2023, 13, 2189. [Google Scholar] [CrossRef] [PubMed]
- Vaccaro, F.; Picone, F.P.; Montalto, G.; Cerasola, G. Circulating levels of adhesion molecules in chronic kidney disease correlate with the stage of renal disease and with C-reactive protein. Arch. Med. Res. 2007, 38, 534–538. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, S.H.; Egberg, N.; Hylander, B.; Lundahl, J. Correlation between soluble markers of endothelial dysfunction in patients with renal failure. Am. J. Nephrol. 2002, 22, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Stam, F.; van Guldener, C.; Becker, A.; Deker, J.M.; Heine, R.J.; Boter, L.M.; Stehouwer, C.D.A. Endothelial dysfunction contributes to renal function-associated cardiovascular mortality in a population with mild renal insufficiency: The Hoorn study. J. Am. Soc. Nephrol. 2006, 17, 537–545. [Google Scholar] [CrossRef] [PubMed]
- Pal, E.; Korva, M.; Resman Rus, K.; Kejžar, N.; Bogović, P.; Strle, F.; Avšić-Županc, T. Relationship between circulating vascular endothelial growth factor and its soluble receptor in patients with hemorrhagic fever with renal syndrome. Emerg. Microb. Infect. 2018, 16, 89. [Google Scholar] [CrossRef] [PubMed]
- Bellomo, C.; Korva, M.; Papa, A.; Mäkelä, S.; Mustonen, J.; Avšić-Županc, T.; Vaheri, A.; Martinez, V.P.; Strandin, T. Differential Regulation of PAI-1 in Hantavirus Cardiopulmonary Syndrome and Hemorrhagic Fever With Renal Syndrome. Open. Forum. Infect. Dis. 2018, 2, ofy021. [Google Scholar] [CrossRef] [PubMed]
- Qi, B.T.; Wang, P.; Li, J.; Ren, H.X.; Xie, M. Levels of soluble vascular cell adhesion molecule-1 and soluble intercellular adhesion molecule-2 in plasma of patients with hemorrhagic fever with renal syndrome, and significance of the changes in level. Viral. Immunol. 2006, 19, 565–569. [Google Scholar] [CrossRef]
- Takala, A.; Lähdevirta, J.; Jansson, S.E.; Vapalahti, O.; Orpana, A.; Karonen, S.L.; Repo, H. Systemic inflammation in hemorrhagic fever with renal syndrome correlates with hypotension and thrombocytopenia but not with renal injury. J. Infect. Dis. 2000, 181, 1964–1970. [Google Scholar] [CrossRef]
- Sirotin, B.Z.; Shapiro, I.A.; Menshin, V.N. Tubulointerstitial changes in patients with a history of hemorrhagic fever with renal syndrome. Ter. Arkh. 1989, 61, 51–59. [Google Scholar]
- Miettinen, M.H.; Mäkelä, S.M.; Ala-Houhala, I.O.; Huhtala, H.S.; Kööbi, T.; Vaheri, A.I.; Pasternack, A.I.; Mustonen, J.T. Tubular proteinuia and glomerual filtration 6 years after puumala hantavirus-induced acute interstitial nephritis. Nephron. Clin. Pract. 2009, 112, 115–120. [Google Scholar]
- Ledina, D.; Bradarić, N.; Ivić, I.; Marasović, D.; Radović, D.; Ostojić-Bakotin, V.; Prgomet, S. Is permanent renal function damage possible after hemorrhagic fever with renal syndrome? Acta. Med. Croatica. 2003, 57, 365–368. [Google Scholar] [PubMed]
- Dudarev, M.V.; Pimenov, L.T. Long-term outcomes and formation of chronic disease of the kidneys in patients with a history of hemorrhagic fever with renal syndrome. Ter. Arkh. 2008, 80, 59–62. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024. [Google Scholar]
- Puljiz, I.; Kuzman, I.; Turcinov, D.; Makek, N.; Markotić, A. Laboratory findings in patients with hemorrhagic fever with renal syndrome. Acta. Med. Croatica. 2005, 59, 105–111. [Google Scholar] [PubMed]
- Taqir, M.; Kim, D.M. Hemorrhagic Fever with Renal Syndrome: Literature Review, Epidemiology, Clinical Picture and Pathogenesis. Infect. Chemoter. 2022, 54, 1–19. [Google Scholar]
- Tarvainen, M.; Mäkelä, S.; Laine, O.; Pörsti, I.; Risku, S.; Niemelä, O.; Mustonen, J.; Jaatinen, P. Hormonal Defects Are Common during Puumala Hantavirus Infection and Associate with Disease Severity and Biomarkers of Altered Haemostasis. Viruses 2021, 13, 1818. [Google Scholar] [CrossRef]
Parameters | N (%)/Median (Range) |
---|---|
Patients (N = 30) | |
Male sex | 30 (100.0%) |
Age (years) | 41 (31–49) |
Body weight (kg) | 89 (61–111) |
Systolic pressure (mmHg) | 130.0 (110.0–160.0) |
Diastolic pressure (mmHg) | 86.7 (60.0–120.0) |
Mean arterial pressure (mmHg) | 101.1 (78.2–126.6) |
Viral species | |
PUUV | 27 (90.0%) |
DOBV | 2 (6.7%) |
Undetermined | 1 (3.3%) |
Symptoms | |
Headache | 15 (50.0%) |
Depression | 15 (50.0%) |
Painful lumbar succussion | 11 (36.7%) |
Hepatomegaly | 3 (10.0%) |
Frequent urination | 2 (6.7%) |
Splenomegaly | 2 (6.7%) |
Healthy individuals (N = 30) | |
Male sex | 30 (100.0%) |
Age (years) | 38.8 (30–49) |
Body weight (kg) | 92 (73–110) |
Systolic pressure (mmHg) | 123.3 (100.0–150.0) |
Diastolic pressure (mmHg) | 80.0 (60.0–100.0) |
Mean arterial pressure (mmHg) | 91.6 (74.9–116.5) |
Hematological Parameters | Reference Values | Post-HFRS Patients Median (Range) | Healthy Individuals Median (Range) | p-Value |
ESR (mmh) | 4–24 | 6 (1–31) | 4 (1–12) | 0.025 |
Erythrocytes (×1012/L) | 4.30–5.72 | 4.8 (4.2–6.0) | 5.1 (4.0–5.7) | 0.340 |
Hemoglobin (g/L) | 138–175 | 149 (130–178) | 153 (118–171) | 0.599 |
Leukocytes (×109/L) | 3.4–9.7 | 6.8 (3.9–12.2) | 6.7 (4.1–9.1) | 0.871 |
Platelets (×109/L) | 158–424 | 231 (149–492) | 227 (169–344) | 0.773 |
vWF (IU/L) | 0.5–1.5 | 1.24 (0.64–1.80) | 1.04 (0.47–1.60) | 0.008 |
D-dimers (mg/L) | <0.5 | 0.2 (0.1–0.7) | 0.2 (0.1–0.7) | 0.917 |
Biochemical Parameters | Reference Values | Post-HFRS Patients Median (Range) | Healthy Individuals Median (Range) | p-Value |
AST (U/L) | 1–37 | 22 (14–59) | 25 (15–45) | 0.445 |
Urea (mmol/L) | 3.6–7.2 | 5.8 (2.4–7.3) | 6.1 (4.1–8.4) | 0.105 |
Uric acid (μmol/L) | 142–416 | 319 (157–556) | 297 (213–387) | 0.025 |
T3 (mmol/L) | 1.26–2.75 | 1.80 (1.18–2.27) | 1.73 (0.95–2.66) | 0.283 |
T4 (mmol/L) | 58–161 | 87 (75–139) | 104 (67–130) | 0.005 |
CRP (mg/L) | 0.0–5.0 | 2.5 (0.5–22.0) | 1.2 (0.5–7.7) | 0.005 |
IgA (g/L) | 0.7–4.0 | 2.3 (0.9–6.4) | 1.8 (0.9–3.7) | 0.014 |
24 h-Urine Analysis | Reference Values | Post-HFRS Patients Median (Range) | Healthy Individuals Median (Range) | p-Value |
---|---|---|---|---|
Sodium (mmol/d) | 120–250 | 157 (20–503) | 230 (107–362) | 0.040 |
Potassium (mmol/d) | 50–100 | 62 (34–129) | 65 (28–94) | 0.010 |
Chloride (mmol/d) | 128–257 | 185 (32–459) | 223 (119–407) | 0.061 |
Urea (mmol/d) | 250–570 | 346 (180–640) | 445 (309–776) | 0.112 |
Proteins (mg/d) | 25–150 | 133 (51–262) | 90 (13–157) | 0.023 |
Microalbumin (mg/d) | 1.0–30.0 | 6.9 (2.7–131.0) | 5.3 (0.7–8.2) | 0.011 |
β2-microglobulin (mg/L) | 0.00–0.20 | 0.20 (0.08–0.33) | 0.10 (0.13–23.00) | 0.027 |
First morning Urine Analysis | Post-HFRS Patients N (%) | Healthy Individuals N (%) | p-Value |
---|---|---|---|
Positive nitrites (>0 mmol/L) | 1 3.6% | 0 (0.0%) | 0.999 |
Proteins > 0.2 mg/dL | 7 (23.3%) | 2 (6.7%) | 0.146 |
Erythrocytes > 2 per field of view | 11 (36.7%) | 3 (10.0%) | 0.030 |
Leukocytes > 2 per field of view | 17 (56.7%) | 10 (33.3%) | 0.119 |
ED Markers in Serum | Post-HFRS Patients Median (Range) | Healthy Individuals Median (Range) | p-Value |
P-selectin (ng/mL) | 101.4 (45.6–194.2) | 84.0 (24.2–311.2) | 0.265 |
E selectin (ng/mL) | 50.3 (21.7–121.9) | 46.3 (31.0–103.0) | 0.505 |
sICAM-1 (ng/mL) | 205.2 (89.9–566.3) | 165.3 (99.1–430.4) | 0.203 |
sVCAM-1 (ng/mL) | 439.3 (284.6–698.6) | 507.9 (301.9–880.5) | 0.299 |
VEGF (pg/mL) | 278.5 (57.0–824.0) | 236.0 (58.0–960.0) | 0.921 |
ED Markers in Urine | Post-HFRS Patients Median (Range) | Healthy Individuals Median (Range) | p-Value |
P-selectin (ng/mL) | 0.1 (0.0–0.4) | 0.1 (0.0–1.0) | 0.382 |
E selectin (ng/mL) | 0.2 (0.0–0.4) | 0.2 (0.0–0.4) | 0.948 |
sICAM-1 (ng/mL) | 0.0 (0.0–1.6) | 0.0 (0.0–4.0) | 0.761 |
sVCAM-1 (ng/mL) | 20.6 (0.0–97.0) | 5.3 (0.1–100.9) | 0.080 |
VEGF (pg/mL) | 276.1 (1.1–1847.0) | 242.2 (117.0–778.0) | 0.294 |
Parameter | Coefficient | Odds Ratio | p-Value |
---|---|---|---|
CRP | 0.990 | 2.691 | 0.050 |
24 h urine microalbumin | 0.338 | 1.474 | 0.048 |
Serum sVCAM-1 | −0.026 | 0.974 | 0.043 |
Urine VEGF | 0.015 | 1.015 | 0.041 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ledina, D.; Ivić, I.; Tadin, A.; Bodulić, K.; LeDuc, J.W.; Markotić, A. A Comprehensive Analysis of Renal and Endothelium Dysfunction Markers Fourteen Years after Hemorrhagic Fever with Renal Syndrome Contraction. Life 2024, 14, 575. https://doi.org/10.3390/life14050575
Ledina D, Ivić I, Tadin A, Bodulić K, LeDuc JW, Markotić A. A Comprehensive Analysis of Renal and Endothelium Dysfunction Markers Fourteen Years after Hemorrhagic Fever with Renal Syndrome Contraction. Life. 2024; 14(5):575. https://doi.org/10.3390/life14050575
Chicago/Turabian StyleLedina, Dragan, Ivo Ivić, Ante Tadin, Kristian Bodulić, James W. LeDuc, and Alemka Markotić. 2024. "A Comprehensive Analysis of Renal and Endothelium Dysfunction Markers Fourteen Years after Hemorrhagic Fever with Renal Syndrome Contraction" Life 14, no. 5: 575. https://doi.org/10.3390/life14050575
APA StyleLedina, D., Ivić, I., Tadin, A., Bodulić, K., LeDuc, J. W., & Markotić, A. (2024). A Comprehensive Analysis of Renal and Endothelium Dysfunction Markers Fourteen Years after Hemorrhagic Fever with Renal Syndrome Contraction. Life, 14(5), 575. https://doi.org/10.3390/life14050575